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mlr3tuning-package mlr3tuning: Hyperparameter Optimization for ’mlr3’

Description

Hyperparameter optimization package of the ’mlr3’ ecosystem. It features highly configurable
search spaces via the ’paradox’ package and finds optimal hyperparameter configurations for any
’mlr3’ learner. ’mlr3tuning’ works with several optimization algorithms e.g. Random Search, Iter-
ated Racing, Bayesian Optimization (in ’mlr3mbo’) and Hyperband (in ’mlr3hyperband’). More-
over, it can automatically optimize learners and estimate the performance of optimized models with
nested resampling.

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

• Michel Lang <michellang@gmail.com> (ORCID)
• Jakob Richter <jakob1richter@gmail.com> (ORCID)
• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)
• Daniel Schalk <daniel.schalk@stat.uni-muenchen.de> (ORCID)

See Also

Useful links:

• https://mlr3tuning.mlr-org.com

• https://github.com/mlr-org/mlr3tuning

• Report bugs at https://github.com/mlr-org/mlr3tuning/issues

ArchiveTuning Class for Logging Evaluated Hyperparameter Configurations

Description

The ArchiveTuning stores all evaluated hyperparameter configurations and performance scores.

Details

The ArchiveTuning is a container around a data.table::data.table(). Each row corresponds to
a single evaluation of a hyperparameter configuration. See the section on Data Structure for more
information. The archive stores additionally a mlr3::BenchmarkResult ($benchmark_result) that
records the resampling experiments. Each experiment corresponds to to a single evaluation of a
hyperparameter configuration. The table ($data) and the benchmark result ($benchmark_result)
are linked by the uhash column. If the archive is passed to as.data.table(), both are joined
automatically.

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0003-0950-1947
https://mlr3tuning.mlr-org.com
https://github.com/mlr-org/mlr3tuning
https://github.com/mlr-org/mlr3tuning/issues
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Data Structure

The table ($data) has the following columns:

• One column for each hyperparameter of the search space ($search_space).

• One column for each performance measure ($codomain).

• x_domain (list())
Lists of (transformed) hyperparameter values that are passed to the learner.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Hyperparameters are evaluated in batches. Each batch has a unique batch number.

• uhash (character(1))
Connects each hyperparameter configuration to the resampling experiment stored in the mlr3::BenchmarkResult.

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

S3 Methods

• as.data.table.ArchiveTuning(x, unnest = "x_domain", exclude_columns = "uhash",
measures = NULL)
Returns a tabular view of all evaluated hyperparameter configurations.
ArchiveTuning -> data.table::data.table()

– x (ArchiveTuning)
– unnest (character())

Transforms list columns to separate columns. Set to NULL if no column should be unnested.
– exclude_columns (character())

Exclude columns from table. Set to NULL if no column should be excluded.
– measures (List of mlr3::Measure)

Score hyperparameter configurations on additional measures.

Super class

bbotk::Archive -> ArchiveTuning

https://CRAN.R-project.org/package=mlr3viz
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Public fields

benchmark_result (mlr3::BenchmarkResult)
Benchmark result.

Methods

Public methods:
• ArchiveTuning$new()

• ArchiveTuning$learner()

• ArchiveTuning$learners()

• ArchiveTuning$learner_param_vals()

• ArchiveTuning$predictions()

• ArchiveTuning$resample_result()

• ArchiveTuning$print()

• ArchiveTuning$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ArchiveTuning$new(search_space, codomain, check_values = TRUE)

Arguments:

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
TuneToken of the learner’s parameter set (learner$param_set).

codomain (bbotk::Codomain)
Specifies codomain of objective function i.e. a set of performance measures. Internally
created from provided mlr3::Measures.

check_values (logical(1))
If TRUE (default), hyperparameter configurations are check for validity.

Method learner(): Retrieve mlr3::Learner of the i-th evaluation, by position or by unique hash
uhash. i and uhash are mutually exclusive. Learner does not contain a model. Use $learners()
to get learners with models.

Usage:
ArchiveTuning$learner(i = NULL, uhash = NULL)

Arguments:

i (integer(1))
The iteration value to filter for.

uhash (logical(1))
The uhash value to filter for.

Method learners(): Retrieve list of trained mlr3::Learner objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveTuning$learners(i = NULL, uhash = NULL)
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Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method learner_param_vals(): Retrieve param values of the i-th evaluation, by position or
by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveTuning$learner_param_vals(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method predictions(): Retrieve list of mlr3::Prediction objects of the i-th evaluation, by
position or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveTuning$predictions(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method resample_result(): Retrieve mlr3::ResampleResult of the i-th evaluation, by position
or by unique hash uhash. i and uhash are mutually exclusive.

Usage:
ArchiveTuning$resample_result(i = NULL, uhash = NULL)

Arguments:
i (integer(1))

The iteration value to filter for.
uhash (logical(1))

The uhash value to filter for.

Method print(): Printer.
Usage:
ArchiveTuning$print()

Arguments:
... (ignored).

Method clone(): The objects of this class are cloneable with this method.
Usage:
ArchiveTuning$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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as_search_space Convert to a Search Space

Description

Convert object to a search space.

Usage

as_search_space(x, ...)

## S3 method for class 'Learner'
as_search_space(x, ...)

## S3 method for class 'ParamSet'
as_search_space(x, ...)

Arguments

x (any)
Object to convert to search space.

... (any)
Additional arguments.

Value

paradox::ParamSet.

AutoTuner Class for Automatic Tuning

Description

The AutoTuner wraps a mlr3::Learner and augments it with an automatic tuning process for a given
set of hyperparameters. The auto_tuner() function creates an AutoTuner object.

Details

The AutoTuner is a mlr3::Learner which wraps another mlr3::Learner and performs the following
steps during $train():

1. The hyperparameters of the wrapped (inner) learner are trained on the training data via resam-
pling. The tuning can be specified by providing a Tuner, a bbotk::Terminator, a search space
as paradox::ParamSet, a mlr3::Resampling and a mlr3::Measure.

2. The best found hyperparameter configuration is set as hyperparameters for the wrapped (inner)
learner stored in at$learner. Access the tuned hyperparameters via at$tuning_result.
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3. A final model is fit on the complete training data using the now parametrized wrapped learner.
The respective model is available via field at$learner$model.

During $predict() the AutoTuner just calls the predict method of the wrapped (inner) learner. A
set timeout is disabled while fitting the final model.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Automate the tuning.

