Package 'susieR'

February 17, 2023

Encoding UTF-8

Type Package

Title Sum of Single Effects Linear Regression

Description Implements methods for variable selection in linear regression based on the ``Sum of Single Effects" (SuSiE) model, as described in Wang et al (2020) <DOI:10.1101/501114> and Zou et al (2021) <DOI:10.1101/2021.11.03.467167>. These methods provide simple summaries, called ``Credible Sets", for accurately quantifying uncertainty in which variables should be selected. The methods are motivated by genetic fine-mapping applications, and are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse. The fitting algorithm, a Bayesian analogue of stepwise selection methods called ``Iterative Bayesian Stepwise Selection" (IBSS), is simple and fast, allowing the SuSiE model be fit to large data sets (thousands of samples and hundreds of thousands of variables).

Date 2023-02-17 **Version** 0.12.35

URL https://github.com/stephenslab/susieR

BugReports https://github.com/stephenslab/susieR/issues

License BSD_3_clause + file LICENSE

Depends R (>= 3.0.0)

Imports methods, graphics, grDevices, stats, Matrix, matrixStats, mixsqp, reshape, crayon, ggplot2

Suggests curl, testthat, microbenchmark, knitr, rmarkdown, Rfast, cowplot

LazyData yes

LazyDataCompression xz

NeedsCompilation no

RoxygenNote 7.2.3

2 coef.susie

VignetteBuilder knitr
Author Gao Wang [aut],
Yuxin Zou [aut],
Kaiqian Zhang [aut],
Peter Carbonetto [aut, cre],
Matthew Stephens [aut]
${\bf Maintainer}\ \ {\tt Peter\ Carbonetto\ $
Repository CRAN
Date/Publication 2023-02-17 17:50:02 UTC

R topics documented:

Index	
	univariate_regression
	susie_trendfilter
	susie_rss
	susie_plot_changepoint
	susie_plot
	susie_init_coef
	susie_get_objective
	susie_auto
	susie
	SummaryConsistency
	summary.susie
	predict.susie
	N3finemapping
	N2finemapping
	kriging_rss
	get_cs_correlation
	FinemappingConvergence
	estimate_s_rss
	compute_suff_stat
	compute_ss

Description

Extract regression coefficients from susie fit

Usage

```
## S3 method for class 'susie'
coef(object, ...)
```

compute_ss 3

Arguments

object A susie fit.

... Additional arguments passed to the generic coef method.

Value

A p+1 vector, the first element being an intercept, and the remaining p elements being estimated regression coefficients.

compute_ss

Compute sufficient statistics for input to susie_suff_stat

Description

This is a synonym for compute_suff_stat included for historical reasons (deprecated).

Usage

```
compute_ss(X, y, standardize = FALSE)
```

Arguments

X An n by p matrix of covariates.

y An n vector.

standardize Logical flag indicating whether to standardize columns of X to unit variance

prior to computing summary data.

Value

A list of sufficient statistics (X'X, X'y, y'y and n)

```
data(N2finemapping)
ss = compute_ss(N2finemapping$X, N2finemapping$Y[,1])
```

4 estimate_s_rss

compute_suff_stat

Compute sufficient statistics for input to susie_suff_stat

Description

Computes the sufficient statistics X'X, X'y, y'y and n after centering (and possibly standardizing) the columns of X and centering y to have mean zero. We also store the column means of X and mean of y.

Usage

```
compute_suff_stat(X, y, standardize = FALSE)
```

Arguments

X An n by p matrix of covariates.

y An n vector.

standardize Logical flag indicating whether to standardize columns of X to unit variance

prior to computing summary data

Value

A list of sufficient statistics (XtX, Xty, yty, n) and X_colmeans, y_mean.

Examples

```
data(N2finemapping)
ss = compute_suff_stat(N2finemapping$X, N2finemapping$Y[,1])
```

estimate_s_rss

Estimate s in susie_rss Model Using Regularized LD

Description

The estimated s gives information about the consistency between the z scores and LD matrix. A larger s means there is a strong inconsistency between z scores and LD matrix. The "null-mle" method obtains mle of s under $z|R\ N(0,(1-s)R+sI),\,0< s<1$. The "null-partialmle" method obtains mle of s under $U^Tz|R\ N(0,sI)$, in which U is a matrix containing the of eigenvectors that span the null space of R; that is, the eigenvectors corresponding to zero eigenvalues of R. The estimated s from "null-partialmle" could be greater than 1. The "null-pseudomle" method obtains mle of s under pseudolikelihood $L(s)=\prod_{i=1}^p p(z_j|z_{-j},s,R),\,0< s<1$.

Usage

```
estimate_s_rss(z, R, n, r_tol = 1e-08, method = "null-mle")
```

Arguments

Z	A p-vector of z scores.
R	A p by p symmetric, positive semidefinite correlation matrix.
n	The sample size. (Optional, but highly recommended.)
r_tol	Tolerance level for eigenvalue check of positive semidefinite matrix of R.
method	a string specifies the method to estimate s .

Value

A number between 0 and 1.

Examples

```
set.seed(1)
n = 500
p = 1000
beta = rep(0,p)
beta[1:4] = 0.01
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
input_ss = compute_suff_stat(X,y,standardize = TRUE)
ss = univariate_regression(X,y)
R = cor(X)
attr(R, "eigen") = eigen(R, symmetric = TRUE)
zhat = with(ss,betahat/sebetahat)
# Estimate s using the unadjusted z-scores.
s0 = estimate_s_rss(zhat,R)
# Estimate s using the adjusted z-scores.
s1 = estimate_s_rss(zhat,R,n)
```

FinemappingConvergence

Simulated Fine-mapping Data with Convergence Problem.

Description

Data simulated using real genotypes from 50,000 individuals and 200 SNPs. Two of the SNPs have non-zero effects on the multivariate response. The response data are generated under a linear regression model. The simulated response and the columns of the genotype matrix are centered.

6 get_cs_correlation

Format

FinemappingConvergence is a list with the following elements:

XtX Summary statistics computed using the centered and scaled genotype matrix.

Xty Summary statistics computed using the centered and scaled genotype data, and the centered simulated response.

yty yty is computed using the centered simulated response.

n The sample size (50,000).

true_coef The coefficients used to simulate the responses.

z z-scores from a simple (single-SNP) linear regression.

