
Package ‘surveysd’
January 23, 2018

Type Package

Title Survey Standard Error Estimation for Cumulated Estimates and their Differences in Com-
plex Panel Designs

Version 0.1.0

Author Johannes Gussenbauer, Alexander Kowarik, Matthias Till

Maintainer Johannes Gussenbauer <Johannes.Gussenbauer@statistik.gv.at>

Description Estimate point estimates and their standard errors in complex household surveys us-
ing bootstrap replicates. Bootstraping considers survey design with rotating panel.

Encoding UTF-8

LazyData true

License GPL (>= 2)

Imports Rcpp (>= 0.12.12),data.table,survey,simPop

LinkingTo Rcpp

RoxygenNote 6.0.1

R topics documented:
calc.stError . 1
draw.bootstrap . 5
recalib . 8

Index 11

calc.stError Calcualte point estimates and their standard errors using bootstrap
weights.

Description

Calculate point estimates as well as standard errors of variables in surveys. Standard errors are
estimated using bootstrap weights (see draw.bootstrap and recalib). In addition the standard
error of an estimate can be calcualted using the survey data for 3 or more consecutive years, which
results in a reduction of the standard error.

1

2 calc.stError

Usage

calc.stError(dat,weights="hgew",b.weights=paste0("w",1:1000),year="jahr",var="povmd60",
fun="weightedRatio",cross_var=NULL,year.diff=NULL,

year.mean=3,bias=FALSE,add.arg=NULL,size.limit=20,cv.limit=10)

Arguments

dat either data.frame or data.table containing the survey data. Surveys can be a
panel survey or rotating panel survey, but does not need to be. For rotating panel
survey bootstrap weights can be created using draw.bootstrap and recalib.

weights character specifying the name of the column in dat containing the original sam-
ple weights. Used to calculate point estimates.

b.weights character vector specifying the names of the columns in dat containing boot-
strap weights. Used to calculate standard errors.

year character specifying the name of the column in dat containing the sample years.

var character vector containing variable names in dat on which fun shall be applied
for each sample year.

fun character specifying the function which will be applied on var for each sample
year. Possible arguments are weightedRatio,weightedRatioNat,weightedSum,sampSize,popSize
as well as any other function which returns a double or integer and uses weights
as its second argument.

cross_var character vectors or list of character vectors containig variables in dat. For each
list entry dat will be split in subgroups according to the containing variables as
well as year. The pointestimates are then estimated for each subgroup seper-
ately. If cross_var=NULL the data will split into sample years by default.

year.diff character vectors, defining years for which the differences in the point esti-
mate as well it’s standard error is calculated. Each entry must have the form
of "year1 - year2". Can be NULL

year.mean integer, defining the range of years over which the sample mean of point esti-
mates is additionally calcualted.

bias boolean, if TRUE the sample mean over the point estimates of the bootstrap
weights is returned.

add.arg character specifying additional arguments for fun. Can be NULL.

size.limit integer defining a lower bound on the number of observations on dat in each
group defined by year and the entries in cross_var. Warnings are returned if
the number of observations in a subgroup falls below size.limit. In addition
the concerned groups are available in the function output.

cv.limit non-negativ value defining a upper bound for the standard error in relation to the
point estimate. If this relation exceed cv.limit, for a point estimate, they are
flagged and available in the function output.

Details

calc.stError takes survey data (dat) and returns point estimates as well as their standard Errors
defined by fun and var for each sample year in dat. dat must be household data where household

calc.stError 3

members correspond to multiple rows with the same household identifier. The data should at least
containt the following columns:

• Column indicating the sample year;

• Column indicating the household ID;

• Column containing the household sample weights;

• Columns which contain the bootstrap weights (see output of recalib);

• Columns listed in var as well as in cross_var

For each variable in var as well as sample year the function fun is applied using the original as well
as the bootstrap sample weights.
The point estimate is then selected as the result of fun when using the original sample weights and
it’s standard error is estimated with the result of fun using the bootstrap sample weights.

fun can be any function which returns a double or integer and uses sample weights as it’s sec-
ond argument. The predifined options are weightedRatio,weightedSum,sampSize and popSize,
for wich sampSize and popSize indicate the sample and population size respectively.

For the option weightedRatio a weighted ratio (in %) of var is calculated for var equal to 1,
e.g sum(weight[var==1])/sum(weight[!is.na(var)])*100.
Using the option weightedRatioNat the weighted ratio (in %) is divided by the weighted ratio at
the national level for each year.
If cross_var is not NULL but a vector of variables from dat then fun is applied on each subset of
dat defined by all combinations of values in cross_var.
For instance if cross_var = "sex" with "sex" having the values "Male" and "Female" in dat the
point estimate and standard error is calculated on the subsets of dat with only "Male" or "Female"
value for "sex". This is done for each value of year. For variables in cross_var which have NAs in
dat the rows containing the missings will be discarded.
When cross_var is a list of character vectors, subsets of dat and the following estimation of the
point estimate, including the estimate for the standard error, are calculated for each list entry.