• Estimate the model performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

Nested Resampling

Nested resampling is performed by passing an AutoTuner to mlr3::resample() or mlr3::benchmark().
To access the inner resampling results, set store_tuning_instance = TRUE and execute mlr3::resample()
or mlr3::benchmark() with store_models = TRUE (see examples). The mlr3::Resampling passed
to the AutoTuner is meant to be the inner resampling, operating on the training set of an arbitrary
outer resampling. For this reason, the inner resampling should be not instantiated. If an instantiated
resampling is passed, the AutoTuner fails when a row id of the inner resampling is not present in
the training set of the outer resampling.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Super class

mlr3::Learner -> AutoTuner

Public fields

instance_args (list())
All arguments from construction to create the TuningInstanceSingleCrit.

tuner (Tuner)
Optimization algorithm.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-nested-resampling
https://mlr-org.com/gallery-all-optimization.html
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
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Active bindings

archive ArchiveTuning
Archive of the TuningInstanceSingleCrit.

learner (mlr3::Learner)
Trained learner

tuning_instance (TuningInstanceSingleCrit)
Internally created tuning instance with all intermediate results.

tuning_result (data.table::data.table)
Short-cut to result from TuningInstanceSingleCrit.

predict_type (character(1))
Stores the currently active predict type, e.g. "response". Must be an element of $predict_types.

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied
systematically during tuning (parameter values) or feature selection (feature names).

Methods

Public methods:
• AutoTuner$new()

• AutoTuner$base_learner()

• AutoTuner$importance()

• AutoTuner$selected_features()

• AutoTuner$oob_error()

• AutoTuner$loglik()

• AutoTuner$print()

• AutoTuner$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
AutoTuner$new(
tuner,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
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callbacks = list()
)

Arguments:
tuner (Tuner)

Optimization algorithm.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance (logical(1))
If TRUE (default), stores the internally created TuningInstanceSingleCrit with all intermedi-
ate results in slot $tuning_instance.

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack. The
learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack (logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tuning.

evaluate_default (logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at the start of
the optimization.

callbacks (list of CallbackTuning)
List of callbacks.

Method base_learner(): Extracts the base learner from nested learner objects like GraphLearner
in mlr3pipelines. If recursive = 0, the (tuned) learner is returned.

https://CRAN.R-project.org/package=mlr3pipelines
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Usage:
AutoTuner$base_learner(recursive = Inf)

Arguments:

recursive (integer(1))
Depth of recursion for multiple nested objects.

Returns: Learner.

Method importance(): The importance scores of the final model.

Usage:
AutoTuner$importance()

Returns: Named numeric().

Method selected_features(): The selected features of the final model.

Usage:
AutoTuner$selected_features()

Returns: character().

Method oob_error(): The out-of-bag error of the final model.

Usage:
AutoTuner$oob_error()

Returns: numeric(1).

Method loglik(): The log-likelihood of the final model.

Usage:
AutoTuner$loglik()

Returns: logLik. Printer.

Method print():

Usage:
AutoTuner$print()

Arguments:

... (ignored).

Method clone(): The objects of this class are cloneable with this method.

Usage:
AutoTuner$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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Examples

# Automatic Tuning

# split to train and external set
task = tsk("penguins")
split = partition(task, ratio = 0.8)

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

# tune hyperparameters and fit final model
at$train(task, row_ids = split$train)

# predict with final model
at$predict(task, row_ids = split$test)

# show tuning result
at$tuning_result

# model slot contains trained learner and tuning instance
at$model

# shortcut trained learner
at$learner

# shortcut tuning instance
at$tuning_instance

# Nested Resampling

at = auto_tuner(
tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 3)
rr = resample(task, at, resampling_outer, store_models = TRUE)

# retrieve inner tuning results.
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extract_inner_tuning_results(rr)

# performance scores estimated on the outer resampling
rr$score()

# unbiased performance of the final model trained on the full data set
rr$aggregate()

auto_tuner Function for Automatic Tuning

Description

The AutoTuner wraps a mlr3::Learner and augments it with an automatic tuning process for a given
set of hyperparameters. The auto_tuner() function creates an AutoTuner object.

Usage

auto_tuner(
tuner,
learner,
resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list(),
method

)

Arguments

tuner (Tuner)
Optimization algorithm.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
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that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance

(logical(1))
If TRUE (default), stores the internally created TuningInstanceSingleCrit with all
intermediate results in slot $tuning_instance.

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack.
The learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack

(logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tun-
ing.

evaluate_default

(logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at
the start of the optimization.

callbacks (list of CallbackTuning)
List of callbacks.
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method (character(1))
Deprecated. Use tuner instead.

Details

The AutoTuner is a mlr3::Learner which wraps another mlr3::Learner and performs the following
steps during $train():

1. The hyperparameters of the wrapped (inner) learner are trained on the training data via resam-
pling. The tuning can be specified by providing a Tuner, a bbotk::Terminator, a search space
as paradox::ParamSet, a mlr3::Resampling and a mlr3::Measure.

2. The best found hyperparameter configuration is set as hyperparameters for the wrapped (inner)
learner stored in at$learner. Access the tuned hyperparameters via at$tuning_result.

3. A final model is fit on the complete training data using the now parametrized wrapped learner.
The respective model is available via field at$learner$model.

During $predict() the AutoTuner just calls the predict method of the wrapped (inner) learner. A
set timeout is disabled while fitting the final model.

Value

AutoTuner.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Automate the tuning.

• Estimate the model performance with nested resampling.

The gallery features a collection of case studies and demos about optimization.

Nested Resampling

Nested resampling is performed by passing an AutoTuner to mlr3::resample() or mlr3::benchmark().
To access the inner resampling results, set store_tuning_instance = TRUE and execute mlr3::resample()

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-nested-resampling
https://mlr-org.com/gallery-all-optimization.html
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or mlr3::benchmark() with store_models = TRUE (see examples). The mlr3::Resampling passed
to the AutoTuner is meant to be the inner resampling, operating on the training set of an arbitrary
outer resampling. For this reason, the inner resampling should be not instantiated. If an instantiated
resampling is passed, the AutoTuner fails when a row id of the inner resampling is not present in
the training set of the outer resampling.

Examples

at = auto_tuner(
tuner = tnr("random_search"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

at$train(tsk("pima"))

CallbackTuning Create Tuning Callback

Description

Specialized bbotk::CallbackOptimization for tuning. Callbacks allow to customize the behavior of
processes in mlr3tuning. The callback_tuning() function creates a CallbackTuning. Predefined
callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk(). For more
information on tuning callbacks see callback_tuning().

Super classes

mlr3misc::Callback -> bbotk::CallbackOptimization -> CallbackTuning

Public fields

on_eval_after_design (function())
Stage called after design is created. Called in ObjectiveTuning$eval_many().

on_eval_after_benchmark (function())
Stage called after hyperparameter configurations are evaluated. Called in ObjectiveTuning$eval_many().

on_eval_before_archive (function())
Stage called before performance values are written to the archive. Called in ObjectiveTuning$eval_many().

Methods

Public methods:
• CallbackTuning$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
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CallbackTuning$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

# write archive to disk
callback_tuning("mlr3tuning.backup",

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

callback_tuning Create Tuning Callback

Description

Function to create a CallbackTuning. Predefined callbacks are stored in the dictionary mlr_callbacks
and can be retrieved with clbk().

Tuning callbacks can be called from different stages of tuning process. The stages are prefixed with
on_*.

