Package ‘gt’

January 18, 2024

Type Package
Version 0.10.1
Title Easily Create Presentation-Ready Display Tables

Description Build display tables from tabular data with an easy-to-use set of
functions. With its progressive approach, we can construct display tables
with a cohesive set of table parts. Table values can be formatted using any
of the included formatting functions. Footnotes and cell styles can be
precisely added through a location targeting system. The way in which 'gt'
handles things for you means that you don't often have to worry about the
fine details.

License MIT + file LICENSE
URL https://gt.rstudio.com, https://github.com/rstudio/gt

BugReports https://github.com/rstudio/gt/issues
Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.2.3

Depends R (>=3.2.0)

Imports base6denc (>= 0.1-3), bigD (>= 0.2), bitops (>= 1.0-7), cli
(>=3.6.0), commonmark (>= 1.8.1), dplyr (>=1.1.0), fs (>=
1.6.1), glue (>= 1.6.2), htmltools (>= 0.5.4), htmlwidgets (>=
1.6.1), juicyjuice (>= 0.1.0), magrittr (>= 2.0.2), markdown
(>=1.5), reactable (>= 0.4.3), rlang (>= 1.0.2), sass (>=
0.4.5), scales (>= 1.2.1), tidyselect (>= 1.2.0), vctrs, xml2
>=1.3.3)

Suggests covr, digest (>=0.6.31), fontawesome (>= 0.5.2), ggplot2,
knitr, lubridate, magick, paletteer, RColorBrewer, rmarkdown
(>=2.20), rvest, shiny (>= 1.7.4), testthat (>= 3.1.9), tidyr,
webshot2 (>= 0.1.0)

https://gt.rstudio.com
https://github.com/rstudio/gt
https://github.com/rstudio/gt/issues

2 R topics documented:

Collate 'as_data_frame.R' 'build_data.R' 'compile_scss.R'
'data_color.R' 'datasets.R' 'dt__.R"'dt_body.R' 'dt_boxhead.R'
'dt_cols_merge.R' 'dt_data.R' 'dt_footnotes.R" 'dt_formats.R'
'dt_groups_rows.R' 'dt_has_built.R' 'dt_heading.R’
'dt_locale.R' 'dt_options.R' 'dt_row_groups.R'
'dt_source_notes.R' 'dt_spanners.R' 'dt_stub_df.R’
'dt_stubhead.R' 'dt_styles.R' 'dt_substitutions.R'
'dt_summary.R' 'dt_transforms.R' 'export.R' 'format_data.R'
'format_vec.R' 'gt-package.R' 'gt.R' 'gt_group.R'
'gt_preview.R' 'gt_split.R' 'helpers.R' 'image.R’
'info_tables.R' 'knitr-utils.R' 'location_methods.R'
'modify_columns.R' 'modify_rows.R' 'tab_create_modify.R’
'opts.R' 'print.R' 'reexports.R' ‘render_as_html.R'
'render_as_i_html.R' 'resolver.R' rows_add.R' 'shiny.R’
'substitution.R' 'summary_rows.R' 'tab_info.R' 'tab_remove.R'
'tab_style_body.R' 'text_transform.R' 'utils.R’
'utils_color_contrast.R' 'utils_environments.R'
'utils_examples.R' 'utils_formatters.R'
'utils_general_str_formatting.R' 'utils_pipe.R' 'utils_plots.R'
'utils_render_common.R' 'utils_render_html.R'
'utils_render_latex.R' 'utils_render_rtf.R’
'utils_render_xml.R' 'utils_units.R'
'z_utils_render_footnotes.R' 'zzz.R'

Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>),
Joe Cheng [aut],
Barret Schloerke [aut] (<https://orcid.org/0000-0001-9986-114X>),
Ellis Hughes [aut] (<https://orcid.org/0000-0003-0637-4436>),
Alexandra Lauer [aut] (<https://orcid.org/0000-0002-4191-6301>),
JooYoung Seo [aut] (<https://orcid.org/0000-0002-4064-6012>),
Posit Software, PBC [cph, fnd]

Maintainer Richard Iannone <rich@posit.co>
Repository CRAN
Date/Publication 2024-01-17 23:50:05 UTC

R topics documented:

adjust_luminance L 6
as_latex 8
as_raw_html e e 10
as_rtf . . e e e e e 11
as_Word L e e e 12
cells_body e e 14

cells_column_labels 17

https://orcid.org/0000-0003-3925-190X
https://orcid.org/0000-0001-9986-114X
https://orcid.org/0000-0003-0637-4436
https://orcid.org/0000-0002-4191-6301
https://orcid.org/0000-0002-4064-6012

R topics documented: 3

cells_column_spanners v it i e e e e e 19
cells_footnotes e e e e e e 21
cells_grand_summary 23
cells_row_groups e 26
cells_source_Notes i i i e e e e e e e e e e e e e e e 29
cells_stub e e 31
cells_stubhead e 33
cells_stub_grand_summary 35
cells_stub_summary e e 37
cells_summary 40
cells_title e 43
cell_borders e e e e 45
cell_fill e 48
Cell_teXt . . . o o e 49
cols_add e 52
cols_align e 55
cols_align_decimal 57
cols_hide e 59
cols_label e e e 61
cols_label with 66
COIS_MEIZe e 69
cols_merge n_PCt o L. e e e e e e 72
COIS_MEerge_range v v it e e e e e e e 75
cols_merge_uncert e e e e 77
COlS_MOVE o . e e 80
cols_move_to_end e e e e 82
cols_move_to_Start e e e e e 84
cols_nanoplot L 85
cols_unhide e e 96
COlS_UNItS e e 97
cols_width e 102
CONSLANES o o i et e 104
COUNITYPOPS « « v v v v v e e et e e e e e e e e e e e e e e e 105
CUMTENCY . « « o v v v v e e e e e e e e e e e e e e e e 106
data_color e 108
default_fonts e e e 119
define units s 120
escape_latex 121
exibble L e e e e 122
extract_body 124
extract_cells e 125
EXIraCt_SUMMATIY v v v v v e v e e e e e e e e e e e e e e e 127
fmt . . e e e e e 130
fmt_auto s, 132
fmE_bins e 135
fmt_bytes e e e 139
fmt_currencyo L e e 144

fmt_date e 153

R topics documented:

fmt_datetime e e e 158
fmt_duration e e e e e e e 174
fmt_engineering e 179
fmt_flag 184
fmt_fraction e e e e e e 188
fmt_icon e e 194
fmt_image 200
fmt_index e e 204
fmt_integer e e e 208
fmt_markdown e 214
fmt_number e e 217
fmt_partsper e e e e e 224
fmt_passthrough 230
fmt_percent 233
fmt_roman. e e 238
fmt_scientific L e e 242
fmt_spelled_num 247
fmt_time e 252
fmt_units e e e e e e e e 257
fme url . . . 260
from_column e 266
geplot_image e e e e e e e 269
google_font 271
grand_SUMMAIY_TOWS . . . « o v v v v e e e e e e e e e e e e e e e 273
grp_add . .. e e e 278
grp_cloneo e 279
SIP_OPLONS o e e e 280
grp_pull . Lo 292
SIP_TEPlace e e e e 293
SIP_ T . .« . o vttt it e e e e e e e e 294
A 295
GLCATS . v o v v e e e e e e e e e e e e e e e 299
ESAVE e e e e e e e 301
GLGTOUD .« o v ot e e e e e e e e e e e 303
gt_latex_dependencies e 304
SLOUIPUL . . . o o o e e e e e e e e e e 305
SUPIEVIEW o o o i e e e e e e e 307
SUSPLt . . e 308
html . . . e e e e e 310
lness L e e e 311
INfO_CUITENCIES o e e e e e e e e e e e e e 314
info_date_style 315
info_flags e 316
info_google_fonts 317
INfO_ICONS . . . o o o o e e 318
info_locales e 319
info_paletteer L e e 320