When defining year.diff the difference of point estimates between years as well their standard
errors are calculated.
The entries in year.diff must have the form of "year1 - year2" which means that the results
of the point estimates for year2 will be substracted from the results of the point estimates for year1.

Specifying year.mean leads to an improvement in standard error by averaging the results for
the point estimates, using the bootstrap weights, over year.mean years. Setting, for instance,
year.mean = 3 the results in averaging these results over each consecutive set of 3 years.
Estimating the standard error over these averages gives an improved estimate of the standard error
for the central year, which was used for averaging.
The averaging of the results is also applied in differences of point estimates. For instance defining
year.diff = "2015-2009" and year.mean = 3 the differences in point estimates of 2015 and
2009, 2016 and 2010 as well as 2017 and 2011 are calcualated and finally the average over these 3
differences is calculated. The years set in year.diff are always used as starting years from which
year.mean-1 consecutive years are used to build the average.
Setting bias to TRUE returns the calculation of a mean over the results from the bootstrap replicates.
In the output the corresponding columns is labeled _mean at the end.

4 calc.stError

If fun needs more arguments they can be set in add.arg.

The parameter size.limit indicates a lower bound of the sample size for subsets in dat created
by cross_var. If the sample size of a subset falls below size.limit a warning will be displayed.
In addition all subsets for which this is the case can be selected from the output of calc.stError
with $smallGroups.
With the parameter cv.limit one can set an upper bound on the coefficient of variantion. Esti-
mates which exceed this bound are flagged with TRUE and are available in the function output with
$cvHigh. cv.limit must be a positive integer and is treated internally as %, e.g. for cv.limit=1
the estimate will be flagged if the coefficient of variantion exceeds 1%.

When specifying year.mean, the decrease in standard error for choosing this method is internally
calcualted and a rough estimate for an implied increase in sample size is available in the output with
$stEDecrease. The rough estimate for the increase in sample size uses the fact that for a sample
of size n the sample estimate for the standard error of most point estimates converges with a factor
1/
√
n against the true standard error σ.

Value

Returns a list containing:

• Estimates: data.table containing yearly, differences and/or k year averages for estimates of
fun applied to var as well as the corresponding standard errors, which are calculated using
the bootstrap weights.

• smallGroups: data.table containing groups for which the number of observation falls below
size.limit.

• cvHigh: data.table containing a boolean variable which indicates for each estimate if the
estimated standard error exceeds cv.limit.

• stEDecrease: data.table indicating for each estimate the theoretical increase in sample size
which is gained when averaging over k years. Only returned if year.mean is not NULL.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

draw.bootstrap
recalib

Examples

read in and prepare data
library(data.table)
dat <- data.table(read_sas("PATH"))

dat <- draw.bootstrap(dat,REP=20,hid="hid",weights="hgew",strata="bundesld",
year="jahr",totals=NULL,boot.names=NULL)

draw.bootstrap 5

dat <- recalib(dat,hid="hid",weights="hgew",b.rep=paste0("w",1:20),
year="jahr",conP.var=c("ksex","kausl","al","erw","pension"),
conH.var=c("bundesld","hsize","recht"))

or load file with calibrated bootstrap weights
load("dat_calibweight.RData")

estimate weightedRatio for povmd60 per year
err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),year="jahr",var="povmd60",

fun="weightedRatio",cross_var=NULL,year.diff=NULL,year.mean=NULL)

estimate weightedRatio for povmd60 per year and sex
cross_var <- "sex"
err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),

year="jahr",var="povmd60",fun="weightedRatio",
cross_var=cross_var,year.diff=NULL,year.mean=NULL)

use average over 3 years for standard error estimation
err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),year="jahr",var="povmd60",

fun="weightedRatio",cross_var=cross_var,year.diff=NULL,year.mean=3)

get estimate for difference of year 2016 and 2013
year.diff <- c("2016-2013")
err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),year="jahr",var="povmd60",

fun="weightedRatio",cross_var=cross_var,year.diff=year.diff,year.mean=3)

apply function to multiple variables and define different subsets
var <- c("povmd60","arose")
cross_var <- list("sex","bundesld",c("sex","bundesld"))
err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),year="jahr",var=var,

fun="weightedRatio",cross_var=cross_var,year.diff=year.diff,year.mean=3)

use a function from an other package that has sampling weights as its second argument
for example ging() from laeken
library(laeken)

set up help function that returns only the gini index
help_gini <- function(x,w){
return(gini(x,w)$value)