Start Tuning
- on_optimization_begin
Start Tuner Batch

- on_optimizer_before_eval
Start Evaluation

- on_eval_after_design
- on_eval_after_benchmark
- on_eval_before_archive

End Evaluation
- on_optimizer_after_eval

End Tuner Batch
- on_result
- on_optimization_end

End Tuning

See also the section on parameters for more information on the stages. A tuning callback works
with bbotk::ContextOptimization and ContextEval.

Usage

callback_tuning(
id,
label = NA_character_,
man = NA_character_,



18 callback_tuning

on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_result = NULL,
on_optimization_end = NULL

)

Arguments

id (character(1))
Identifier for the new instance.

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().

on_optimization_begin

(function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().
The context available is bbotk::ContextOptimization.

on_optimizer_before_eval

(function())
Stage called after the optimizer proposes points. Called in OptimInstance$eval_batch().
The context available is bbotk::ContextOptimization.

on_eval_after_design

(function())
Stage called after design is created. Called in ObjectiveTuning$eval_many().
The context available is ContextEval.

on_eval_after_benchmark

(function())
Stage called after hyperparameter configurations are evaluated. Called in ObjectiveTuning$eval_many().
The context available is ContextEval.

on_eval_before_archive

(function())
Stage called before performance values are written to the archive. Called in
ObjectiveTuning$eval_many(). The context available is ContextEval.

on_optimizer_after_eval

(function())
Stage called after points are evaluated. Called in OptimInstance$eval_batch().
The context available is bbotk::ContextOptimization.

on_result (function())
Stage called after result are written. Called in OptimInstance$assign_result().
The context available is bbotk::ContextOptimization.
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on_optimization_end

(function())
Stage called at the end of the optimization. Called in Optimizer$optimize().
The context available is bbotk::ContextOptimization.

Details

When implementing a callback, each functions must have two arguments named callback and
context.

A callback can write data to the state ($state), e.g. settings that affect the callback itself. Avoid
writing large data the state. This can slow down the tuning process when the evaluation of configu-
rations is parallelized.

Tuning callbacks access two different contexts depending on the stage. The stages on_eval_after_design,
on_eval_after_benchmark, on_eval_before_archive access ContextEval. This context can be
used to customize the evaluation of a batch of hyperparameter configurations. Changes to the state
of callback are lost after the evaluation of a batch and changes to the tuning instance or the tuner are
not possible. Persistent data should be written to the archive via $aggregated_performance (see
ContextEval). The other stages access ContextOptimization. This context can be used to modify
the tuning instance, archive, tuner and final result. There are two different contexts because the
evaluation can be parallelized i.e. multiple instances of ContextEval exists on different workers at
the same time.

Examples

# write archive to disk
callback_tuning("mlr3tuning.backup",

on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")

}
)

ContextEval Evaluation Context

Description

The ContextEval allows CallbackTunings to access and modify data while a batch of hyperparam-
eter configurations is evaluated. See section on active bindings for a list of modifiable objects. See
callback_tuning() for a list of stages which access ContextEval.

Details

This context is re-created each time a new batch of hyperparameter configurations is evaluated.
Changes to $objective_tuning, $design $benchmark_result are discarded after the function is
finished. Modification on the data table in $aggregated_performance are written to the archive.
Any number of columns can be added.
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Super class

mlr3misc::Context -> ContextEval

Public fields

objective_tuning ObjectiveTuning.

Active bindings

xss (list())
The hyperparameter configurations of the latest batch. Contains the values on the learner
scale i.e. transformations are applied. See $xdt in bbotk::ContextOptimization for the un-
transformed values.

design (data.table::data.table)
The benchmark design of the latest batch.

benchmark_result (mlr3::BenchmarkResult)
The benchmark result of the latest batch.

aggregated_performance (data.table::data.table)
Aggregated performance scores and training time of the latest batch. This data table is passed
to the archive. A callback can add additional columns which are also written to the archive.

Methods

Public methods:

• ContextEval$new()

• ContextEval$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ContextEval$new(objective_tuning)

Arguments:

objective_tuning ObjectiveTuning.
id (character(1))

Identifier for the new callback.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextEval$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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extract_inner_tuning_archives

Extract Inner Tuning Archives

Description

Extract inner tuning archives of nested resampling. Implemented for mlr3::ResampleResult and
mlr3::BenchmarkResult. The function iterates over the AutoTuner objects and binds the tuning
archives to a data.table::data.table(). AutoTuner must be initialized with store_tuning_instance
= TRUE and mlr3::resample() or mlr3::benchmark() must be called with store_models = TRUE.

Usage

extract_inner_tuning_archives(
x,
unnest = "x_domain",
exclude_columns = "uhash"

)

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).

unnest (character())
Transforms list columns to separate columns. By default, x_domain is unnested.
Set to NULL if no column should be unnested.

exclude_columns

(character())
Exclude columns from result table. Set to NULL if no column should be excluded.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each hyperparameter of the search spaces.

• One column for each performance measure.

• runtime_learners (numeric(1))
Sum of training and predict times logged in learners per mlr3::ResampleResult / evaluation.
This does not include potential overhead time.



22 extract_inner_tuning_results

• timestamp (POSIXct)
Time stamp when the evaluation was logged into the archive.

• batch_nr (integer(1))
Hyperparameters are evaluated in batches. Each batch has a unique batch number.

• x_domain (list())
List of transformed hyperparameter values. By default this column is unnested.

• x_domain_* (any)
Separate column for each transformed hyperparameter.

• resample_result (mlr3::ResampleResult)
Resample result of the inner resampling.

• task_id (character(1)).

• learner_id (character(1)).

• resampling_id (character(1)).

Examples

# Nested Resampling on Palmer Penguins Data Set

learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))

# create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)

# extract inner archives
extract_inner_tuning_archives(rr)

extract_inner_tuning_results

Extract Inner Tuning Results

Description

Extract inner tuning results of nested resampling. Implemented for mlr3::ResampleResult and
mlr3::BenchmarkResult.
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Usage

extract_inner_tuning_results(x, tuning_instance, ...)

## S3 method for class 'ResampleResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)

## S3 method for class 'BenchmarkResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)

Arguments

x (mlr3::ResampleResult | mlr3::BenchmarkResult).
tuning_instance

(logical(1))
If TRUE, tuning instances are added to the table.

... (any)
Additional arguments.

Details

The function iterates over the AutoTuner objects and binds the tuning results to a data.table::data.table().
The AutoTuner must be initialized with store_tuning_instance = TRUE and mlr3::resample()
or mlr3::benchmark() must be called with store_models = TRUE. Optionally, the tuning instance
can be added for each iteration.

Value

data.table::data.table().

Data structure

The returned data table has the following columns:

• experiment (integer(1))
Index, giving the according row number in the original benchmark grid.

• iteration (integer(1))
Iteration of the outer resampling.

• One column for each hyperparameter of the search spaces.