See Also

A similar data set with more SNPs is used in the "Refine SuSiE model" vignette.

Examples

data(FinemappingConvergence)

get_cs_correlation Get Correlations Between CSs, using Variable with Maximum PIP
From Each CS

Description

This function evaluates the correlation between single effect CSs. It is not part of the SuSiE inference. Rather, it is designed as a diagnostic tool to assess how correlated the reported CS are.

Usage

```
get_cs_correlation(model, X = NULL, Xcorr = NULL, max = FALSE)
```

Arguments

model	A SuSiE fit, typically an output from susie or one of its variants.
X	n by p matrix of values of the p variables (covariates) in n samples. When provided, correlation between variables will be computed and used to remove CSs whose minimum correlation among variables is smaller than min_abs_corr.
Xcorr	p by p matrix of correlations between variables (covariates). When provided, it will be used to remove CSs whose minimum correlation among variables is smaller than min_abs_corr.
max	When max = FAFLSE, return a matrix of CS correlations. When max = TRUE, return only the maximum absolute correlation among all pairs of correlations.

Value

A matrix of correlations between CSs, or the maximum absolute correlation when max = TRUE.

kriging_rss 7

kriging_rss	Compute Distribution of z-scores of Variant j Given Other z-scores, and Detect Possible Allele Switch Issue

Description

Under the null, the rss model with regularized LD matrix is z|R,s N(0,(1-s)R+sI)). We use a mixture of normals to model the conditional distribution of z_j given other z scores, $z_j|z_{-j},R,s$ $\sum_{k=1}^K \pi_k N(-\Omega_{j,-j}z_{-j}/\Omega_{j,k})$ $\Omega=((1-s)R+sI)^{-1},\ \sigma_1,...,\sigma_k$ is a grid of fixed positive numbers. We estimate the mixture weights π We detect the possible allele switch issue using likelihood ratio for each variant.

Usage

```
kriging_rss(
    z,
    R,
    n,
    r_tol = 1e-08,
    s = estimate_s_rss(z, R, n, r_tol, method = "null-mle")
)
```

Arguments

```
    A p-vector of z scores.
    A p by p symmetric, positive semidefinite correlation matrix.
    The sample size. (Optional, but highly recommended.)
    Tolerance level for eigenvalue check of positive semidefinite matrix of R.
    an estimated s from estimate_s_rss
```

Value

a list containing a ggplot2 plot object and a table. The plot compares observed z score vs the expected value. The possible allele switched variants are labeled as red points ($\log LR > 2$ and abs(z) > 2). The table summarizes the conditional distribution for each variant and the likelihood ratio test. The table has the following columns: the observed z scores, the conditional expectation, the conditional variance, the standardized differences between the observed z score and expected value, the log likelihood ratio statistics.

```
# See also the vignette, "Diagnostic for fine-mapping with summary # statistics." set.seed(1) n = 500 p = 1000 beta = rep(0,p) beta[1:4] = 0.01
```

N2finemapping

```
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
ss = univariate_regression(X,y)
R = cor(X)
attr(R,"eigen") = eigen(R,symmetric = TRUE)
zhat = with(ss,betahat/sebetahat)
cond_dist = kriging_rss(zhat,R,n = n)
cond_dist$plot
```

N2finemapping

Simulated Fine-mapping Data with Two Effect Variables

Description

This data set contains a genotype matrix for 574 individuals and 1,002 variables. The variables are genotypes after centering and scaling, and therefore retain the correlation structure of the original genotype data. Two of the variables have non-zero effects on the multivariate response. The response data are generated under a multivariate linear regression model. See Wang *et al* (2020) for details.

Format

N2finemapping is a list with the following elements:

X Centered and scaled genotype data.

chrom Chromomsome of the original data, in hg38 coordinates.

pos Chromomosomal position of the original data, in hg38 coordinates. The information can be used to compare impact of using other genotype references of the same variables in susie_rss application.

true_coef Simulated effect sizes.

residual_variance Simulated residual covariance matrix.

Y Simulated multivariate response.

allele_freq Allele frequencies based on the original genotype data.

V Suggested prior covariance matrix for effect sizes of the two non-zero effect variables.

References

G. Wang, A. Sarkar, P. Carbonetto and M. Stephens (2020). A simple new approach to variable selection in regression, with application to genetic fine-mapping. *Journal of the Royal Statistical Society, Series B* doi: 10.1101/501114.

```
data(N2finemapping)
```

N3finemapping 9

N3finemapping

Simulated Fine-mapping Data with Three Effect Variables.

Description

The data-set contains a matrix of 574 individuals and 1,001 variables. These variables are real-world genotypes centered and scaled, and therefore retains the correlation structure of variables in the original genotype data. 3 out of the variables have non-zero effects. The response data is generated under a multivariate linear regression model. See Wang *et al* (2020) for more details.

Format

N3finemapping is a list with the following elements:

X N by P variable matrix of centered and scaled genotype data.

chrom Chromomsome of the original data, in hg38 coordinate.

pos Chromomosomal position of the original data, in hg38 coordinate. The information can be used to compare impact of using other genotype references of the same variables in susie_rss application.

true_coef The simulated effect sizes.

residual_variance The simulated residual covariance matrix.

Y The simulated response variables.

allele_freq Allele frequency of the original genotype data.

V Prior covariance matrix for effect size of the three non-zero effect variables.

References

G. Wang, A. Sarkar, P. Carbonetto and M. Stephens (2020). A simple new approach to variable selection in regression, with application to genetic fine-mapping. *Journal of the Royal Statistical Society, Series B* doi: 10.1101/501114.

Examples

data(N3finemapping)

10 summary.susie

predict.susie

Predict outcomes or extract coefficients from susie fit.

Description

Predict outcomes or extract coefficients from susie fit.

Usage

```
## S3 method for class 'susie'
predict(object, newx = NULL, type = c("response", "coefficients"), ...)
```

Arguments

object A susie fit.

newx A new value for X at which to do predictions.

type The type of output. For type = "response", predicted or fitted outcomes are

returned; for type = "coefficients", the estimated coefficients are returned.

... Other arguments used by generic predict function. These extra arguments are

not used here.