info_time_style 322

R topics documented: 5

local_image e e e 323
md . . . e e e e e e e 324
MEIIO . . . ot v i e e e e e e e e e e e e e e 325
nanoplot_options e e 327
opt_align_table_header 332
opt_all_caps e e 334
OPLLCSS + v o o e e e e e e 335
opt_footnote_marks L 337
opt_footnote_SPec e e e e e e 340
opt_horizontal_padding 342
OPL_Interactive e e e 344
OPt_TOW_SHIIPING o v vt e e e e e e e e e e e e e e e e 348
opt_stylize 349
opt_table_font 351
opt_table_lines e e 354
opt_table_outline L. 356
opt_vertical_padding 357
PCl o o e e e e e e 359
pizzaplace L. e e 361
PX o o e e e 364
random_id L e 365
render_gt e e e e e e 366
TM_CAPHON ottt e e e e e e e e e e e e 368
rm_foOtnoteES e e 369
rm_header e e 371
TM_SOUICE_NOES .+ v v v v v o et e e e e e e e e e e e e e e e e e 372
TI_SPANNETS .« « . v v v v e 374
rm_stubhead e 376
rows_add L e 378
TOW_Group_Order v it e e e e e e 383
rx_addv ..o s 384
rx_adsl. ..o e 386
SpS00 . . e 388
StUb . L L e e e 389
sub_large_vals 390
SUD_MISSING . . . o v v o e e e e e e e e e e e e e e 393
sub_small_vals 396
sub_values e 399
SUD_ZETo e e 403
SUMMATY_TOWS .« . v vt v v et et e e e e e e e e e e e e e e e e 405
system_fonts L. 411
SZA & v e e e e e e e e 415
tab_caption e e e e e e e e 416
tab_footnoteo s 417
tab_header e 424
tab_info L e 426
tab_OptionS e e e e e 427

tab_row_group e 441

6 adjust_luminance

tab_SOUICE_NOLE e e e e e e e e e e e 445
tab_SPanner e e e e e e e e e e 446
tab_spanner_delim 453
tab_stubhead e 458
tab_stub_indent e 460
tab_style L e 462
tab_style_body 469
teSt_IMAage e e e e 474
text_case_match e e 474
text_case_ When e s e 477
text_replace 479
text_transform L e e 480
10107 1) 483
vec_fmt_bytes 485
vec_fmt_currency L e 489
vec_fmt_date e 494
vec_fmt_datetime L e e e 498
vec_fmt_duration L e 513
vec_fmt_engineeringo 518
vec_fmt_fraction L e e 522
vec_fmt_index e e e 525
vec_fmt_integer 527
vec_fmt_markdown L e 530
vec_fmt_number e e 532
vec_fmt_partSper e e e e 537
vec_fmt_percent 541
vec_fmt_roman e e e e 545
vec_fmt_scientific e e e 547
vec_fmt_spelled_num 551
vec_ Mt tIME e e e 554
WEb_IMage e e e e e e e 557
Index 560
adjust_luminance Adjust the luminance for a palette of colors
Description

The adjust_luminance() function can brighten or darken a palette of colors by an arbitrary num-
ber of steps, which is defined by a real number between -2.0 and 2.0. The transformation of a palette
by a fixed step in this function will tend to apply greater darkening or lightening for those colors in
the midrange compared to any very dark or very light colors in the input palette.

Usage

adjust_luminance(colors, steps)

adjust_luminance 7

Arguments

colors Color vector
vector<character> // required
This is the vector of colors that will undergo an adjustment in luminance. Each
color value provided must either be a color name (in the set of colors provided
by grDevices: :colors()) or a hexadecimal string in the form of "#RRGGBB"
or "#HRRGGBBAA".

steps Adjustment level
scalar<numeric|integer>(-2>=val>=2) // required

A positive or negative factor by which the luminance of colors in the colors
vector will be adjusted. Must be a number between -2.0 and 2. 0.

Details

This function can be useful when combined with the data_color () function’s palette argument,
which can use a vector of colors or any of the col_* functions from the scales package (all of which
have a palette argument).

Value

A vector of color values.

Examples

Get a palette of 8 pastel colors from the RColorBrewer package.
pal <- RColorBrewer: :brewer.pal(8, "Pastel2")
Create lighter and darker variants of the base palette (one step lower, one step higher).

pal_darker <- pal |> adjust_luminance(-1.0)
pal_lighter <- pal |> adjust_luminance(+1.0)

Create a tibble and make a gt table from it. Color each column in order of increasingly darker
palettes (with data_color()).

dplyr::tibble(a = 1:8, b = 1:8, ¢ = 1:8) |>
gtO) |>
data_color(
columns = a,
colors = scales::col_numeric(
palette = pal_lighter,
domain = c(1, 8)
)
) 1>
data_color(
columns = b,

8 as_latex

colors = scales::col_numeric(
palette = pal,
domain = c(1, 8)
)
) 1>
data_color(
columns = c,
colors = scales::col_numeric(
palette = pal_darker,
domain = c(1, 8)

Function ID

8-8

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: cell_borders(), cell_fill(), cell_text(), cells_body(), cells_column_labels(),
cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

as_latex Output a gt object as LaTeX

Description

Get the LaTeX content from a gt_tbl object as a knit_asis object. This object contains the
LaTeX code and attributes that serve as LaTeX dependencies (i.e., the LaTeX packages required
for the table). Using as.character() on the created object will result in a single-element vector
containing the LaTeX code.

Usage

as_latex(data)

as_latex 9

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
Details

LaTeX packages required to generate tables are: booktabs, caption, longtable, colortbl, array.

In the event packages are not automatically added during the render phase of the document, please
create and include a style file to load them.

Inside the document’s YAML metadata, please include:

output:
pdf_document: # Change to appropriate LaTeX template
includes:
in_header: 'gt_packages.sty'

The gt_packages. sty file would then contain the listed dependencies above:

\usepackage{booktabs, caption, longtable, colortbl, array}

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header () and then
export the table as LaTeX code using the as_latex() function.

tab_latex <-

gtcars |>

dplyr::select(mfr, model, msrp) |>

dplyr::slice(1:5) |>

gt I>

tab_header(
title = md("Data listing from xxgtcars*x"),
subtitle = md("‘gtcars® is an R dataset”)

) 1>

as_latex()

What'’s returned is a knit_asis object, which makes it easy to include in R Markdown documents
that are knit to PDF. We can use as.character() to get just the LaTeX code as a single-element
vector.

Function ID
13-3

Function Introduced

v0.2.0.5 (March 31, 2020)

10 as_raw_html

See Also

Other table export functions: as_raw_html(), as_rtf(), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_raw_html Get the HTML content of a gt table

Description

Get the HTML content from a gt_tbl object as a single-element character vector. By default, the
generated HTML will have inlined styles, where CSS styles (that were previously contained in CSS
rule sets external to the <table> element) are included as style attributes in the HTML table’s
tags. This option is preferable when using the output HTML table in an emailing context.