• One column for each performance measure.

• learner_param_vals (list())
Hyperparameter values used by the learner. Includes fixed and proposed hyperparameter val-
ues.

• x_domain (list())
List of transformed hyperparameter values.

• tuning_instance (TuningInstanceSingleCrit | TuningInstanceMultiCrit)
Optionally, tuning instances.

• task_id (character(1)).
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• learner_id (character(1)).

• resampling_id (character(1)).

Examples

# Nested Resampling on Palmer Penguins Data Set

learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))

# create auto tuner
at = auto_tuner(

tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)

resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)

# extract inner results
extract_inner_tuning_results(rr)

mlr3tuning.backup Backup Benchmark Result Callback

Description

This CallbackTuning writes the mlr3::BenchmarkResult after each batch to disk.

Examples

clbk("mlr3tuning.backup", path = "backup.rds")

# tune classification tree on the pima data set
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3tuning.backup", path = tempfile(fileext = ".rds"))

)
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mlr3tuning.early_stopping

Early Stopping Callback

Description

This CallbackTuning integrates early stopping into the hyperparameter tuning of an XGBoost learner.
Early stopping estimates the optimal number of trees (nrounds) for a given hyperparameter config-
uration. Since early stopping is performed in each resampling iteration, there are several optimal
nrounds values. The callback writes the maximum value to the archive in the max_nrounds column.
In the best hyperparameter configuration (instance$result_learner_param_vals), the value of
nrounds is replaced by max_nrounds and early stopping is deactivated.

Details

Currently, the callback does not work with GraphLearners from the package mlr3pipelines. The
callback is compatible with the AutoTuner. The final model is fitted with the best hyperparameter
configuration and max_nrounds i.e. early stopping is not performed.

Resources

• gallery post on early stopping with XGBoost.

Examples

clbk("mlr3tuning.early_stopping")

if (requireNamespace("mlr3learners") && requireNamespace("xgboost") ) {
library(mlr3learners)

# activate early stopping on the test set and set search space
learner = lrn("classif.xgboost",
eta = to_tune(1e-02, 1e-1, logscale = TRUE),
early_stopping_rounds = 5,
nrounds = 100,
early_stopping_set = "test")

# tune xgboost on the pima data set
instance = tune(

tuner = tnr("random_search"),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 10,
callbacks = clbk("mlr3tuning.early_stopping")

)
}

https://CRAN.R-project.org/package=mlr3pipelines
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
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mlr3tuning.measures Measure Callback

Description

This CallbackTuning scores the hyperparameter configurations on additional measures while tun-
ing. Usually, the configurations can be scored on additional measures after tuning (see ArchiveTun-
ing). However, if the memory is not sufficient to store the mlr3::BenchmarkResult, it is necessary
to score the additional measures while tuning. The measures are not taken into account by the tuner.

Examples

clbk("mlr3tuning.measures")

# additionally score the configurations on the accuracy measure
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3tuning.measures", measures = msr("classif.acc"))

)

# score the configurations on the holdout set
task = tsk("pima")
splits = partition(task, ratio = 0.8)
task$row_roles$use = splits$train
task$row_roles$holdout = splits$test

learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))
learner$predict_sets = c("test", "holdout")

instance = tune(
tuner = tnr("random_search", batch_size = 2),
task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 4,
callbacks = clbk("mlr3tuning.measures", measures = msr("classif.ce",

predict_sets = "holdout", id = "classif.ce_holdout"))
)
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mlr_tuners Dictionary of Tuners

Description

A simple mlr3misc::Dictionary storing objects of class Tuner. Each tuner has an associated help
page, see mlr_tuners_[id].

This dictionary can get populated with additional tuners by add-on packages.

For a more convenient way to retrieve and construct tuner, see tnr()/tnrs().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

• as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table() with fields "key", "label", "param_classes", "prop-
erties" and "packages" as columns. If objects is set to TRUE, the constructed objects are
returned in the list column named object.

See Also

Sugar functions: tnr(), tnrs()

Other Tuner: mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

as.data.table(mlr_tuners)
mlr_tuners$get("random_search")
tnr("random_search")
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mlr_tuners_cmaes Hyperparameter Tuning with Covariance Matrix Adaptation Evolu-
tion Strategy

Description

Subclass for Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Calls adagio::pureCMAES()
from package adagio.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("cmaes")

Control Parameters

start_values character(1)
Create random start values or based on center of search space? In the latter case, it is the
center of the parameters before a trafo is applied.

For the meaning of the control parameters, see adagio::pureCMAES(). Note that we have removed
all control parameters which refer to the termination of the algorithm and where our terminators
allow to obtain the same behavior.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerCmaes which can be applied on any black box optimization
problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=adagio
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
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Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerCmaes

Methods

Public methods:
• TunerCmaes$new()

• TunerCmaes$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerCmaes$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerCmaes$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Hansen N (2016). “The CMA Evolution Strategy: A Tutorial.” 1604.00772.

See Also

Other Tuner: mlr_tuners, mlr_tuners_design_points, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE),
minsplit = to_tune(p_dbl(2, 128, trafo = as.integer)),
minbucket = to_tune(p_dbl(1, 64, trafo = as.integer))

)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("cmaes"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10)

# best performing hyperparameter configuration
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instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_design_points

Hyperparameter Tuning with Design Points

Description

Subclass for tuning w.r.t. fixed design points.

We simply search over a set of points fully specified by the user. The points in the design are
evaluated in order as given.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("design_points")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerDesignPoints which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
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Parameters

batch_size integer(1)
Maximum number of configurations to try in a batch.

design data.table::data.table
Design points to try in search, one per row.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerDesignPoints

Methods

Public methods:

• TunerDesignPoints$new()

• TunerDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerDesignPoints$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerDesignPoints$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Package mlr3hyperband for hyperband tuning.

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_gensa, mlr_tuners_grid_search,
mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=mlr3hyperband
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Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1),
minsplit = to_tune(2, 128),
minbucket = to_tune(1, 64)

)

# create design
design = mlr3misc::rowwise_table(

~cp, ~minsplit, ~minbucket,
0.1, 2, 64,
0.01, 64, 32,
0.001, 128, 1

)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("design_points", design = design),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_gensa Hyperparameter Tuning with Generalized Simulated Annealing

Description

Subclass for generalized simulated annealing tuning. Calls GenSA::GenSA() from package GenSA.

Details

In contrast to the GenSA::GenSA() defaults, we set smooth = FALSE as a default.

https://CRAN.R-project.org/package=GenSA
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Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("gensa")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerGenSA which can be applied on any black box optimization
problem. See also the documentation of bbotk.

Parameters

smooth logical(1)

temperature numeric(1)

acceptance.param numeric(1)

verbose logical(1)

trace.mat logical(1)

For the meaning of the control parameters, see GenSA::GenSA(). Note that we have removed all
control parameters which refer to the termination of the algorithm and where our terminators allow
to obtain the same behavior.