}

exporting data
get point estimates
results <- err.est$Estimates
write2.csv(results,file="My_Results.csv",row.names=FALSE)

err.est <- calc.stError(dat,weights="hgew",b.weights=paste0("w",1:20),year="jahr",var="epinc_real",
fun="help_gini",cross_var=cross_var,year.diff=year.diff,year.mean=3)

draw.bootstrap Draw bootstrap replicates

6 draw.bootstrap

Description

Draw bootstrap replicates from survey data with rotating panel design. Survey information, like ID,
sample weights, strata and population totals per strata, should be specified to ensure meaningfull
survey bootstraping.

Usage

draw.bootstrap(dat,REP=1000,hid="hid",weights="hgew",strata="bundesld",
year="jahr",totals=NULL,boot.names=NULL)

Arguments

dat either data.frame or data.table containing the survey data with rotating panel
design.

REP integer indicating the number of bootstrap replicates.

hid character specifying the name of the column in dat containing the household
ID.

weights character specifying the name of the column in dat containing the sample weights.

strata character vector specifying the name of the column in dat by which the popula-
tion was stratified.

year character specifying the name of the column in dat containing the sample years.

country character specifying the name of the column in dat containing the country name.
Is only used if dat contains data from multiple countries. In this case the boot-
step procedure will be applied on each country seperately. If country=NULL the
household identifier must be unique for each household.

cluster character vector specifying cluster in the data. If NULL household ID is taken es
the lowest level cluster.

totals (optional) character specifying the name of the column in dat containing the the
totals per strata and/or cluster. If totals and cluster is NULL, the households per
strata will be calcualted using the weights argument and named ’fpc’. If clus-
ters are specified then totals need to be supplied by the user, otherwise they will
be set to NULL. When multiple cluster and or strata are specified totals needs to
contain multiple argument each corresponding to a column name in dat. Each
column needs to contains the total number of units in the population regarding
the subsequent level. The vector is interpreted from left to right meaning that the
most left value of totals specifies the column names with the number of units
in the population at the highest level and the most right value specifies the col-
umn names with the number of units in the population at the lowest level. This
argument will be passed onto the function svydesign() from package survey
through the argument fpc.

boot.names character indicating the leading string of the column names for each bootstrap
replica. If NULL defaults to "w".

draw.bootstrap 7

Details

draw.bootstrap takes dat and draws REP bootstrap replicates from it. dat must be household data
where household members correspond to multiple rows with the same household identifier. The
data should at least containt the following columns:

• Column indicating the sample year;

• Column indicating the household ID;

• Column containing the household sample weights;

• Columns by which population was stratified during the sampling process.

A column for the totals in each strat can be included, but is only optional. If it is not included, e.g
totals=NULL, this column will be calculated and added to dat using strata and weights.
The bootstrap replicates are drawn for each survey year (year) using the function as.svrepdesign
from the package survey. Afterwards the bootstrap replicates for each household are carried for-
ward from the first year the household enters the survey to all the censecutive years it stays in the
survey.
This ensures that the bootstrap replicates follow the same logic as the sampled households, making
the bootstrap replicates more comparable to the actual sample units.

Value

the survey data with the number of REP bootstrap replicates added as columns.

Returns a data.table containing the original data as well as the number of REP columns containing
the bootstrap replicates for each repetition.
The columns of the bootstrap replicates are by default labeled "wNumber" where Number goes from
1 to REP. If the column names of the bootstrap replicates should start with a different character or
string the parameter boot.names can be used.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

data.table for more information on data.table objects.
svydesign for more information on how to create survey-objects.
as.svrepdesign for more information on how bootstrap replicates are drawn from survey-objects.

Examples

read in data (must be changed..)
dat <- data.table(read_sas("PATH"))

create 20 bootstrap replicates using the column "bundesld" as strata
dat_boot <- draw.bootstrap(dat=copy(dat),REP=20,hid="hid",weights="hgew",

strata="bundesld",year="jahr")

do the same with more strata
dat_boot <- draw.bootstrap(dat=copy(dat),REP=20,hid="hid",weights="hgew",

8 recalib

strata=c("bundesld","sex","hsize"),year="jahr")

change column names for bootstrap replicates
dat_boot <- draw.bootstrap(dat=copy(dat),REP=20,hid="hid",weights="hgew",

strata=c("bundesld"),year="jahr",boot.names="replicate")

save bootstrap replicates as .RData
save(dat_boot,file="dat_replicates.RData")
or .csv-file
write.csv2(dat_boot,file="dat_replicates.csv",row.names=FALSE)

recalib Calibrate weights

Description

Calibrate weights for bootstrap replicates by using iterative proportional updating to match popula-
tion totals on various household and personal levels.