Usage

as_raw_html(data, inline_css = TRUE)

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

inline_css Use inline CSS
scalar<logical> // default: TRUE
An option to supply styles to table elements as inlined CSS styles. This is useful
when including the table HTML as part of an HTML email message body, since
inlined styles are largely supported in email clients over using CSS in a <style>
block.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header () and then
export the table as HTML code with inlined CSS styles using the as_raw_html () function.

tab_html <-

gtcars |>

dplyr::select(mfr, model, msrp) |>

dplyr::slice(1:5) |>

gtO) |>

tab_header(
title = md("Data listing from x*gtcarsxx"),
subtitle = md("‘gtcars® is an R dataset”)

) 1>

as_raw_html ()

What’s returned is a single-element vector containing the HTML for the table. It has only the
<table>...</table> part so it’s not a complete HTML document but rather an HTML fragment.

as_rtf 11

Function ID
13-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_rtf (), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_rtf Output a gt object as RTF

Description

Get the RTF content from a gt_tbl object as as a single-element character vector. This object can
be used with writelLines() to generate a valid .rtf file that can be opened by RTF readers.

Usage

as_rtf(
data,
incl_open = TRUE,
incl_header = TRUE,
incl_page_info = TRUE,
incl_body = TRUE,
incl_close = TRUE

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
incl_open, incl_close
Include opening/closing braces
scalar<logical> // default: TRUE
Options that govern whether the opening or closing "{" and "}" should be in-
cluded. By default, both options are TRUE.

incl_header Include RTF header
scalar<logical>// default: TRUE

Should the RTF header be included in the output? By default, this is TRUE.

12 as_word

incl_page_info Include RTF page information
scalar<logical> // default: TRUE

Should the RTF output include directives for the document pages? This is TRUE
by default.

incl_body Include RTF body
scalar<logical> // default: TRUE
An option to include the body of RTF document. By default, this is TRUE.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header () and then
export the table as RTF code using the as_rtf () function.

tab_rtf <-

gtcars [>

dplyr::select(mfr, model) |>

dplyr::slice(1:2) |>

gtO 1>

tab_header(
title = md("Data listing from xxgtcars*x"),
subtitle = md("‘gtcars® is an R dataset”)

) 1>
as_rtf()

Function ID
13-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_raw_html(), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_word Output a gt object as Word

Description

Get the Open Office XML table tag content from a gt_tbl object as a single-element character
vector.

as_word 13

Usage
as_word(
data,
align = "center”,
caption_location = c("top”, "bottom”, "embed"),

caption_align = "left",
split = FALSE,
keep_with_next = TRUE

)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
align Table alignment

scalar<character>// default: "center”
An option for table alignment. Can either be "center”, "left”, or "right".
caption_location

Caption location
singl-kw: [top|bottom|embed] // default: "top”

Determines where the caption should be positioned. This can either be "top”,
"bottom”, or "embed".

caption_align Caption alignment
Determines the alignment of the caption. This is either "left"” (the default),
"center”, or "right"”. This option is only used when caption_location is
not set as "embed”.

split Allow splitting of a table row across pages

scalar<logical>// default: FALSE

A logical value that indicates whether to activate the Word option Allow row to break across pages.
keep_with_next Keeping rows together

scalar<logical> // default: TRUE

A logical value that indicates whether a table should use Word option Keep rows together.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header () and then
export the table as OOXML code for Word using the as_word() function.

tab_rtf <-
gtcars |>
dplyr::select(mfr, model) |>
dplyr::slice(1:2) |>
gt >
tab_header(

14 cells_body

title = md("Data listing from x*gtcars**"),
subtitle = md("‘gtcars® is an R dataset”)

) 1>

as_word()

Function ID

13-5

Function Introduced

v0.7.0 (August 25, 2022)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf (), extract_body(), extract_cells(),
extract_summary(), gtsave()

cells_body Location helper for targeting data cells in the table body

Description

The cells_body() function is used to target the data cells in the table body. The function can be
used to apply a footnote with tab_footnote(), to add custom styling with tab_style(), or the
transform the targeted cells with text_transform(). The function is expressly used in each of
those functions’ locations argument. The *body’ location is present by default in every gt table.

Usage

cells_body(columns = everything(), rows = everything())

Arguments

columns Columns to target
<column-targeting expression>// default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should form

a constraint for targeting operations. The default everything() results in all

rows in columns being formatted. Alternatively, we can supply a vector of row

IDs within c(), a vector of row indices, or a select helper function. Examples

of select helper functions include starts_with(), ends_with(), contains(),

matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

cells_body 15

Value

A list object with the classes cells_body and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

e cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

* cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

* cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

» cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

16 cells_body

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector.

Examples

Let’s use a subset of the gtcars dataset to create a gt table. Add a footnote (with tab_footnote())
that targets a single data cell via the use of cells_body() in locations (rows = hp == max(hp)
will target a single row in the hp column).

gtcars |>
dplyr::filter(ctry_origin == "United Kingdom") |>
dplyr::select(mfr, model, year, hp) |>
gtO 1>
tab_footnote(
footnote = "Highest horsepower.”,
locations = cells_body(
columns = hp,
rows = hp == max(hp)
)
) 1>
opt_footnote_marks(marks = c("x", "+"))

Function ID

8-17

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell _fill(), cell_text(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),

html (), md(), nanoplot_options(), pct(), px(), random_id (), stub(), system_fonts()

cells_column_labels 17

cells_column_labels Location helper for targeting the column labels

Description

The cells_column_labels() function is used to target the table’s column labels when applying
a footnote with tab_footnote() or adding custom style with tab_style(). The function is ex-
pressly used in each of those functions’ locations argument. The ’column_labels’ location is
present by default in every gt table.

Usage

cells_column_labels(columns = everything())

Arguments
columns Columns to target

<column-targeting expression>// default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().

Value

A list object with the classes cells_column_labels and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

e cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

18 cells column_labels

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

» cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Targeting columns with the columns argument

The columns argument allows us to target a subset of columns contained in the table. We can declare
column names in c() (with bare column names or names in quotes) or we can use tidyselect-style
expressions. This can be as basic as supplying a select helper like starts_with(), or, providing a
more complex incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Examples

Let’s use a small portion of the sza dataset to create a gt table. Add footnotes to the column labels
with tab_footnote() and cells_column_labels() in locations.

sza |>
dplyr::filter(
latitude == 20 & month == "jan" &
lis.na(sza)
) 1>
dplyr::select(-latitude, -month) |>
gt I>
tab_footnote(
footnote = "True solar time.",
locations = cells_column_labels(
columns = tst

)
) 1>
tab_footnote(
footnote = "Solar zenith angle.”,
locations = cells_column_labels(
columns = sza
)

cells_column_spanners 19

Function ID

8-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(),cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_column_spanners Location helper for targeting the column spanners

Description

The cells_column_spanners() function is used to target the cells that contain the table column
spanners. This is useful when applying a footnote with tab_footnote() or adding custom style
with tab_style(). The function is expressly used in each of those functions’ locations argument.
The ’column_spanners’ location is generated by one or more uses of the tab_spanner () function
or the tab_spanner_delim() function.

Usage

cells_column_spanners(spanners = everything())

Arguments
spanners Specification of spanner IDs

<spanner-targeting expression>// default: everything()
The spanners to which targeting operations are constrained. Can either be a
series of spanner ID values provided in c() or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything().

Value

A list object with the classes cells_column_spanners and location_cells.