In contrast to the GenSA::GenSA() defaults, we set trace.mat = FALSE. Note that GenSA::GenSA()
uses smooth = TRUE as a default. In the case of using this optimizer for Hyperparameter Optimiza-
tion you may want to set smooth = FALSE.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
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Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerGenSA

Methods

Public methods:
• TunerGenSA$new()

• TunerGenSA$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerGenSA$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerGenSA$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics
and its Applications, 233(1-2), 395–406. doi:10.1016/s03784371(96)002713.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global
Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi:10.32614/rj2013002.

See Also

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_grid_search,
mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://doi.org/10.1016/s0378-4371%2896%2900271-3
https://doi.org/10.32614/rj-2013-002
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tuner = tnr("gensa"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_grid_search

Hyperparameter Tuning with Grid Search

Description

Subclass for grid search tuning.

Details

The grid is constructed as a Cartesian product over discretized values per parameter, see paradox::generate_design_grid().
If the learner supports hotstarting, the grid is sorted by the hotstart parameter (see also mlr3::HotstartStack).
If not, the points of the grid are evaluated in a random order.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("grid_search")

Control Parameters

resolution integer(1)
Resolution of the grid, see paradox::generate_design_grid().

param_resolutions named integer()
Resolution per parameter, named by parameter ID, see paradox::generate_design_grid().

batch_size integer(1)
Maximum number of points to try in a batch.
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Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerGridSearch which can be applied on any black box opti-
mization problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Super class

mlr3tuning::Tuner -> TunerGridSearch

Methods

Public methods:
• TunerGridSearch$new()

• TunerGridSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerGridSearch$new()

Method clone(): The objects of this class are cloneable with this method.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
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Usage:
TunerGridSearch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_irace, mlr_tuners_nloptr, mlr_tuners_random_search

Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("grid_search"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_irace Hyperparameter Tuning with Iterated Racing.

Description

Subclass for iterated racing. Calls irace::irace() from package irace.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("irace")

https://CRAN.R-project.org/package=irace
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Control Parameters

n_instances integer(1)
Number of resampling instances.

For the meaning of all other parameters, see irace::defaultScenario(). Note that we have re-
moved all control parameters which refer to the termination of the algorithm. Use TerminatorEvals
instead. Other terminators do not work with TunerIrace.

Archive

The ArchiveTuning holds the following additional columns:

• "race" (integer(1))
Race iteration.

• "step" (integer(1))
Step number of race.

• "instance" (integer(1))
Identifies resampling instances across races and steps.

• "configuration" (integer(1))
Identifies configurations across races and steps.

Result

The tuning result (instance$result) is the best performing elite of the final race. The reported
performance is the average performance estimated on all used instances.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerIrace which can be applied on any black box optimization
problem. See also the documentation of bbotk.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
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Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerIrace

Methods

Public methods:

• TunerIrace$new()

• TunerIrace$optimize()

• TunerIrace$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

TunerIrace$new()

Method optimize(): Performs the tuning on a TuningInstanceSingleCrit until termination. The
single evaluations and the final results will be written into the ArchiveTuning that resides in the
TuningInstanceSingleCrit. The final result is returned.

Usage:

TunerIrace$optimize(inst)

Arguments:

inst (TuningInstanceSingleCrit).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:

TunerIrace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stuetzle T (2016). “The irace package:
Iterated racing for automatic algorithm configuration.” Operations Research Perspectives, 3, 43–58.
doi:10.1016/j.orp.2016.09.002.

See Also

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_nloptr, mlr_tuners_random_search

https://doi.org/10.1016/j.orp.2016.09.002


40 mlr_tuners_nloptr

Examples

# retrieve task
task = tsk("pima")

# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))

# hyperparameter tuning on the pima indians diabetes data set
instance = tune(

tuner = tnr("irace"),
task = task,
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 42

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)

mlr_tuners_nloptr Hyperparameter Tuning with Non-linear Optimization

Description

Subclass for non-linear optimization (NLopt). Calls nloptr::nloptr from package nloptr.

Details

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated
and replaced by the bbotk::Terminator subclasses. The x and function value tolerance termi-
nation conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and
ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate
these conditions, set them to -1.

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("nloptr")

https://CRAN.R-project.org/package=nloptr
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Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerNLoptr which can be applied on any black box optimization
problem. See also the documentation of bbotk.

Parameters

algorithm character(1)

eval_g_ineq function()

xtol_rel numeric(1)

xtol_abs numeric(1)

ftol_rel numeric(1)

ftol_abs numeric(1)

start_values character(1)
Create random start values or based on center of search space? In the latter case, it is the
center of the parameters before a trafo is applied.

For the meaning of the control parameters, see nloptr::nloptr() and nloptr::nloptr.print.options().

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated
and replaced by the Terminator subclasses. The x and function value tolerance termination con-
ditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs
= 0.0) are still available and implemented with their package defaults. To deactivate these condi-
tions, set them to -1.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerNLoptr

https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress


42 mlr_tuners_nloptr

Methods

Public methods:
• TunerNLoptr$new()

• TunerNLoptr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerNLoptr$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerNLoptr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/
nlopt.

See Also

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_irace, mlr_tuners_random_search

Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("nloptr", algorithm = "NLOPT_LN_BOBYQA"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce")

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
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# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

mlr_tuners_random_search

Hyperparameter Tuning with Random Search

Description

Subclass for random search tuning.

Details

The random points are sampled by paradox::generate_design_random().

Dictionary

This Tuner can be instantiated with the associated sugar function tnr():

tnr("random_search")

Parallelization

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches im-
ply a more fine-grained checking of termination criteria. A batch contains of batch_size times
resampling$iters jobs. E.g., if you set a batch size of 10 points and do a 5-fold cross validation,
you can utilize up to 50 cores.

Parallelization is supported via package future (see mlr3::benchmark()’s section on paralleliza-
tion for more details).

Logging

All Tuners use a logger (as implemented in lgr) from package bbotk. Use lgr::get_logger("bbotk")
to access and control the logger.

Optimizer

This Tuner is based on bbotk::OptimizerRandomSearch which can be applied on any black box
optimization problem. See also the documentation of bbotk.

Parameters

batch_size integer(1)
Maximum number of points to try in a batch.

https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://bbotk.mlr-org.com/
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Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr::handlers("progress").

Super classes

mlr3tuning::Tuner -> mlr3tuning::TunerFromOptimizer -> TunerRandomSearch

Methods

Public methods:

• TunerRandomSearch$new()

• TunerRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerRandomSearch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.
html.

See Also

Package mlr3hyperband for hyperband tuning.