Value

For type = "response", predicted or fitted outcomes are returned; for type = "coefficients", the estimated coefficients are returned. If the susie fit has intercept = NA (which is common when using susie_suff_stat) then predictions are computed using an intercept of 0, and a warning is emitted.

summary.susie

Summarize Susie Fit.

Description

summary method for the "susie" class.

Usage

```
## $3 method for class 'susie'
summary(object, ...)
## $3 method for class 'summary.susie'
print(x, ...)
```

Summary Consistency 11

Arguments

object A susie fit.

... Additional arguments passed to the generic summary or print.summary method.

x A susie summary.

Value

summary. susie returns a list containing a data frame of variables and a data frame of credible sets.

SummaryConsistency

Simulated Fine-mapping Data with LD matrix From Reference Panel.

Description

Data simulated using real genotypes from 10,000 individuals and 200 SNPs. One SNP have non-zero effect on the multivariate response. The response data are generated under a linear regression model. There is also one SNP with flipped allele between summary statistics and the reference panel.

Format

SummaryConsistency is a list with the following elements:

z z-scores computed by fitting univariate simple regression variable-by-variable.

ldref LD matrix estimated from the reference panel.

flip_id The index of the SNP with the flipped allele.

signal_id The index of the SNP with the non-zero effect.

See Also

A similar data set with more samples is used in the "Diagnostic for fine-mapping with summary statistics" vignette.

Examples

data(SummaryConsistency)

Sum of Single Effects (SuSiE) Regression

susie

Description

Performs a sparse Bayesian multiple linear regression of y on X, using the "Sum of Single Effects" model from Wang et al (2020). In brief, this function fits the regression model $y = \mu + Xb + e$, where elements of e are i.i.d. normal with zero mean and variance residual_variance, μ is an intercept term and b is a vector of length p representing the effects to be estimated. The "susie assumption" is that $b = \sum_{l=1}^L b_l$ where each b_l is a vector of length p with exactly one nonzero element. The prior on the non-zero element is normal with zero mean and variance var(y) *scaled_prior_variance. The value of L is fixed, and should be chosen to provide a reasonable upper bound on the number of non-zero effects to be detected. Typically, the hyperparameters residual_variance and scaled_prior_variance will be estimated during model fitting, although they can also be fixed as specified by the user. See functions $susie_get_c$ and other functions of form $susie_get_*$ to extract the most commonly-used results from a susie fit.

Usage

```
susie(
  Χ,
  L = min(10, ncol(X)),
  scaled_prior_variance = 0.2,
  residual_variance = NULL,
  prior_weights = NULL,
  null_weight = 0,
  standardize = TRUE,
  intercept = TRUE,
  estimate_residual_variance = TRUE,
  estimate_prior_variance = TRUE,
  estimate_prior_method = c("optim", "EM", "simple"),
  check_null_threshold = 0,
  prior_tol = 1e-09,
  residual_variance_upperbound = Inf,
  s_init = NULL,
  coverage = 0.95,
  min_abs_corr = 0.5,
  compute_univariate_zscore = FALSE,
  na.rm = FALSE,
 max_iter = 100,
  tol = 0.001,
  verbose = FALSE,
  track_fit = FALSE,
  residual_variance_lowerbound = var(drop(y))/10000,
  refine = FALSE,
  n_{purity} = 100
```

```
)
susie_suff_stat(
 XtX,
  Xty,
 yty,
 n,
 X_{colmeans} = NA,
 y_mean = NA,
 maf = NULL,
 maf_thresh = 0,
 L = 10,
  scaled_prior_variance = 0.2,
  residual_variance = NULL,
  estimate_residual_variance = TRUE,
  estimate_prior_variance = TRUE,
  estimate_prior_method = c("optim", "EM", "simple"),
  check_null_threshold = 0,
  prior_tol = 1e-09,
  r_{tol} = 1e-08,
  prior_weights = NULL,
  null_weight = 0,
  standardize = TRUE,
 max_iter = 100,
  s_init = NULL,
  coverage = 0.95,
 min_abs_corr = 0.5,
  tol = 0.001,
  verbose = FALSE,
  track_fit = FALSE,
  check_input = FALSE,
  refine = FALSE,
  check_prior = FALSE,
  n_{purity} = 100,
)
```

Arguments

X An n by p matrix of covariates.

y The observed responses, a vector of length n.

L Maximum number of non-zero effects in the susie regression model. If L is larger than the number of covariates, p, L is set to p.

scaled_prior_variance

The prior variance, divided by var(y) (or by (1/(n-1))yty for $susie_suff_stat$); that is, the prior variance of each non-zero element of b is $var(y) * scaled_prior_variance$. The value provided should be either a scalar or a vector of length L. If $estimate_prior_variance = TRUE$, this provides initial estimates of the prior variances.

residual_variance

Variance of the residual. If estimate_residual_variance = TRUE, this value provides the initial estimate of the residual variance. By default, it is set to var(y) in susie and (1/(n-1))yty in $susie_suff_stat$.

prior_weights

A vector of length p, in which each entry gives the prior probability that corresponding column of X has a nonzero effect on the outcome, y.

null_weight

Prior probability of no effect (a number between 0 and 1, and cannot be exactly 1).

standardize

If standardize = TRUE, standardize the columns of X to unit variance prior to fitting (or equivalently standardize XtX and Xty to have the same effect). Note that scaled_prior_variance specifies the prior on the coefficients of X *after* standardization (if it is performed). If you do not standardize, you may need to think more carefully about specifying scaled_prior_variance. Whatever your choice, the coefficients returned by coef are given for X on the original input scale. Any column of X that has zero variance is not standardized.

intercept

If intercept = TRUE, the intercept is fitted; it intercept = FALSE, the intercept is set to zero. Setting intercept = FALSE is generally not recommended.

estimate_residual_variance

If estimate_residual_variance = TRUE, the residual variance is estimated, using residual_variance as an initial value. If estimate_residual_variance = FALSE, the residual variance is fixed to the value supplied by residual_variance.

estimate_prior_variance

If estimate_prior_variance = TRUE, the prior variance is estimated (this is a separate parameter for each of the L effects). If provided, scaled_prior_variance is then used as an initial value for the optimization. When estimate_prior_variance = FALSE, the prior variance for each of the L effects is determined by the value supplied to scaled_prior_variance.

estimate_prior_method

The method used for estimating prior variance. When estimate_prior_method = "simple" is used, the likelihood at the specified prior variance is compared to the likelihood at a variance of zero, and the setting with the larger likelihood is retained.

check_null_threshold

When the prior variance is estimated, compare the estimate with the null, and set the prior variance to zero unless the log-likelihood using the estimate is larger by this threshold amount. For example, if you set check_null_threshold = 0.1, this will "nudge" the estimate towards zero when the difference in log-likelihoods is small. A note of caution that setting this to a value greater than zero may lead the IBSS fitting procedure to occasionally decrease the ELBO.