20 cells_column_spanners

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

e cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

* cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

» cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use the exibble dataset to create a gt table. We’ll add a spanner column label over three columns
(date, time, and datetime) with tab_spanner(). The spanner column label can be styled with
tab_style() by using the cells_column_spanners() function in locations. In this example,
we are making the text of the column spanner label appear as bold.

exibble |>
dplyr::select(-fctr, -currency, -group) |>
gt(rowname_col = "row") |>
tab_spanner(
label = "dates and times”,

columns = c(date, time, datetime),

cells_footnotes 21

id = "dt”
) 1>
tab_style(
style = cell_text(weight = "bold"),
locations = cells_column_spanners(spanners = "dt")
)
Function ID
8-13

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_footnotes Location helper for targeting the footnotes

Description

The cells_footnotes() function is used to target all footnotes in the footer section of the table.
This is useful for adding custom styles to the footnotes with tab_style() (using the locations
argument). The ’footnotes’ location is generated by one or more uses of the tab_footnote () func-
tion. This location helper function cannot be used for the locations argument of tab_footnote()
and doing so will result in a warning (with no change made to the table).

Usage

cells_footnotes()

Value

A list object with the classes cells_footnotes and location_cells.

22 cells_footnotes

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

e cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

* cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

» cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a subset of the sza dataset, let’s create a gt table. We’d like to color the sza column so
that’s done with the data_color() function. We can add a footnote through the tab_footnote()
function and we can also style the footnotes section. The styling is done through the use of the
tab_style() function and to target the footnotes we use locations = cells_footnotes().

sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
lis.na(sza)

) 1>

cells_grand_summary 23

dplyr::select(-latitude, -month) |>

gt |>

data_color(
columns = sza,
palette = c("white"”, "yellow”, "navyblue"),
domain = c(0, 90)

e
tab_footnote(
footnote = "Color indicates height of sun.",
locations = cells_column_labels(columns = sza)
) 1>
tab_options(table.width = px(320)) |>
tab_style(
style = list(
cell_text(size = "smaller"),
cell_fill(color = "gray9e")
),
locations = cells_footnotes()
)

Function ID

8-22

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),

html (), md(), nanoplot_options(), pct(), px(), random_id (), stub(), system_fonts()

cells_grand_summary Location helper for targeting cells in a grand summary

Description

The cells_grand_summary () function is used to target the cells in a grand summary and it is useful
when applying a footnote with tab_footnote() or adding custom styles with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’grand_summary’
location is generated by the grand_summary_rows () function.

24

Usage

cells_grand_summary

cells_grand_summary(columns = everything(), rows = everything())

Arguments

columns Columns to target

rows

Value

<column-targeting expression>// default: everything()

The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),

ends_with(), contains(), matches(), one_of (), num_range(), and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

A list object with the classes cells_grand_summary and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

cells_column_labels(): targets the column labels with its columns argument.

cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

cells_stub(): targets row labels in the table stub using the rows argument.
cells_body(): targets data cells in the table body using intersections of columns and rows.

cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

cells_grand_summary 25

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Targeting cells with columns and rows

Targeting of grand summary cells is done through the columns and rows arguments. The columns
argument allows us to target a subset of grand summary cells contained in the resolved columns.
We say resolved because aside from declaring column names in c() (with bare column names or
names in quotes) we can use tidyselect-style expressions. This can be as basic as supplying a select
helper like starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows of the grand summary. Grand summary
cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g.,
c(3, 5, 6)) that correspond to the row number of a grand summary row.

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to a grand summary
cells with the tab_style() function and cells_grand_summary() in the locations argument.

countrypops |>

dplyr::filter(country_name == "Spain”, year < 1970) |>
dplyr::select(-contains("country”)) |>
gt(rowname_col = "year") |>

fmt_number(
columns = population,
decimals = 0
) 1>
grand_summary_rows (
columns = population,
fns = change ~ max(.) - min(.),
fmt = ~ fmt_integer(.)
) 1>
tab_style(

26 cells_row_groups

style = list(
cell_text(style = "italic"),
cell_fill(color = "lightblue"”)
),
locations = cells_grand_summary(
columns = population,
rows = 1

Function ID

8-19

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_row_groups Location helper for targeting row groups

Description

The cells_row_groups() function is used to target the table’s row groups when applying a foot-
note with tab_footnote() or adding custom style with tab_style(). The function is expressly
used in each of those functions’ locations argument. The ‘row_groups’ location can be gener-
ated by the specifying a groupname_col in gt (), by introducing grouped data to gt () (by way of
dplyr::group_by()), or, by specifying groups with the tab_row_group() function.

Usage

cells_row_groups(groups = everything())

cells_row_groups 27

Arguments
groups Specification of row group IDs

<row-group-targeting expression>// default: everything()
The row groups to which targeting operations are constrained. Can either be
a series of row group ID values provided in c() or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything().

Value

A list object with the classes cells_row_groups and location_cells.

Targeting cells with groups

By default groups is set to everything (), which means that all available groups will be considered.
Providing the ID values (in quotes) of row groups in c() will serve to constrain the targeting to that
subset of groups.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

» cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

* cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

* cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

e cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

* cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

28 cells_row_groups

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Let’s use a summarized version of the pizzaplace dataset to create a gt table with grouped data.
Add a summary with the summary_rows () function and then add a footnote to the "peppr_salami”
row group label with tab_footnote(); the targeting is done with cells_row_groups() in the
locations argument.

pizzaplace |>
dplyr::filter(name %in% c("soppressata”, "peppr_salami”)) |>
dplyr::group_by(name, size) |>
dplyr::summarize(*Pizzas Sold‘ = dplyr::n(), .groups = "drop”) |>
gt(rowname_col = "size", groupname_col = "name") |>
summary_rows (
columns = ‘Pizzas Sold",
fns = list(label = "TOTAL", fn = "sum"),
fmt = ~ fmt_integer(.)
) 1>
tab_footnote(
footnote = "The Pepper-Salami.”,
cells_row_groups(groups = "peppr_salami")

)

Function ID

8-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell _fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_source_notes 29

cells_source_notes Location helper for targeting the source notes

Description

The cells_source_notes() function is used to target all source notes in the footer section of the
table. This is useful for adding custom styles to the source notes with tab_style() (using the
locations argument). The ’source_notes’ location is generated by the tab_source_note() func-
tion. This location helper function cannot be used for the locations argument of tab_footnote()
and doing so will result in a warning (with no change made to the table).

Usage

cells_source_notes()

Value

A list object with the classes cells_source_notes and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

cells_column_labels(): targets the column labels with its columns argument.

cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

cells_stub(): targets row labels in the table stub using the rows argument.
cells_body(): targets data cells in the table body using intersections of columns and rows.

cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

30 cells_source_notes

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Let’s use a subset of the gtcars dataset to create a gt table. Add a source note (with tab_source_note())
and style the source notes section inside the tab_style () call by using the cells_source_notes()
helper function for the targeting via the locations argument.

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt 1>
tab_source_note(source_note = "From edmunds.com”) |>
tab_style(
style = cell_text(
color = "#A9A9A9",
size = "small”
),

locations = cells_source_notes()

Function ID

8-23

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),

cells_stub(), cells_summary(),cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),

nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stub 31

cells_stub Location helper for targeting cells in the table stub

Description

The cells_stub() function is used to target the table’s stub cells and it is useful when applying
a footnote with tab_footnote() or adding a custom style with tab_style(). The function is
expressly used in each of those functions’ locations argument. Here are several ways that a stub
location might be available in a gt table: (1) through specification of a rowname_col in gt (), (2) by
introducing a data frame with row names to gt () with rownames_to_stub = TRUE, or (3) by using

summary_rows() or grand_summary_rows() with neither of the previous two conditions being
true.