Other Tuner: mlr_tuners, mlr_tuners_cmaes, mlr_tuners_design_points, mlr_tuners_gensa,
mlr_tuners_grid_search, mlr_tuners_irace, mlr_tuners_nloptr

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://CRAN.R-project.org/package=mlr3hyperband
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Examples

# Hyperparameter Optimization

# load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# run hyperparameter tuning on the Palmer Penguins data set
instance = tune(

tuner = tnr("random_search"),
task = tsk("penguins"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
term_evals = 10

)

# best performing hyperparameter configuration
instance$result

# all evaluated hyperparameter configuration
as.data.table(instance$archive)

# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("penguins"))

ObjectiveTuning Class for Tuning Objective

Description

Stores the objective function that estimates the performance of hyperparameter configurations. This
class is usually constructed internally by the TuningInstanceSingleCrit or TuningInstanceMultiCrit.

Super class

bbotk::Objective -> ObjectiveTuning

Public fields

task (mlr3::Task).

learner (mlr3::Learner).

default_values (named list). Default hyperparameter values of the learner.

resampling (mlr3::Resampling).

measures (list of mlr3::Measure).
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store_models (logical(1)).

store_benchmark_result (logical(1)).

archive (ArchiveTuning).

hotstart_stack (mlr3::HotstartStack).

allow_hotstart (logical(1)).

keep_hotstart_stack (logical(1)).

callbacks (List of CallbackTunings).

Methods

Public methods:
• ObjectiveTuning$new()

• ObjectiveTuning$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveTuning$new(
task,
learner,
resampling,
measures,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = TRUE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
archive = NULL,
callbacks = list()

)

Arguments:
task (mlr3::Task)

Task to operate on.
learner (mlr3::Learner)

Learner to tune.
resampling (mlr3::Resampling)

Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.
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store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack. The
learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack (logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tuning.

archive (ArchiveTuning)
Reference to archive of TuningInstanceSingleCrit | TuningInstanceMultiCrit. If NULL (de-
fault), benchmark result and models cannot be stored.

callbacks (list of CallbackTuning)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ObjectiveTuning$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ti Syntactic Sugar for Tuning Instance Construction

Description

Function to construct a TuningInstanceSingleCrit or TuningInstanceMultiCrit.

Usage

ti(
task,
learner,
resampling,
measures = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list()

)
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Arguments

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a TuningInstanceSingleCrit and multiple measures a
TuningInstanceMultiCrit. If NULL, default measure is used.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack.
The learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack

(logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tun-
ing.

evaluate_default

(logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at
the start of the optimization.

callbacks (list of CallbackTuning)
List of callbacks.
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Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.

• Tune a simple classification tree on the Sonar data set.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.

• Simultaneously optimize hyperparameters and use early stopping with XGBoost.

• Make us of proven search space.

• Learn about hotstarting models.

• Run the default hyperparameter configuration of learners as a baseline.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Examples

# Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

# Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

# Choose optimization algorithm

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
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tuner = tnr("random_search", batch_size = 2)

# Run tuning
tuner$optimize(instance)

# Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

# Train the learner on the full data set
learner$train(task)

# Inspect all evaluated configurations
as.data.table(instance$archive)

tnr Syntactic Sugar for Tuning Objects Construction

Description

Functions to retrieve objects, set parameters and assign to fields in one go. Relies on mlr3misc::dictionary_sugar_get()
to extract objects from the respective mlr3misc::Dictionary:

• tnr() for a Tuner from mlr_tuners.

• tnrs() for a list of Tuners from mlr_tuners.

• trm() for a Terminator from mlr_terminators.

• trms() for a list of Terminators from mlr_terminators.

Usage

tnr(.key, ...)

tnrs(.keys, ...)

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

Value

R6::R6Class object of the respective type, or a list of R6::R6Class objects for the plural versions.



tune 51

Examples

# random search tuner with batch size of 5
tnr("random_search", batch_size = 5)

# run time terminator with 20 seconds
trm("run_time", secs = 20)

tune Function for Tuning a Learner

Description

Function to tune a mlr3::Learner. The function internally creates a TuningInstanceSingleCrit or
TuningInstanceMultiCrit which describe the tuning problem. It executes the tuning with the Tuner
(tuner) and returns the result with the tuning instance ($result). The ArchiveTuning ($archive)
stores all evaluated hyperparameter configurations and performance scores.

Usage

tune(
tuner,
task,
learner,
resampling,
measures = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list(),
method

)

Arguments

tuner (Tuner)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.



52 tune

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter con-
figurations. Uninstantiated resamplings are instantiated during construction so
that all configurations are evaluated on the same data splits. Already instantiated
resamplings are kept unchanged. Specialized Tuner change the resampling e.g.
to evaluate a hyperparameter configuration on different data splits. This field,
however, always returns the resampling passed in construction.

measures (mlr3::Measure or list of mlr3::Measure)
A single measure creates a TuningInstanceSingleCrit and multiple measures a
TuningInstanceMultiCrit. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack.
The learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack

(logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tun-
ing.

evaluate_default

(logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at
the start of the optimization.

callbacks (list of CallbackTuning)
List of callbacks.
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method (character(1))
Deprecated. Use tuner instead.

Details

The mlr3::Task, mlr3::Learner, mlr3::Resampling, mlr3::Measure and Terminator are used to con-
struct a TuningInstanceSingleCrit. If multiple performance Measures are supplied, a TuningIn-
stanceMultiCrit is created. The parameter term_evals and term_time are shortcuts to create a
Terminator. If both parameters are passed, a TerminatorCombo is constructed. For other Termina-
tors, pass one with terminator. If no termination criterion is needed, set term_evals, term_time
and terminator to NULL. The search space is created from paradox::TuneToken or is supplied by
search_space.

Value

TuningInstanceSingleCrit | TuningInstanceMultiCrit

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Simplify tuning with the tune() function.

• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Optimize an rpart classification tree with only a few lines of code.

• Tune an XGBoost model with early stopping.

• Make us of proven search space.

• Learn about hotstarting models.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/optimization/2022-11-10-hyperparameter-optimization-on-the-palmer-penguins/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
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for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Examples

# Hyperparameter optimization on the Palmer Penguins data set
task = tsk("pima")

# Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# Run tuning
instance = tune(

tuner = tnr("random_search", batch_size = 2),
task = tsk("pima"),
learner = learner,
resampling = rsmp ("holdout"),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

# Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

# Train the learner on the full data set
learner$train(task)

# Inspect all evaluated configurations
as.data.table(instance$archive)

Tuner Class for Tuning Algorithms

Description

The Tuner implements the optimization algorithm.

Details

Tuner is a abstract base class that implements the base functionality each tuner must provide. A
subclass is implemented in the following way:

• Inherit from Tuner.

https://CRAN.R-project.org/package=mlr3viz


Tuner 55

• Specify the private abstract method $.optimize() and use it to call into your optimizer.

• You need to call instance$eval_batch() to evaluate design points.

• The batch evaluation is requested at the TuningInstanceSingleCrit/TuningInstanceMultiCrit
object instance, so each batch is possibly executed in parallel via mlr3::benchmark(), and
all evaluations are stored inside of instance$archive.