When the prior variance is estimated, compare the estimated value to prior_tol at the end of the computation, and exclude a single effect from PIP computation if the estimated prior variance is smaller than this tolerance value.

residual_variance_upperbound

Upper limit on the estimated residual variance. It is only relevant when estimate_residual_variance = TRUE.

s_init A previous susie fit with which to initialize.

prior_tol

coverage A number between 0 and 1 specifying the "coverage" of the estimated confi-

dence sets.

min_abs_corr Minimum absolute correlation allowed in a credible set. The default, 0.5, cor-

responds to a squared correlation of 0.25, which is a commonly used threshold

for genotype data in genetic studies.

compute_univariate_zscore

If compute_univariate_zscore = TRUE, the univariate regression z-scores are

outputted for each variable.

na.rm Drop any missing values in y from both X and y.
max_iter Maximum number of IBSS iterations to perform.

tol A small, non-negative number specifying the convergence tolerance for the IBSS

fitting procedure. The fitting procedure will halt when the difference in the variational lower bound, or "ELBO" (the objective function to be maximized), is

less than tol.

verbose If verbose = TRUE, the algorithm's progress, and a summary of the optimization

settings, are printed to the console.

track_fit If track_fit = TRUE, trace is also returned containing detailed information

about the estimates at each iteration of the IBSS fitting procedure.

residual_variance_lowerbound

 $Lower \ limit \ on \ the \ estimated \ residual \ variance. \ It \ is \ only \ relevant \ when \ estimate_residual_variance$

= TRUE.

refine If refine = TRUE, then an additional iterative refinement procedure is used, after

the IBSS algorithm, to check and escape from local optima (see details).

n_purity Passed as argument n_purity to susie_get_cs.

XtX A p by p matrix X'X in which the columns of X are centered to have mean zero. Xty A p-vector X'y in which y and the columns of X are centered to have mean zero.

yty A scalar y'y in which y is centered to have mean zero.

n The sample size.

X_colmeans A p-vector of column means of X. If both X_colmeans and y_mean are provided,

the intercept is estimated; otherwise, the intercept is NA.

y_mean A scalar containing the mean of y. If both X_colmeans and y_mean are provided,

the intercept is estimated; otherwise, the intercept is NA.

maf Minor allele frequency; to be used along with maf_thresh to filter input sum-

mary statistics.

maf_thresh Variants having a minor allele frequency smaller than this threshold are not used.

r_tol Tolerance level for eigenvalue check of positive semidefinite matrix of R.

check_input If check_input = TRUE, susie_suff_stat performs additional checks on XtX

and Xty. The checks are: (1) check that XtX is positive semidefinite; (2) check

that Xty is in the space spanned by the non-zero eigenvectors of XtX.

check_prior If check_prior = TRUE, it checks if the estimated prior variance becomes un-

reasonably large (comparing with $10 * max(abs(z))^2$).

.. Additional arguments to provide backward compatibility with earlier versions

of susie_suff_stat.

Details

The function susie implements the IBSS algorithm from Wang et al (2020). The option refine = TRUE implements an additional step to help reduce problems caused by convergence of the IBSS algorithm to poor local optima (which is rare in our experience, but can provide misleading results when it occurs). The refinement step incurs additional computational expense that increases with the number of CSs found in the initial run.

The function $susie_suff_stat$ implements essentially the same algorithms, but using sufficient statistics. (The statistics are sufficient for the regression coefficients b, but not for the intercept μ ; see below for how the intercept is treated.) If the sufficient statistics are computed correctly then the results from $susie_suff_stat$ should be the same as (or very similar to) susie, although runtimes will differ as discussed below. The sufficient statistics are the sample size n, and then the n by n matrix n and the p-vector n and the sum of squared n values n and the vector n and the vector n to have mean n; these can be computed using n compute_suff_stat.

The handling of the intercept term in $susie_suff_stat$ needs some additional explanation. Computing the summary data after centering X and y effectively ensures that the resulting posterior quantities for b allow for an intercept in the model; however, the actual value of the intercept cannot be estimated from these centered data. To estimate the intercept term the user must also provide the column means of X and the mean of y (X_colmeans and y_mean). If these are not provided, they are treated as NA, which results in the intercept being NA. If for some reason you prefer to have the intercept be 0 instead of NA then set X_colmeans = 0, y_mean = 0.

For completeness, we note that if $susie_suff_stat$ is run on X'X, X'y, y'y computed without centering X and y, and with $X_colmeans = 0$, $y_mean = 0$, this is equivalent to susie applied to X, y with intercept = FALSE (although results may differ due to different initializations of residual_variance and $scaled_prior_variance$). However, this usage is not recommended for for most situations.

The computational complexity of susie is O(npL) per iteration, whereas susie_suff_stat is $O(p^2L)$ per iteration (not including the cost of computing the sufficient statistics, which is dominated by the $O(np^2)$ cost of computing X'X). Because of the cost of computing X'X, susie will usually be faster. However, if n >> p, and/or if X'X is already computed, then susie_suff_stat may be faster.

Value

A "susie" object with some or all of the following elements:

alpha An L by p matrix of posterior inclusion probabilites.

mu An L by p matrix of posterior means, conditional on inclusion.

mu2 An L by p matrix of posterior second moments, conditional on inclusion.

Xr A vector of length n, equal to X %*% colSums(alpha * mu).

lbf log-Bayes Factor for each single effect.

lbf_variable log-Bayes Factor for each variable and single effect.

intercept Intercept (fixed or estimated).

sigma2 Residual variance (fixed or estimated).