Usage

cells_stub(rows = everything())

Arguments

rows Rows to target
<row-targeting expression>// default: everything()
The rows to which targeting operations are constrained. The default everything()
results in all rows in columns being formatted. Alternatively, we can supply a
vector of row IDs within c (), a vector of row indices, or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything(). We
can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 5

Value

A list object with the classes cells_stub and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

* cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

32

cells_stub

cells_stub(): targets row labels in the table stub using the rows argument.
cells_body(): targets data cells in the table body using intersections of columns and rows.

cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a transformed version of the sza dataset, let’s create a gt table. Color all of the month values
in the table stub with tab_style(), using cells_stub() in locations.

Sza

|>

dplyr::filter(latitude == 20 & tst <= "1000") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>

tidyr::spread(key = "tst"”, value = sza) |>

gt(rowname_col = "month") |>
sub_missing(missing_text = "") |>
tab_style(

style = list(
cell_fill(color "darkblue"),
cell_text(color = "white")

),

locations = cells_stub()

Function ID

8-16

Function Introduced

v0.2.0.5 (March 31, 2020)

cells_stubhead 33

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_summary(), cells_title(), currency(),default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stubhead Location helper for targeting the table stubhead cell

Description

The cells_stubhead() function is used to target the table stubhead location when applying a foot-
note with tab_footnote() or adding custom style with tab_style(). The function is expressly
used in each of those functions’ locations argument. The ’stubhead’ location is always present
alongside the ’stub’ location.

Usage
cells_stubhead()

Value

A list object with the classes cells_stubhead and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

» cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

* cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

e cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

34 cells_stubhead

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table. Add a stubhead
label with tab_stubhead() and then style it with tab_style() in conjunction with the use of
cells_stubhead() in the locations argument.

pizzaplace |>
dplyr::mutate(month = as.numeric(substr(date, 6, 7))) [>
dplyr::group_by(month, type) |>
dplyr::summarize(sold = dplyr::n(), .groups = "drop") |[>
dplyr::filter(month %in% 1:2) |>

gt(rowname_col = "type") |>
tab_stubhead(label = "type") |>
tab_style(

style = cell_fill(color = "lightblue"),
locations = cells_stubhead()

Function ID

8-12

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stub_grand_summary 35

cells_stub_grand_summary
Location helper for targeting the stub cells in a grand summary

Description

The cells_stub_grand_summary() function is used to target the stub cells of a grand summary
and it is useful when applying a footnote with tab_footnote() or adding custom styles with
tab_style(). The function is expressly used in each of those functions’ locations argument.
The ’stub_grand_summary’ location is generated by the grand_summary_rows () function.

Usage

cells_stub_grand_summary(rows = everything())

Arguments

rows Rows to target

<row-targeting expression>// default: everything()

We can specify which rows should be targeted. The default everything() re-

sults in all rows in columns being formatted. Alternatively, we can supply a

vector of row IDs within c (), a vector of row indices, or a select helper function.

Examples of select helper functions include starts_with(), ends_with(),

contains(), matches(), one_of (), num_range(), and everything(). We

can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 5

Value

A list object with the classes cells_stub_grand_summary and location_cells.

Targeting grand summary stub cells with rows

Targeting the stub cells of a grand summary row is done through the rows argument. Grand sum-
mary cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g.,
c(3, 5, 6)) that correspond to the row number of a grand summary row.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

e cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

36 cells_stub_grand_summary

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

* cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

* cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).
* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to a grand sum-
mary stub cell with the tab_style() function and using cells_stub_grand_summary() in the
locations argument.

countrypops |>

dplyr::filter(country_name == "Spain”, year < 1970) |>
dplyr::select(-contains(”country”)) [>
gt(rOWname_COl = "yearn) |>

fmt_number (
columns = population,
decimals = @
) >
grand_summary_rows (
columns = population,
fns = list(change = ~max(.) - min(.)),

fmt = ~ fmt_integer(.)

) 1>

tab_style(
style = cell_text(weight = "bold"”, transform = "uppercase"),
locations = cells_stub_grand_summary(rows = "change")

cells_stub_summary 37

Function ID
8-21

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_summary(), cells_stubhead(), cells_stub(),
cells_summary(), cells_title(), currency(),default_fonts(),define_units(), escape_latex(),
from_column(), google_font(), gt_latex_dependencies(), html(),md(), nanoplot_options(),

pct(), px(), random_id(), stub(), system_fonts()

cells_stub_summary Location helper for targeting the stub cells in a summary

Description

The cells_stub_summary() function is used to target the stub cells of summary and it is useful
when applying a footnote with tab_footnote() or adding custom styles with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’stub_summary’
location is generated by the summary_rows () function.

Usage

cells_stub_summary(groups = everything(), rows = everything())

Arguments

groups Specification of row group IDs
<row-group-targeting expression>// default: everything()
The row groups to which targeting operations are constrained. Can either be
a series of row group ID values provided in c() or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything().

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with groups, we can specify which of their rows should form

a constraint for targeting operations. The default everything() results in all

rows in columns being formatted. Alternatively, we can supply a vector of row

IDs within c(), a vector of row indices, or a select helper function. Examples

of select helper functions include starts_with(), ends_with(), contains(),

matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

38 cells_stub_summary

Value

A list object with the classes cells_stub_summary and location_cells.

Overview of location helper Functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

* cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

* cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.
* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

» cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Targeting summary stub cells with groups and rows

Targeting the stub cells of group summary rows is done through the groups and rows arguments. By
default groups is set to everything(), which means that all available groups will be considered.
Providing the ID values (in quotes) of row groups in ¢ () will serve to constrain the targeting to that
subset of groups.

Once the groups are targeted, we may also target the rows of the summary. Summary cells in
the stub will have ID values that can be used much like column names in the columns-targeting
scenario. We can use simpler tidyselect-style expressions (the select helpers should work well

cells_stub_summary

39

here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g., c(3,
5, 6)) that correspond to the row number of a summary row in a row group (numbering restarts

with every row group).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to the summary
data stub cells with tab_style() and cells_stub_summary() in the locations argument.

countrypops |>

dplyr::filter(country_name == "Japan"”, year < 1970) |>

dplyr::select(-contains("country"))
dplyr::mutate(decade

gt(
rowname_col = "year"”,
groupname_col = "decade”
) 1>

fmt_integer(columns
summary_rows (
groups = "1960s",
columns = population,
fns = list("min", "max"),
fmt = ~ fmt_integer(.)
) 1>
tab_style(
style = list(
cell_text(
weight = "bold",
transform = "capitalize”

population) |>

),

cell _fill(
color = "lightblue”,
alpha = 0.5

)
),
locations = cells_stub_summary(
groups = "1960s"
)
)

Function ID

8-20

Function Introduced

v0.3.0 (May 12, 2021)

paste@(substr(year, 1, 3), "0s"))

|>
|>

40 cells_summary

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stubhead(),

cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_summary Location helper for targeting group summary cells

Description

The cells_summary() function is used to target the cells in a group summary and it is useful
when applying a footnote with tab_footnote() or adding a custom style with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’summary’ location
is generated by the summary_rows () function.

Usage

cells_summary(
groups = everything(),
columns = everything(),
rows = everything()

Arguments

groups Specification of row group IDs
<row-group-targeting expression>// default: everything()
The row groups to which targeting operations are constrained. This aids in tar-
geting the summary rows that reside in certain row groups. Can either be a series
of row group ID values provided in c() or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything().

columns Columns to target
<column-targeting expression>// default: everything()

The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().

rows Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all

cells_summary 41

rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

A list object with the classes cells_summary and location_cells.