• Before the batch evaluation, the bbotk::Terminator is checked, and if it is positive, an exception
of class "terminated_error" is generated. In the later case the current batch of evaluations
is still stored in instance, but the numeric scores are not sent back to the handling optimizer
as it has lost execution control.

• After such an exception was caught we select the best configuration from instance$archive
and return it.

• Note that therefore more points than specified by the bbotk::Terminator may be evaluated, as
the Terminator is only checked before a batch evaluation, and not in-between evaluation in a
batch. How many more depends on the setting of the batch size.

• Overwrite the private super-method .assign_result() if you want to decide yourself how
to estimate the final configuration in the instance and its estimated performance. The default
behavior is: We pick the best resample-experiment, regarding the given measure, then assign
its configuration and aggregated performance to the instance.

Private Methods

• .optimize(instance) -> NULL
Abstract base method. Implement to specify tuning of your subclass. See details sections.

• .assign_result(instance) -> NULL
Abstract base method. Implement to specify how the final configuration is selected. See
details sections.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn more about tuners.

The gallery features a collection of case studies and demos about optimization.

• Use the Hyperband optimizer with different budget parameters.

Extension Packages

Additional tuners are provided by the following packages.

• mlr3hyperband adds the Hyperband and Successive Halving algorithm.

• mlr3mbo adds Bayesian optimization methods.

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-tuner
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3mbo
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Active bindings

param_set (paradox::ParamSet)
Set of control parameters.

param_classes (character())
Supported parameter classes for learner hyperparameters that the tuner can optimize, as given
in the paradox::ParamSet $class field.

properties (character())
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Methods

Public methods:

• Tuner$new()

• Tuner$format()

• Tuner$print()

• Tuner$help()

• Tuner$optimize()

• Tuner$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Tuner$new(
id = "tuner",
param_set,
param_classes,
properties,
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1))
Identifier for the new instance.

param_set (paradox::ParamSet)
Set of control parameters.
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param_classes (character())
Supported parameter classes for learner hyperparameters that the tuner can optimize, as
given in the paradox::ParamSet $class field.

properties (character())
Set of properties of the tuner. Must be a subset of mlr_reflections$tuner_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.
Usage:
Tuner$format(...)

Arguments:
... (ignored).

Returns: (character()).

Method print(): Print method.
Usage:
Tuner$print()

Returns: (character()).

Method help(): Opens the corresponding help page referenced by field $man.
Usage:
Tuner$help()

Method optimize(): Performs the tuning on a TuningInstanceSingleCrit or TuningInstance-
MultiCrit until termination. The single evaluations will be written into the ArchiveTuning that
resides in the TuningInstanceSingleCrit/TuningInstanceMultiCrit. The result will be written into
the instance object.

Usage:
Tuner$optimize(inst)

Arguments:
inst (TuningInstanceSingleCrit | TuningInstanceMultiCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Tuner$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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tune_nested Function for Nested Resampling

Description

Function to conduct nested resampling.

Usage

tune_nested(
tuner,
task,
learner,
inner_resampling,
outer_resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
search_space = NULL,
store_tuning_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list(),
method

)

Arguments

tuner (Tuner)
Optimization algorithm.

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner)
Learner to tune.

inner_resampling

(mlr3::Resampling)
Resampling used for the inner loop.

outer_resampling

mlr3::Resampling)
Resampling used for the outer loop.
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measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

term_evals (integer(1))
Number of allowed evaluations. Ignored if terminator is passed.

term_time (integer(1))
Maximum allowed time in seconds. Ignored if terminator is passed.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed
from the TuneToken of the learner’s parameter set (learner$param_set).

store_tuning_instance

(logical(1))
If TRUE (default), stores the internally created TuningInstanceSingleCrit with all
intermediate results in slot $tuning_instance.

store_benchmark_result

(logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configura-
tions in archive as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result).
If store_benchmark_result = FALSE, models are only stored temporarily and
not accessible after the tuning. This combination is needed for measures that
require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance
scores after. If FALSE (default), values are unchecked but computational over-
head is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack.
The learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack

(logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tun-
ing.

evaluate_default

(logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at
the start of the optimization.

callbacks (list of CallbackTuning)
List of callbacks.

method (character(1))
Deprecated. Use tuner instead.

Value

mlr3::ResampleResult
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Examples

# Nested resampling on Palmer Penguins data set
rr = tune_nested(

tuner = tnr("random_search", batch_size = 2),
task = tsk("penguins"),
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
inner_resampling = rsmp ("holdout"),
outer_resampling = rsmp("cv", folds = 2),
measure = msr("classif.ce"),
term_evals = 2)

# Performance scores estimated on the outer resampling
rr$score()

# Unbiased performance of the final model trained on the full data set
rr$aggregate()

TuningInstanceMultiCrit

Class for Multi Criteria Tuning

Description

The TuningInstanceMultiCrit specifies a tuning problem for Tuners. The function ti() creates a
TuningInstanceMultiCrit and the function tune() creates an instance internally.

Details

The instance contains an ObjectiveTuning object that encodes the black box objective function a
Tuner has to optimize. The instance allows the basic operations of querying the objective at design
points ($eval_batch()). This operation is usually done by the Tuner. Evaluations of hyperpa-
rameter configurations are performed in batches by calling mlr3::benchmark() internally. The
evaluated hyperparameter configurations are stored in the Archive ($archive). Before a batch is
evaluated, the bbotk::Terminator is queried for the remaining budget. If the available budget is ex-
hausted, an exception is raised, and no further evaluations can be performed from this point on. The
tuner is also supposed to store its final result, consisting of a selected hyperparameter configuration
and associated estimated performance values, by calling the method instance$assign_result.

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Learn about multi-objective optimization.

The gallery features a collection of case studies and demos about optimization.

https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter5/advanced_tuning_methods_and_black_box_optimization.html#sec-multi-metrics-tuning
https://mlr-org.com/gallery-all-optimization.html
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Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceMultiCrit -> TuningInstanceMultiCrit

Active bindings

result_learner_param_vals (list())
List of param values for the optimal learner call.

Methods

Public methods:
• TuningInstanceMultiCrit$new()

• TuningInstanceMultiCrit$assign_result()

• TuningInstanceMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceMultiCrit$new(
task,
learner,
resampling,
measures,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list()

)

Arguments:

task (mlr3::Task)
Task to operate on.

https://CRAN.R-project.org/package=mlr3viz
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learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measures (list of mlr3::Measure)
Measures to optimize.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack. The
learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack (logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tuning.

evaluate_default (logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at the start of
the optimization.

callbacks (list of CallbackTuning)
List of callbacks.

Method assign_result(): The Tuner object writes the best found points and estimated perfor-
mance values here. For internal use.