V Prior variance of the non-zero elements of b, equal to scaled_prior_variance

* var(y).

elbo	The value of the variational lower bound, or "ELBO" (objective function to be maximized), achieved at each iteration of the IBSS fitting procedure.
fitted	Vector of length n containing the fitted values of the outcome.
sets	Credible sets estimated from model fit; see <pre>susie_get_cs</pre> for details.
pip	A vector of length p giving the (marginal) posterior inclusion probabilities for all p covariates.
z	A vector of univariate z-scores.
niter	Number of IBSS iterations that were performed.
converged	TRUE or FALSE indicating whether the IBSS converged to a solution within the chosen tolerance level.
susie_suff_stat returns also outputs:	
XtXr	A p-vector of t(X) times the fitted values, X %*% colSums(alpha*mu).

References

G. Wang, A. Sarkar, P. Carbonetto and M. Stephens (2020). A simple new approach to variable selection in regression, with application to genetic fine-mapping. *Journal of the Royal Statistical Society, Series B* **82**, 1273-1300 doi: 10.1101/501114.

Y. Zou, P. Carbonetto, G. Wang, G and M. Stephens (2022). Fine-mapping from summary data with the "Sum of Single Effects" model. *PLoS Genetics* **18**, e1010299. doi: 10.1371/journal.pgen.1010299.

See Also

susie_get_cs and other susie_get_* functions for extracting results; susie_trendfilter for applying the SuSiE model to non-parametric regression, particularly changepoint problems, and susie_rss for applying the SuSiE model when one only has access to limited summary statistics related to X and y (typically in genetic applications).

```
# susie example
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res1 = susie(X,y,L = 10)
susie_get_cs(res1) # extract credible sets from fit
plot(beta, coef(res1)[-1])
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
plot(y,predict(res1))
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
# susie_suff_stat example
```

18 susie_auto

susie_auto

Attempt at Automating SuSiE for Hard Problems

Description

susie_auto is an attempt to automate reliable running of susie even on hard problems. It implements a three-stage strategy for each L: first, fit susie with very small residual error; next, estimate residual error; finally, estimate the prior variance. If the last step estimates some prior variances to be zero, stop. Otherwise, double L, and repeat. Initial runs are performed with relaxed tolerance; the final run is performed using the default susie tolerance.

Usage

```
susie_auto(
   X,
   y,
   L_init = 1,
   L_max = 512,
   verbose = FALSE,
   init_tol = 1,
   standardize = TRUE,
   intercept = TRUE,
   max_iter = 100,
   tol = 0.01,
   ...
)
```

Arguments

Χ	An n by p matrix of covariates.
у	The observed responses, a vector of length n.
L_init	The initial value of L.
L_max	The largest value of L to consider.
verbose	If verbose = TRUE, the algorithm's progress, and a summary of the optimization settings, are printed to the console.
init_tol	The tolerance to passed to susie during early runs (set large to shorten the initial runs).

susie_get_objective 19

standardize If standardize = TRUE, standardize the columns of X to unit variance prior to fitting. Note that scaled_prior_variance specifies the prior on the coefficients of X after standardization (if it is performed). If you do not standardize, you may need to think more carefully about specifying scaled_prior_variance. Whatever your choice, the coefficients returned by coef are given for X on the original input scale. Any column of X that has zero variance is not standardized. intercept If intercept = TRUE, the intercept is fitted; it intercept = FALSE, the intercept is set to zero. Setting intercept = FALSE is generally not recommended. max_iter Maximum number of IBSS iterations to perform. tol A small, non-negative number specifying the convergence tolerance for the IBSS fitting procedure. The fitting procedure will halt when the difference in the variational lower bound, or "ELBO" (the objective function to be maximized), is less than tol.

Additional arguments passed to susie.

Value

See susie for a description of return values.

See Also

susie

Examples

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = susie_auto(X,y)
plot(beta,coef(res)[-1])
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
plot(y,predict(res))
abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
```

susie_get_objective

Inferences From Fitted SuSiE Model

Description

These functions access basic properties or draw inferences from a fitted susie model.

20 susie_get_objective

Usage

```
susie_get_objective(res, last_only = TRUE, warning_tol = 1e-06)
susie_get_posterior_mean(res, prior_tol = 1e-09)
susie_get_posterior_sd(res, prior_tol = 1e-09)
susie_get_niter(res)
susie_get_prior_variance(res)
susie_get_residual_variance(res)
susie_get_lfsr(res)
susie_get_posterior_samples(susie_fit, num_samples)
susie_get_cs(
 res,
 X = NULL
 Xcorr = NULL,
 coverage = 0.95,
 min_abs_corr = 0.5,
 dedup = TRUE,
 squared = FALSE,
 check_symmetric = TRUE,
 n_{purity} = 100,
 use_rfast
)
susie_get_pip(res, prune_by_cs = FALSE, prior_tol = 1e-09)
```

Arguments

res	A susie fit, typically an output from susie or one of its variants. For susie_get_pip and susie_get_cs, this may instead be the posterior inclusion probability matrix, alpha.
last_only	If last_only = FALSE, return the ELBO from all iterations; otherwise return the ELBO from the last iteration only.
warning_tol	Warn if ELBO is decreasing by this tolerance level.
prior_tol	Filter out effects having estimated prior variance smaller than this threshold.
susie_fit	A susie fit, an output from susie.
num_samples	The number of draws from the posterior distribution.
X	n by p matrix of values of the p variables (covariates) in n samples. When provided, correlation between variables will be computed and used to remove CSs whose minimum correlation among variables is smaller than min_abs_corr.

susie_get_objective 21

Xcorr p by p matrix of correlations between variables (covariates). When provided,

it will be used to remove CSs whose minimum correlation among variables is

smaller than min_abs_corr.

coverage A number between 0 and 1 specifying desired coverage of each CS.

min_abs_corr A "purity" threshold for the CS. Any CS that contains a pair of variables with

correlation less than this threshold will be filtered out and not reported.

dedup = TRUE, remove duplicate CSs.

squared If squared = TRUE, report min, mean and median of squared correlation instead

of the absolute correlation.

check_symmetric

If check_symmetric = TRUE, perform a check for symmetry of matrix Xcorr

when Xcorr is provided (not NULL).

n_purity The maximum number of credible set (CS) variables used in calculating the

correlation ("purity") statistics. When the number of variables included in the CS is greater than this number, the CS variables are randomly subsampled.

use_rfast Use the Rfast package for the purity calculations. By default use_rfast = TRUE

if the Rfast package is installed.

prune_by_cs Whether or not to ignore single effects not in a reported CS when calculating

PIP.

Value

cs

susie_get_objective returns the evidence lower bound (ELBO) achieved by the fitted susie model and, optionally, at each iteration of the IBSS fitting procedure.

susie_get_residual_variance returns the (estimated or fixed) residual variance parameter.

susie_get_prior_variance returns the (estimated or fixed) prior variance parameters.

susie_get_posterior_mean returns the posterior mean for the regression coefficients of the fitted susie model.

susie_get_posterior_sd returns the posterior standard deviation for coefficients of the fitted susie model.

susie_get_niter returns the number of model fitting iterations performed.

susie_get_pip returns a vector containing the posterior inclusion probabilities (PIPs) for all variables.

susie_get_lfsr returns a vector containing the average lfsr across variables for each single-effect, weighted by the posterior inclusion probability (alpha).

susie_get_posterior_samples returns a list containing the effect sizes samples and causal status with two components: b, an num_variables x num_samples matrix of effect sizes; gamma, an num_variables x num_samples matrix of causal status random draws.

susie_get_cs returns credible sets (CSs) from a susie fit, as well as summaries of correlation among the variables included in each CS. If desired, one can filter out CSs that do not meet a specified "purity" threshold; to do this, either X or Xcorr must be supplied. It returns a list with the following elements:

A list in which each list element is a vector containing the indices of the variables in the CS.

susie_init_coef

coverage The nominal coverage specified for each CS.

purity If X or Xcorr iis provided), the purity of each CS.

cs_index If X or Xcorr is provided) the index (number between 1 and L) of each reported CS in the supplied susie fit.

Examples

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
s = susie(X,y,L = 10)
susie_get_objective(s)
susie_get_objective(s, last_only=FALSE)
susie_get_residual_variance(s)
susie_get_prior_variance(s)
susie_get_posterior_mean(s)
susie_get_posterior_sd(s)
susie_get_niter(s)
susie_get_pip(s)
susie_get_lfsr(s)
```