Targeting cells with columns, rows, and groups

Targeting of summary cells is done through the groups, columns, and rows arguments. By default
groups is set to everything(), which means that all available groups will be considered. Providing
the ID values (in quotes) of row groups in c() will serve to constrain the targeting to that subset of
groups.

The columns argument allows us to target a subset of summary cells contained in the resolved
columns. We say resolved because aside from declaring column names in c() (with bare column
names or names in quotes) we can use tidyselect-style expressions. This can be as basic as supply-
ing a select helper like starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the groups and columns are targeted, we may also target the rows of the summary. Summary
cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices
(e.g., c(3, 5, 6)) that correspond to the row number of a summary row in a row group (numbering
restarts with every row group).

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

* cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

e cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

e cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

* cells_stub(): targets row labels in the table stub using the rows argument.

42 cells_summary

* cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

* cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

» cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

* cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1ist() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to the summary
data cells with with tab_style(), using cells_summary() in the locations argument.

countrypops |>
dplyr::filter(country_name == "Japan”, year < 1970) |>
dplyr::select(-contains("country”)) |>
dplyr::mutate(decade = paste@(substr(year, 1, 3), "0s")) |>

gt(
rowname_col = "year”,
groupname_col = "decade”
) 1>

fmt_number (
columns = population,
decimals = 0

e

summary_rows (
groups = "1960s",
columns = population,

fns = list("min”, "max"),
fmt = ~ fmt_integer(.)
E
tab_style(

style = list(
cell_text(style
cell_fill(color

),

locations = cells_summary(
groups = "1960s",

"italic"),
"lightblue")

cells_title 43

columns = population,
rows = 1
)
) 1>
tab_style(
style = list(
cell_text(style = "italic"),
cell_fill(color = "lightgreen")
),
locations = cells_summary(
groups = "1960s",
columns = population,
rows = 2

Function ID

8-18

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),

nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_title Location helper for targeting the table title and subtitle

Description

The cells_title() function is used to target the table title or subtitle when applying a footnote
with tab_footnote() or adding custom style with tab_style(). The function is expressly used
in each of those functions’ locations argument. The header location where the title and optionally
the subtitle reside is generated by the tab_header () function.

Usage

cells_title(groups = c("title"”, "subtitle"))

44 cells_title

Arguments
groups Specification of groups
mult-kw:[title|subtitle] // default: c("title"”, "subtitle”)
We can either specify "title”, "subtitle”, or both (the default) in a vector to
target the title element, the subtitle element, or both elements.
Value

A list object of classes cells_title and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

e cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title"” or "subtitle”).

* cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

* cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

e cells_column_labels(): targets the column labels with its columns argument.

* cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

e cells_stub(): targets row labels in the table stub using the rows argument.
e cells_body(): targets data cells in the table body using intersections of columns and rows.

e cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

e cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

e cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

e cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

* cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).
* cells_source_notes(): targets all source notes in the table footer (cannot be used with

tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_x()
helper functions in a 1list() (e.g., list(cells_body(), cells_grand_summary())).

cell borders 45

Examples

Use a subset of the sp500 dataset to create a small gt table. Add a header with a title, and then add
a footnote to the title with tab_footnote() and cells_title() (in locations).

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <="2015-01-10") |>
dplyr::select(-c(adj_close, volume, high, low)) |>
gt |>
tab_header(title = "S&P 500") |>
tab_footnote(
footnote = "All values in USD.",
locations = cells_title(groups = "title")

Function ID
8-11

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), currency(), default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cell_borders Helper for defining custom borders for table cells

Description

The cell_borders() helper function is to be used with the tab_style() function, which itself
allows for the setting of custom styles to one or more cells. Specifically, the call to cell_borders()
should be bound to the styles argument of tab_style(). The sides argument is where we define
which borders should be modified (e.g., "left"”, "right”, etc.). With that selection, the color,
style, and weight of the selected borders can then be modified.

Usage

cell_borders(sides = "all”, color = "#000000", style = "solid", weight = px(1))

46 cell borders

Arguments

sides Border sides
vector<character>// default: "all"
The border sides to be modified. Options include "left”, "right”, "top"”, and
"bottom”. For all borders surrounding the selected cells, we can use the "all”
option.

color Border color
scalar<character>|NULL // default: "#000000"
The border color can be defined with a color name or with a hexadecimal color
code. The default color value is "#000000" (black). Borders for any defined
sides can be removed by supplying NULL here.

style Border line style
scalar<character>|NULL // default: "solid"
The border style can be one of either "solid” (the default), "dashed”, "dotted”,
"hidden”, or "double”. Borders for any defined sides can be removed by sup-
plying NULL here.

weight Border weight
scalar<character>|NULL // default: px(1)
The default value for weight is "1px" and higher values will become more
visually prominent. Borders for any defined sides can be removed by supplying
NULL to any of color, style, or weight.

Value

A list object of class cell_styles.

Examples

We can add horizontal border lines for all table body rows in a gt table based on the exibble dataset.
For this, we need to use tab_style() (targeting all cells in the table body with cells_body()) in
conjunction with cell_borders() in the style argument. Both top and bottom borders will be
added as "solid” and "red” lines with a line width of 1.5 px.

exibble |>
gtO 1>
tab_style(
style = cell_borders(
sides = c("top”, "bottom"),
color = "red",
weight = px(1.5),
style = "solid”
),
locations = cells_body()
)

It’s possible to incorporate different horizontal and vertical ("1eft” and "right") borders at several
different locations. This uses multiple cell_borders() and cells_body() calls within their own
respective lists.

cell borders 47

exibble |>
gt |>
tab_style(
style = list(
cell_borders(
sides = c("top”, "bottom"),
color "#FF0000" ,
weight = px(2)
),
cell_borders(
sides = c("left"”, "right"),
color = "#0QQQOFF",
weight = px(2)

)
),
locations = list(
cells_body(
columns = num,
rows = is.na(num)
),
cells_body(
columns = currency,
rows = is.na(currency)

Function ID

8-26

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_fill(), cell_text(), cells_body(), cells_column_labels(),
cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

48 cell_fill

cell_fill Helper for defining custom fills for table cells

Description

The cell_fill() helper function is to be used with the tab_style() function, which itself allows
for the setting of custom styles to one or more cells. Specifically, the call to cell_fill() should
be bound to the styles argument of tab_style().

Usage
cell_fill(color = "#D3D3D3", alpha = NULL)

Arguments
color Cell fill color
scalar<character> // default: "#D3D3D3"
If nothing is provided for color then "#D3D3D3" (light gray) will be used as a
default.
alpha Transparency value
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)
An optional alpha transparency value for the color as single value in the range
of @ (fully transparent) to 1 (fully opaque). If not provided the fill color will
either be fully opaque or use alpha information from the color value if it is
supplied in the #RRGGBBAA format.
Value

A list object of class cell_styles.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). Styles are added with tab_style() in two separate calls (targeting different
body cells with the cells_body() helper function). With the cell_fill() helper funciton we
define cells with a "1ightblue” background in one instance, and "gray85" in the other.

exibble |>
dplyr::select(num, currency) |>
gt |>
fmt_number (decimals = 1) |>
tab_style(

style = cell_fill(color = "lightblue"),
locations = cells_body(

columns = num,

rows = num >= 5000

cell_text 49

) 1>
tab_style(
style = cell_fill(color = "gray85"),
locations = cells_body(
columns = currency,
rows = currency < 100

Function ID

8-25

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_text(), cells_body(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),

html (), md(), nanoplot_options(), pct(), px(), random_id (), stub(), system_fonts()

cell_text Helper for defining custom text styles for table cells

Description

This helper function is to be used with the tab_style() function, which itself allows for the setting
of custom styles to one or more cells. We can also define several styles within a single call of
cell_text() and tab_style() will reliably apply those styles to the targeted element.