Usage:
TuningInstanceMultiCrit$assign_result(xdt, ydt, learner_param_vals = NULL)

Arguments:

xdt (data.table::data.table())
Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.
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ydt (data.table::data.table())
Optimal outcomes, e.g. the Pareto front.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.
Usage:
TuningInstanceMultiCrit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

# Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

# Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msrs(c("classif.ce", "time_train")),
terminator = trm("evals", n_evals = 4)

)

# Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

# Run tuning
tuner$optimize(instance)

# Optimal hyperparameter configurations
instance$result

# Inspect all evaluated configurations
as.data.table(instance$archive)

TuningInstanceSingleCrit

Class for Single Criterion Tuning

Description

The TuningInstanceSingleCrit specifies a tuning problem for Tuners. The function ti() creates a
TuningInstanceSingleCrit and the function tune() creates an instance internally.
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Details

The instance contains an ObjectiveTuning object that encodes the black box objective function a
Tuner has to optimize. The instance allows the basic operations of querying the objective at design
points ($eval_batch()). This operation is usually done by the Tuner. Evaluations of hyperpa-
rameter configurations are performed in batches by calling mlr3::benchmark() internally. The
evaluated hyperparameter configurations are stored in the Archive ($archive). Before a batch is
evaluated, the bbotk::Terminator is queried for the remaining budget. If the available budget is ex-
hausted, an exception is raised, and no further evaluations can be performed from this point on. The
tuner is also supposed to store its final result, consisting of a selected hyperparameter configuration
and associated estimated performance values, by calling the method instance$assign_result.

Default Measures

If no measure is passed, the default measure is used. The default measure depends on the task type.

Task Default Measure Package
"classif" "classif.ce" mlr3
"regr" "regr.mse" mlr3
"surv" "surv.cindex" mlr3proba
"dens" "dens.logloss" mlr3proba
"classif_st" "classif.ce" mlr3spatial
"regr_st" "regr.mse" mlr3spatial
"clust" "clust.dunn" mlr3cluster

Resources

There are several sections about hyperparameter optimization in the mlr3book.

• Getting started with hyperparameter optimization.
• Tune a simple classification tree on the Sonar data set.
• Learn about tuning spaces.

The gallery features a collection of case studies and demos about optimization.

• Learn more advanced methods with the practical tuning series.
• Simultaneously optimize hyperparameters and use early stopping with XGBoost.
• Make us of proven search space.
• Learn about hotstarting models.
• Run the default hyperparameter configuration of learners as a baseline.

Extension Packages

mlr3tuning is extended by the following packages.

• mlr3tuningspaces is a collection of search spaces from scientific articles for commonly used
learners.

• mlr3hyperband adds the Hyperband and Successive Halving algorithm.
• mlr3mbo adds Bayesian optimization methods.

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3cluster
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning
https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/
https://mlr-org.com/gallery/optimization/2022-11-04-early-stopping-with-xgboost/
https://mlr-org.com/gallery/optimization/2021-07-06-introduction-to-mlr3tuningspaces/
https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/
https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/
https://github.com/mlr-org/mlr3tuningspaces
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3mbo
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Analysis

For analyzing the tuning results, it is recommended to pass the ArchiveTuning to as.data.table().
The returned data table is joined with the benchmark result which adds the mlr3::ResampleResult
for each hyperparameter evaluation.

The archive provides various getters (e.g. $learners()) to ease the access. All getters extract by
position (i) or unique hash (uhash). For a complete list of all getters see the methods section.

The benchmark result ($benchmark_result) allows to score the hyperparameter configurations
again on a different measure. Alternatively, measures can be supplied to as.data.table().

The mlr3viz package provides visualizations for tuning results.

Super classes

bbotk::OptimInstance -> bbotk::OptimInstanceSingleCrit -> TuningInstanceSingleCrit

Active bindings

result_learner_param_vals (list())
Param values for the optimal learner call.

Methods

Public methods:
• TuningInstanceSingleCrit$new()

• TuningInstanceSingleCrit$assign_result()

• TuningInstanceSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TuningInstanceSingleCrit$new(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
allow_hotstart = FALSE,
keep_hotstart_stack = FALSE,
evaluate_default = FALSE,
callbacks = list()

)

Arguments:

task (mlr3::Task)
Task to operate on.

https://CRAN.R-project.org/package=mlr3viz
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learner (mlr3::Learner)
Learner to tune.

resampling (mlr3::Resampling)
Resampling that is used to evaluate the performance of the hyperparameter configurations.
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits. Already instantiated resamplings are kept unchanged.
Specialized Tuner change the resampling e.g. to evaluate a hyperparameter configuration
on different data splits. This field, however, always returns the resampling passed in con-
struction.

measure (mlr3::Measure)
Measure to optimize. If NULL, default measure is used.

terminator (Terminator)
Stop criterion of the tuning process.

search_space (paradox::ParamSet)
Hyperparameter search space. If NULL (default), the search space is constructed from the
TuneToken of the learner’s parameter set (learner$param_set).

store_benchmark_result (logical(1))
If TRUE (default), store resample result of evaluated hyperparameter configurations in archive
as mlr3::BenchmarkResult.

store_models (logical(1))
If TRUE, fitted models are stored in the benchmark result (archive$benchmark_result). If
store_benchmark_result = FALSE, models are only stored temporarily and not accessible
after the tuning. This combination is needed for measures that require a model.

check_values (logical(1))
If TRUE, hyperparameter values are checked before evaluation and performance scores after.
If FALSE (default), values are unchecked but computational overhead is reduced.

allow_hotstart (logical(1))
Allow to hotstart learners with previously fitted models. See also mlr3::HotstartStack. The
learner must support hotstarting. Sets store_models = TRUE.

keep_hotstart_stack (logical(1))
If TRUE, mlr3::HotstartStack is kept in $objective$hotstart_stack after tuning.

evaluate_default (logical(1))
If TRUE, learner is evaluated with hyperparameters set to their default values at the start of
the optimization.

callbacks (list of CallbackTuning)
List of callbacks.

Method assign_result(): The Tuner object writes the best found point and estimated perfor-
mance value here. For internal use.

Usage:
TuningInstanceSingleCrit$assign_result(xdt, y, learner_param_vals = NULL)

Arguments:

xdt (data.table::data.table())
Hyperparameter values as data.table::data.table(). Each row is one configuration.
Contains values in the search space. Can contain additional columns for extra information.
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y (numeric(1))
Optimal outcome.

learner_param_vals (List of named list()s)
Fixed parameter values of the learner that are neither part of the

Method clone(): The objects of this class are cloneable with this method.

Usage:
TuningInstanceSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

# Hyperparameter optimization on the Palmer Penguins data set
task = tsk("penguins")

# Load learner and set search space
learner = lrn("classif.rpart",

cp = to_tune(1e-04, 1e-1, logscale = TRUE)
)

# Construct tuning instance
instance = ti(

task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 4)

)

# Choose optimization algorithm
tuner = tnr("random_search", batch_size = 2)

# Run tuning
tuner$optimize(instance)

# Set optimal hyperparameter configuration to learner
learner$param_set$values = instance$result_learner_param_vals

# Train the learner on the full data set
learner$train(task)

# Inspect all evaluated configurations
as.data.table(instance$archive)
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