susie_init_coef

Initialize a susie object using regression coefficients

Description

Initialize a susie object using regression coefficients

Usage

```
susie_init_coef(coef_index, coef_value, p)
```

Arguments

coef_index An L-vector containing the the indices of the nonzero coefficients.

coef_value An L-vector containing initial coefficient estimates.

p A scalar giving the number of variables.

Value

A list with elements alpha, mu and mu2 to be used by susie.

susie_plot 23

Examples

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[sample(1:1000,4)] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
# Initialize susie to ground-truth coefficients.
s = susie_init_coef(which(beta != 0),beta[beta != 0],length(beta))
res = susie(X,y,L = 10,s_init=s)
```

susie_plot

SuSiE Plots.

Description

susie_plot produces a per-variable summary of the SuSiE credible sets. susie_plot_iteration produces a diagnostic plot for the susie model fitting. For susie_plot_iteration, several plots will be created if track_fit = TRUE when calling susie.

Usage

```
susie_plot(
  model,
  y,
  add_bar = FALSE,
  pos = NULL,
  b = NULL,
  max_cs = 400,
  add_legend = NULL,
  ...
)
susie_plot_iteration(model, L, file_prefix, pos = NULL)
```

Arguments

model

A SuSiE fit, typically an output from susie or one of its variants. For suse_plot, the susie fit must have model\$z, model\$PIP, and may include model\$sets. model may also be a vector of z-scores or PIPs.

У

A string indicating what to plot: either "z_original" for z-scores, "z" for z-score derived p-values on (base-10) log-scale, "PIP" for posterior inclusion probabilities, "log10PIP" for posterior inclusion probabilities on the (base-10) log-scale. For any other setting, the data are plotted as is.

24 susie_plot

If add_bar = TRUE, add horizontal bar to signals in credible interval. add_bar Indices of variables to plot. If pos = NULL all variables are plotted. pos For simulated data, set b = TRUE to highlight "true" effects (highlights in red). b The largest credible set to display, either based on purity (set max_cs between 0 max_cs and 1), or based on size (set $\max_{c} > 1$). add_legend If add_legend = TRUE, add a legend to annotate the size and purity of each CS discovered. It can also be specified as location where legends should be added, e.g., add_legend = "bottomright" (default location is "topright"). Additional arguments passed to plot. . . . An integer specifying the number of credible sets to plot. L Prefix to path of output plot file. If not specified, the plot, or plots, will be saved file_prefix to a temporary directory generated using tempdir.

Value

Invisibly returns NULL.

See Also

```
susie_plot_changepoint
```

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[sample(1:1000,4)] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = susie(X,y,L = 10)
susie_plot(res,"PIP")
susie_plot(res,"PIP",add_bar = TRUE)
susie_plot(res,"PIP",add_legend = TRUE)
susie_plot(res,"PIP", pos=1:500, add_legend = TRUE)
# Plot selected regions with adjusted x-axis position label
res$genomic_position = 1000 + (1:length(res$pip))
susie_plot(res,"PIP",add_legend = TRUE,
           pos = list(attr = "genomic_position", start = 1000, end = 1500))
# True effects are shown in red.
susie_plot(res,"PIP",b = beta,add_legend = TRUE)
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[sample(1:1000,4)] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
```

susie_plot_changepoint 25

```
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = susie(X,y,L = 10)
susie_plot_iteration(res, L=10)
```

```
susie_plot_changepoint
```

Plot changepoint data and susie fit using ggplot2

Description

Plots original data, y, overlaid with line showing susie fitted value and shaded rectangles showing credible sets for changepoint locations.

Usage

```
susie_plot_changepoint(
    s,
    y,
    line_col = "blue",
    line_size = 1.5,
    cs_col = "red"
)
```

Arguments

S	A susie fit generated by susie_trendfilter(y, order = \emptyset).
У	An n -vector of observations that are ordered in time or space (assumed equally-spaced).
line_col	Color for the line showing fitted values.
line_size	Size of the lines showing fitted values
cs_col	Color of the shaded rectangles showing credible sets.