Usage
cell_text(
color = NULL,
font = NULL,
size = NULL,
align = NULL,
v_align = NULL,
style = NULL,

weight = NULL,
stretch = NULL,
decorate = NULL,
transform = NULL,

50 cell text

whitespace = NULL,
indent = NULL

Arguments

color Text color
scalar<character> // default: NULL (optional)

The text color can be modified through the color argument.

font Font (or collection of fonts) used for text
vector<character> // default: NULL (optional)

The font or collection of fonts (subsequent font names are) used as fallbacks.

size Text size
scalar<numeric|integer|character> // default: NULL (optional)
The size of the font. Can be provided as a number that is assumed to represent px
values (or could be wrapped in the px () helper function). We can also use one
of the following absolute size keywords: "xx-small”, "x-small”, "small",

non

"medium”, "large”, "x-large", or "xx-large".

align Text alignment
scalar<character> // default: NULL (optional)

The text in a cell can be horizontally aligned though one of the following op-

non

tions: "center”, "left”, "right”, or "justify".

v_align Vertical alignment
scalar<character> // default: NULL (optional)
The vertical alignment of the text in the cell can be modified through the options
"middle”, "top", or "bottom”.

style Text style
scalar<character> // default: NULL (optional)

Can be one of either "normal”, "italic”, or "oblique".

weight Font weight
scalar<character|numeric|integer>// default: NULL (optional)
The weight of the font can be modified thorough a text-based option such as
"normal”, "bold", "lighter"”, "bolder"”, or, a numeric value between 1 and
1000, inclusive. Note that only variable fonts may support the numeric mapping
of weight.

stretch Stretch text
scalar<character> // default: NULL (optional)

Allows for text to either be condensed or expanded. We can use one of the fol-

lowing text-based keywords to describe the degree of condensation/expansion:
"ultra-condensed”, "extra-condensed”, "condensed”, "semi-condensed”,
"normal”, "semi-expanded”, "expanded”, "extra-expanded”, or "ultra-expanded”.
Alternatively, we can supply percentage values from @\% to 200\%, inclusive.
Negative percentage values are not allowed.

decorate Decorate text
scalar<character> // default: NULL (optional)

cell text 51

Allows for text decoration effect to be applied. Here, we can use "overline”,
"line-through”, or "underline”.

transform Transform text
scalar<character> // default: NULL (optional)

Allows for the transformation of text. Options are "uppercase”, "lowercase”,
or "capitalize”.

whitespace White-space options
scalar<character> // default: NULL (optional)
A white-space preservation option. By default, runs of white-space will be col-
lapsed into single spaces but several options exist to govern how white-space is
collapsed and how lines might wrap at soft-wrap opportunities. The options are

n n n o n n n

"normal”, "nowrap”, "pre”, "pre-wrap"”, "pre-line”, and "break-spaces”.
indent Text indentation
scalar<numeric|integer|character>// default: NULL (optional)

The indentation of the text. Can be provided as a number that is assumed to
represent px values (or could be wrapped in the px () helper function). Alterna-
tively, this can be given as a percentage (easily constructed with pct()).

Value

A list object of class cell_styles.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). With the tab_style() function (called twice), we’ll selectively add style to
the values formatted by fmt_number (). We do this by using the cell_text() helper function in
the style argument of tab_style().

exibble |>
dplyr::select(num, currency) |>
gt I>
fmt_number (decimals = 1) |>
tab_style(

style = cell_text(weight = "bold"),
locations = cells_body(
columns = num,
rows = num >= 5000
)
) 1>
tab_style(
style = cell_text(style = "italic"),
locations = cells_body(
columns = currency,
rows = currency < 100

52 cols_add

Function ID
8-24

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cells_body(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),

html (), md(), nanoplot_options(), pct(), px(), random_id (), stub(), system_fonts()

cols_add Add one or more columns to a gt table

Description

We can add new columns to a table with the cols_add() function and it works quite a bit like the
dplyr mutate() function. The idea is that you supply name-value pairs where the name is the new
column name and the value part describes the data that will go into the column. The latter can: (1)
be a vector where the length of the number of rows in the data table, (2) be a single value (which will
be repeated all the way down), or (3) involve other columns in the table (as they represent vectors
of the correct length). The new columns are added to the end of the column series by default but
can instead be added internally by using either the .before or . after arguments. If entirely empty
(i.e., all NA) columns need to be added, you can use any of the NA types (e.g., NA, NA_character_,
NA_real_, etc.) for such columns.

Usage

cols_add(.data, ..., .before = NULL, .after = NULL)
Arguments

.data The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

Cell data assignments

<multiple expressions>// (or,use .list)

Expressions for the assignment of cell values to the new columns. Name-value
pairs, in the form of <column> = <value vector> will work, so long as any
<column> value does not already exist in the table. The <value vector> may

cols_add

.before, .after

Value

53

be an expression that uses one or more column names in the table to generate a
vector of values. Single values in <value vector> will be repeated down the
new column. A vector where the length is exactly the number of rows in the
table can also be used.

Column used as anchor

<column-targeting expression>// default: NULL (optional)

A single column-resolving expression or column index can be given to either
.before or .after. The column specifies where the new columns should be
positioned among the existing columns in the input data table. While select
helper functions such as starts_with() and ends_with() can be used for col-
umn targeting, it’s recommended that a single column name or index be used.
This is to ensure that exactly one column is provided to either of these argu-
ments (otherwise, the function will be stopped). If nothing is provided for either
argument then any new column will be placed at the end of the column series.

An object of class gt_tbl.

Targeting the column for insertion with .before or .after

The targeting of a column for insertion is done through the .before or .after arguments (only
one of these options should be be used). While tidyselect-style expressions or indices can used to
target a column, it’s advised that a single column name be used. This is to avoid the possibility of
inadvertently resolving multiple columns (since the requirement is for a single column).

Examples

Let’s take a subset of the exibble dataset and make a simple gt table with it (using the row column
for labels in the stub). We’ll add a single column to the right of all the existing columns and call it
country. This new column needs eight values and these will be supplied when using cols_add().

exibble |>
dplyr::select(num, char, datetime, currency, group) |>
gt(rowname_col = "row") |>
cols_add(

Country = C(MTLH’ HPYH, "GLH, ”PAH’ "MO”, ”EEH’ "CO”, ”AU")

)

We can add multiple columns with a single use of cols_add(). The columns generated can be
formatted and otherwise manipulated just as any column could be in a gt table. The following
example extends the first one by adding more columns and immediately using them in various
function calls like fmt_flag() and fmt_units().

exibble |>

dplyr::select(num, char, datetime, currency, group) |>
gt(rowname_col = "row") |>

cols_add(

54

cols_add

country = c("TL", "PY", "GL", "PA", "MO", "EE", "CO", "AU"),
empty = NA_character_,
units = c(

"k m s*-2", "N m*-2", "degC", "m*2 kg s*-2",

"m*2 kg s*-3", "/s", "A s", "m*2 kg s*-3 A*-1"

),

big_num = num * 3
) 1>
fmt_flag(columns = country) [>
sub_missing(columns = empty, missing_text = "") [>

fmt_units(columns = units) [>
fmt_scientific(columns = big_num)