Usage

recalib(dat, hid = "hid", weights = "hgew", b.rep = paste0("w", 1:1000),
year = "jahr", country = NULL, conP.var = c("ksex", "kausl", "al",
"erw", "pension"), conH.var = c("bundesld", "hsize", "recht"), ...)

Arguments

dat either data.frame or data.table containing the sample survey for various years.

hid character specifying the name of the column in dat containing the household
ID.

weights character specifying the name of the column in dat containing the sample weights.

b.rep character specifying the names of the columns in dat containing bootstrap weights
which should be recalibratet

year character specifying the name of the column in dat containing the sample years.

country character specifying the name of the column in dat containing the country name.
Is only used if dat contains data from multiple countries. In this case the cali-
bration procedure will be applied on each country seperately. If country=NULL
the household identifier must be unique for each household.

conP.var character vector containig person-specific variables to which weights should be
calibrated. for which contingency tables for the population tables are calculatet
per year and

conH.var character vector containig household-specific variables to which weights should
be calibrated.

... additional arguments passed on to function ipu2 from the simPop package.

recalib 9

Details

recalib takes survey data (dat) containing the bootstrap replicates generated by draw.bootstrap
and calibrates weights for each bootstrap replication according to population totals for person- or
household-specific variables.
dat must be household data where household members correspond to multiple rows with the same
household identifier. The data should at least containt the following columns:

• Column indicating the sample year;

• Column indicating the household ID;

• Column containing the household sample weights;

• Columns which contain the bootstrap replicates (see output of draw.bootstrap);

• Columns indicating person- or household-specific variables for which sample weight should
be adjusted.

For each year and each variable in conP.var and/or conH.var contingency tables are estimated to
get margin totals on personal- and/or household-specific variables in the population.
Afterwards the bootstrap replicates are multiplied with the original sample weight and the resulting
product ist then adjusted using ipu2 to match the previously calcualted contingency tables. In this
process the columns of the bootstrap replicates are overwritten by the calibrated weights.

Value

Returns a data.table containing the survey data as well as the calibrated weights for the bootstrap
replicates, which are labeled like the bootstrap replicates. If calibration of a bootstrap replicate does
not converge the bootsrap weight is not returned and numeration of the returned bootstrap weights
is reduced by one.

Author(s)

Johannes Gussenbauer, Alexander Kowarik, Statistics Austria

See Also

ipu2 for more information on iterative proportional fitting.

Examples

read in data (need to be changed)
library(data.table)
dat <- data.table(read_sas("PATH"))
draw bootstrap replicates
dat <- draw.bootstrap(dat,REP=20,hid="hid",weights="hgew",

strata="bundesld",year="jahr",totals=NULL,boot.names=NULL)

or load data with replicates if they have already been saved
load("dat_replicates.RData")

calibrate weight for bootstrap replicates

10 recalib

use sex for person-specific and hsize for household-specific marginals
dat_calib <- recalib(dat=copy(dat),hid="hid",weights="hgew",b.weights=paste0("w",1:20),

year="jahr",conP.var=c("sex"),conH.var=c("hsize"))

do the same but expand person- and household specific variables
dat_calib <- recalib(dat=copy(dat),hid="hid",weights="hgew",b.weights=paste0("w",1:20),

year="jahr",conP.var=c("sex","ageX"),conH.var=c("bundesld","hsize"))

for many variables (household- or person-specific)
use increase maxIter to get convergence
dat_calib <- recalib(dat=copy(dat),hid="hid",weights="hgew",b.weights=paste0("w",1:20),

year="jahr",conP.var=c("ksex","age","bildung","kausl","al","erw","pension"),
conH.var=c("bundesld","hsize","recht"),maxIter=100)

save calibrated bootstrap weights as .RData
save(dat_calib,file="dat_calibweight.RData")
or .csv-file
write.csv2(dat_calib,file="dat_calibweight.csv",row.names=FALSE)

Index

∗Topic manip
calc.stError, 1

∗Topic survey
calc.stError, 1

as.svrepdesign, 7

calc.stError, 1

data.table, 7
draw.bootstrap, 1, 2, 4, 5, 9

ipu2, 8, 9

recalib, 1–4, 8

svydesign, 7

11

	calc.stError
	draw.bootstrap
	recalib
	Index