Value

A ggplot2 plot object.

```
set.seed(1)
mu = c(rep(0,50),rep(1,50),rep(3,50),rep(-2,50),rep(0,300))
y = mu + rnorm(500)
# Here we use a less sensitive tolerance so that the example takes
# less time; in practice you will likely want to use a more stringent
# setting such as tol = 0.001.
s = susie\_trendfilter(y,tol = 0.1)
```

26 susie_rss

```
# Produces ggplot with credible sets for changepoints.
susie_plot_changepoint(s,y)
```

susie_rss

Sum of Single Effects (SuSiE) Regression using Summary Statistics

Description

susie_rss performs variable selection under a sparse Bayesian multiple linear regression of Y on X using the z-scores from standard univariate regression of Y on each column of X, an estimate, R, of the correlation matrix for the columns of X, and optionally, but strongly recommended, the sample size n. See "Details" for other ways to call susie_rss

Usage

```
susie_rss(
   z,
   R,
   n,
   bhat,
   shat,
   var_y,
   z_ld_weight = 0,
   estimate_residual_variance = FALSE,
   prior_variance = 50,
   check_prior = TRUE,
   ...
)
```

Arguments

Z	p-vector of z-scores.
R	p x p correlation matrix.
n	The sample size.
bhat	Alternative summary data giving the estimated effects (a vector of length p). This, together with shat, may be provided instead of z.
shat	Alternative summary data giving the standard errors of the estimated effects (a vector of length p). This, together with bhat, may be provided instead of z.
var_y	The sample variance of y, defined as $y'y/(n-1)$. When the sample variance is not provided, the coefficients (returned from coef) are computed on the "standardized" X, y scale.
z_ld_weight	This parameter is included for backwards compatibility with previous versions of the function, but it is no longer recommended to set this to a non-zero value. When $z_1d_weight > 0$, the matrix R is adjusted to be $cov2cor((1-w)*R + cov2cor((1-w)*R))$

w*tcrossprod(z)), where w = z_ld_weight.

27 susie_rss

estimate_residual_variance

The default is FALSE, the residual variance is fixed to 1 or variance of y. If the in-sample LD matrix is provided, we recommend setting estimate_residual_variance = TRUE.

prior_variance The prior variance(s) for the non-zero noncentrality parameterss b_l . It is either a scalar, or a vector of length L. When the susie_suff_stat option estimate_prior_variance is set to TRUE (which is highly recommended) this simply provides an initial value for the prior variance. The default value of 50 is simply intended to be a large initial value. Note this setting is only relevant when n is unknown. If n is known, the relevant option is scaled_prior_variance in susie_suff_stat.

check_prior

When check_prior = TRUE, it checks if the estimated prior variance becomes unreasonably large (comparing with $100 * max(abs(z))^2$).

Other parameters to be passed to susie_suff_stat.

Details

In some applications, particularly genetic applications, it is desired to fit a regression model (Y =Xb + E say, which we refer to as "the original regression model" or ORM) without access to the actual values of Y and X, but given only some summary statistics. susie_rss assumes availability of z-scores from standard univariate regression of Y on each column of X, and an estimate, R, of the correlation matrix for the columns of X (in genetic applications R is sometimes called the "LD" matrix").

With the inputs z, R and sample size n, susie_rss computes PVE-adjusted z-scores z_tilde, and calls susie_suff_stat with XtX = (n-1)R, Xty = $\sqrt{n-1}z_tilde$, yty = n-1, n = n. The output effect estimates are on the scale of b in the ORM with standardized X and y. When the LD matrix R and the z-scores z are computed using the same matrix X, the results from susie_rss are same as, or very similar to, susie with standardized X and y.

Alternatively, if the user provides n, bhat (the univariate OLS estimates from regressing y on each column of X), shat (the standard errors from these OLS regressions), the in-sample correlation matrix R = cov2cor(crossprod(X)), and the variance of y, the results from susie_rss are same as susie with X and y. The effect estimates are on the same scale as the coefficients b in the ORM with X and y.

In rare cases in which the sample size, n, is unknown, susie_rss calls susie_suff_stat with XtX = R and Xty = z, and with residual_variance = 1. The underlying assumption of performing the analysis in this way is that the sample size is large (i.e., infinity), and/or the effects are small. More formally, this combines the log-likelihood for the noncentrality parameters, $b = \sqrt{n}b$,

$$L(\tilde{b}; z, R) = -(\tilde{b}'R\tilde{b} - 2z'\tilde{b})/2,$$

with the "susie prior" on b; see susie and Wang et al (2020) for details. In this case, the effect estimates returned by susie_rss are on the noncentrality parameter scale.

The estimate_residual_variance setting is FALSE by default, which is recommended when the LD matrix is estimated from a reference panel. When the LD matrix R and the summary statistics z (or bhat, shat) are computed using the same matrix X, we recommend setting estimate_residual_variance = TRUE.

28 susie_rss

Value

A "susie" object with the following elements:

alpha An L by p matrix of posterior inclusion probabilites.

mu An L by p matrix of posterior means, conditional on inclusion.

mu2 An L by p matrix of posterior second moments, conditional on inclusion.

lbf log-Bayes Factor for each single effect.

lbf_variable log-Bayes Factor for each variable and single effect.

V Prior variance of the non-zero elements of b.

elbo The value of the variational lower bound, or "ELBO" (objective function to be

maximized), achieved at each iteration of the IBSS fitting procedure.

sets Credible sets estimated from model fit; see susie_get_cs for details.

pip A vector of length p giving the (marginal) posterior inclusion probabilities for

all p covariates.

niter Number of IBSS iterations that were performed.

converged TRUE or FALSE indicating whether the IBSS converged to a solution within the

chosen tolerance level.

References

G. Wang, A. Sarkar, P. Carbonetto and M. Stephens (2020). A simple new approach to variable selection in regression, with application to genetic fine-mapping. *Journal of the Royal Statistical Society, Series B* **82**, 1273-1300 doi: 10.1101/501114.

Y. Zou, P. Carbonetto, G. Wang, G and M. Stephens (2022). Fine-mapping from summary data with the "Sum of Single Effects" model. *PLoS Genetics* **18**, e1010299. doi: 10.1371/journal.pgen.1010299.

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p), nrow = n, ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
input_ss = compute_suff_stat(X,y,standardize = TRUE)
   = univariate_regression(X,y)
    = with(input_ss,cov2cor(XtX))
zhat = with(ss,betahat/sebetahat)
res = susie_rss(zhat,R, n=n)
# Toy example illustrating behaviour susie_rss when the z-scores
# are mostly consistent with a non-invertible correlation matrix.
# Here the CS should contain both variables, and two PIPs should
# be nearly the same.
```

susie_trendfilter 29

```
z = c(6,6.01)
R = matrix(1,2,2)
fit = susie_rss(z,R)
print(fit$sets$cs)
print(fit$pip)

# In this second toy example, the only difference is that one
# z-score is much larger than the other. Here we expect that the
# second PIP will be much larger than the first.
z = c(6,7)
R = matrix(1,2,2)
fit = susie_rss(z,R)
print(fit$sets$cs)
print(fit$pip)
```

susie_trendfilter

Apply susie to trend filtering (especially changepoint problems), a type of non-parametric regression.

Description

Fits the non-parametric Gaussian regression model y=mu+e, where the mean mu is modelled as mu=Xb, X is a matrix with columns containing an appropriate basis, and b is vector with a (sparse) SuSiE prior. In particular, when order = 0, the jth column of X is a vector with the first j elements equal to zero, and the remaining elements equal to 1, so that b_j corresponds to the change in the mean of y between indices j and j+1. For background on trend filtering, see Tibshirani (2014). See also the "Trend filtering" vignette, vignette("trend_filtering").

Usage

```
susie_trendfilter(y, order = 0, standardize = FALSE, use_mad = TRUE, ...)
```

Arguments

y An n-vector of obs

An n-vector of observations ordered in time or space (assumed to be equally spaced).

order An integer specifying the order of trend filtering. The default, order = 0, cor-

responds to "changepoint" problems (i.e., piecewise constant mu). Although order > 0 is implemented, we do not recommend its use; in practice, we have found problems with convergence of the algorithm to poor local optima, pro-

ducing unreliable inferences.

standardize Logical indicating whether to standardize the X variables ("basis functions");

standardize = FALSE is recommended as these basis functions already have a

natural scale.

30 univariate_regression

use_mad

Logical indicating whether to use the "median absolute deviation" (MAD) method to the estimate residual variance. If use_mad = TRUE, susie is run twice, first by fixing the residual variance to the MAD value, then a second time, initialized to the first fit, but with residual variance estimated the usual way (by maximizing the ELBO). We have found this strategy typically improves reliability of the results by reducing a tendency to converge to poor local optima of the ELBO.

... Other arguments passed to susie.

Details

This implementation exploits the special structure of X, which means that the matrix-vector product $X^T y$ is fast to compute; in particular, the computation time is O(n) rather than $O(n^2)$ if X were formed explicitly. For implementation details, see the "Implementation of SuSiE trend filtering" vignette by running vignette ("trendfiltering_derivations").

Value

A "susie" fit; see susie for details.

References

R. J. Tibshirani (2014). Adaptive piecewise polynomial estimation via trend filtering. *Annals of Statistics* **42**, 285-323.

Examples

```
set.seed(1)
mu = c(rep(0,50),rep(1,50),rep(3,50),rep(-2,50),rep(0,200))
y = mu + rnorm(400)
s = susie_trendfilter(y)
plot(y)
lines(mu,col = 1,lwd = 3)
lines(predict(s),col = 2,lwd = 2)
# Calculate credible sets (indices of y that occur just before # changepoints).
susie_get_cs(s)
# Plot with credible sets for changepoints.
susie_plot_changepoint(s,y)
```

univariate_regression Perform Univariate Linear Regression Separately for Columns of X

Description

This function performs the univariate linear regression $y \sim x$ separately for each column x of X. Each regression is implemented using .lm.fit(). The estimated effect size and stardard error for each variable are outputted.

univariate_regression 31

Usage

```
univariate_regression(
   X,
   y,
   Z = NULL,
   center = TRUE,
   scale = FALSE,
   return_residuals = FALSE
)
```

Arguments

	Χ	n by p matrix of regressors.
	У	n-vector of response variables.
	Z	Optional n by k matrix of covariates to be included in all regresions. If Z is not NULL, the linear effects of covariates are removed from y first, and the resulting residuals are used in place of y.
	center	If center = TRUE, center X , y and Z .
	scale	If $scale = TRUE$, $scale X$, y and Z.
return_residuals		
		TTT -1

Whether or not to output the residuals if \boldsymbol{Z} is not NULL.

Value

A list with two vectors containing the least-squares estimates of the coefficients (betahat) and their standard errors (sebetahat). Optionally, and only when a matrix of covariates Z is provided, a third vector residuals containing the residuals is returned.

```
set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1:4] = 1
X = matrix(rnorm(n*p),nrow = n,ncol = p)
X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
res = univariate_regression(X,y)
plot(res$betahat/res$sebetahat)
```

Index

```
* data
                                                susie_get_posterior_sd
    FinemappingConvergence, 5
                                                         (susie_get_objective), 19
    N2finemapping, 8
                                                susie_get_prior_variance
    N3finemapping, 9
                                                         (susie_get_objective), 19
                                                susie_get_residual_variance
    SummaryConsistency, 11
                                                         (susie_get_objective), 19
coef.susie, 2
                                                susie_init_coef, 22
compute_ss, 3
                                                susie_plot, 23
compute_suff_stat, 4
                                                susie_plot_changepoint, 24, 25
                                                susie_plot_iteration (susie_plot), 23
estimate_s_rss, 4
                                                susie_rss, 17, 26
                                                susie_suff_stat, 27
FinemappingConvergence, 5
                                                susie_suff_stat(susie), 12
                                                susie_trendfilter, 17, 29
get_cs_correlation, 6
                                                tempdir, 24
kriging_rss, 7
                                                univariate_regression, 30
N2finemapping, 8
N3finemapping, 9
plot, 24
predict.susie, 10
print.summary.susie (summary.susie), 10
summary.susie, 10
SummaryConsistency, 11
susie, 6, 12, 19, 20, 23, 27, 30
susie_auto, 18
susie_get_cs, 12, 15, 17, 28
susie_get_cs (susie_get_objective), 19
susie_get_lfsr (susie_get_objective), 19
susie_get_niter (susie_get_objective),
        19
susie_get_objective, 19
susie_get_pip (susie_get_objective), 19
susie_get_posterior_mean
        (susie_get_objective), 19
susie_get_posterior_samples
        (susie_get_objective), 19
```