In this table generated from a portion of the towny dataset, we add two new columns (land_area
and density) through a single use of cols_add(). The new land_area column is a conversion
of land area from square kilometers to square miles and the density column is calculated by
through division of population_2021 by that new land_area column. We hide the now unneeded
land_area_km2 with cols_hide() and also perform some column labeling and adjustments to
column widths with cols_label () and cols_width().

towny |>
dplyr::select(name, population_2021, land_area_km2) |>
dplyr::filter(population_2021 > 100000) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) |>
gt >
cols_add(
land_area = land_area_km2 / 2.58998811,
density = population_2021 / land_area
) 1>
fmt_integer() [|>
cols_hide(columns = land_area_km2) |>
cols_label(
population_2021 = "Population”,
density = "Density, {{*persons* / sq mi}}",
land_area ~ "Area, {{mi*2}}"
) 1>
cols_width(everything() ~ px(120))

It’s possible to start with an empty table (i.e., no columns and no rows) and add one or more columns
to that. You can, for example, use dplyr::tibble() or data.frame() to create a completely
empty table. The first cols_add() call for an empty table can have columns of arbitrary length but
subsequent uses of cols_add() must adhere to the rule of new columns being the same length as
existing.

dplyr::tibble() |>

gt >
cols_add(

cols_align 55

num = 1:5,
chr = vec_fmt_spelled_num(1:5)

)

Tables can contain no rows, yet have columns. In the following example, we’ll create a zero-row
table with three columns (num, chr, and ext) and perform the same cols_add()-based addition of
two columns of data. This is another case where the function allows for arbitrary-length columns
(since always adding zero-length columns is impractical). Furthermore, here we can reference
columns that already exist (num and chr) and add values to them.

dplyr::tibble(
num = numeric(0),
chr = character(0),

ext = character(9)
) 1>
gt >
cols_add(
num = 1:5,

chr = vec_fmt_spelled_num(1:5)
)

We should note that the ext column did not receive any values from cols_add() but the table was
expanded to having five rows nonetheless. So, each cell of ext was by necessity filled with an NA
value.

Function ID
5-7

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_units(), cols_width()

cols_align Set the alignment of columns

Description

The individual alignments of columns (which includes the column labels and all of their data cells)
can be modified. We have the option to align text to the left, the center, and the right. In aless
explicit manner, we can allow gt to automatically choose the alignment of each column based on
the data type (with the auto option).

56 cols_align

Usage

cols_align(
data,
align = c("auto”, "left", "center"”, "right"),
columns = everything()

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

align Alignment type
singl-kw:[auto|left|center|right] // default: "auto"
This can be any of "center”, "left”, or "right"” for center-, left-, or right-
alignment. Alternatively, the "auto” option (the default), will automatically
align values in columns according to the data type (see the Details section for
specifics on which alignments are applied).

columns Columns to target
<column-targeting expression>// default: everything()
The columns for which the alignment should be applied. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().
By default this is set to everything() which means that the chosen alignment
affects all columns.

Details

When you create a gt table object using gt (), automatic alignment of column labels and their data
cells is performed. By default, left-alignment is applied to columns of class character, Date, or
POSIXct; center-alignment is for columns of class logical, factor, or 1ist; and right-alignment
is used for the numeric and integer columns.

Value

An object of class gt_tbl.

Examples

Let’s use countrypops to create a small gt table. We can change the alignment of the population
column with cols_align(). In this example, the label and body cells of population will be
aligned to the left.

countrypops |>
dplyr::select(-contains(”"code”)) |>
dplyr::filter(country_name == "San Marino") |>

cols_align_decimal 57

dplyr::slice_tail(n = 5) |>
gt(rowname_col = "year”, groupname_col = "country_name") |>
cols_align(

align = "left",

columns = population

Function ID

5-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_hide(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_align_decimal Align all numeric values in a column along the decimal mark

Description

For numeric columns that contain values with decimal portions, it is sometimes useful to have them
lined up along the decimal mark for easier readability. We can do this with cols_align_decimal()
and provide any number of columns (the function will skip over columns that don’t require this type

of alignment).
Usage
cols_align_decimal(data, columns = everything(), dec_mark = ".", locale = NULL)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
columns Columns to target

<column-targeting expression>// default: everything()

The columns for which decimal alignment should be applied. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),

58 cols_align_decimal

ends_with(), contains(), matches(), one_of (), num_range(), and everything().
By default this is set to everything() which means that decimal alignment will
be attempted on all columns.

dec_mark Decimal mark
scalar<character>// default: " ."

The character used as a decimal mark in the numeric values to be aligned. If a
locale value was used when formatting the numeric values then locale is better
to use and it will override any value here in dec_mark.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used to obtain the type of decimal mark
used in the numeric values to be aligned (according to the locale’s formatting
rules). Examples include "en” for English (United States) and "fr" for French
(France). We can use the info_locales() function as a useful reference for
all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Examples

Let’s put together a two-column table to create a gt table. The first column char just contains letters
whereas the second column, num, has a collection of numbers and NA values. We could format
the numbers with fmt_number () and elect to drop the trailing zeros past the decimal mark with
drop_trailing_zeros = TRUE. This can leave formatted numbers that are hard to scan through
because the decimal mark isn’t fixed horizontally. We could remedy this and align the numbers by
the decimal mark with cols_align_decimal().

dplyr::tibble(
char = LETTERS[1:9],
num = c(1.2, -33.52, 9023.2, -283.527, NA, 0.401, -123.1, NA, 41)
e
gtO 1>
fmt_number (
columns = num,
decimals = 3,
drop_trailing_zeros = TRUE
) 1>

cols_align_decimal()

Function ID

5-2

cols_hide 59

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other column modification functions: cols_add(), cols_align(), cols_hide(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_hide Hide one or more columns

Description

The cols_hide() function allows us to hide one or more columns from appearing in the final
output table. While it’s possible and often desirable to omit columns from the input table data
before introduction to the gt () function, there can be cases where the data in certain columns is
useful (as a column reference during formatting of other columns) but the final display of those
columns is not necessary.

Usage

cols_hide(data, columns)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
The columns to hide in the output display table. Can either be a series of column
names provided in c(), a vector of column indices, or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything().
Details

The hiding of columns is internally a rendering directive, so, all columns that are "hidden’ are still
accessible and useful in any expression provided to a rows argument. Furthermore, the cols_hide()
function (as with many gt functions) can be placed anywhere in a pipeline of gt function calls (acting
as a promise to hide columns when the timing is right). However there’s perhaps greater readabil-
ity when placing this call closer to the end of such a pipeline. The cols_hide() function quietly
changes the visible state of a column (much like the cols_unhide() function) and doesn’t yield
warnings or messages when changing the state of already-invisible columns.

60 cols_hide

Value

An object of class gt_tbl.

Examples

Let’s use a small portion of the countrypops dataset to create a gt table. We can hide the country_code_2
and country_code_3 columns with the cols_hide() function.

countrypops |>

dplyr::filter(country_name == "Egypt"”) |>
dplyr::slice_tail(n = 5) |>
gt >

cols_hide(columns = c(country_code_2, country_code_3))

Using another countrypops-based gt table, we can use the population column to provide the
conditional placement of footnotes. Then, we’ll hide that column along with the country_code_3
column. Note that the order of the cols_hide() and tab_footnote() statements has no effect on
the final display of the table.

countrypops |>

dplyr::filter(country_name == "Pakistan") |>
dplyr::slice_tail(n = 5) |>
gt >

cols_hide(columns = c(country_code_3, population)) |>
tab_footnote(
footnote = "Population above 220,000,000.",
locations = cells_body(
columns = year,
rows = population > 220E6
)

)

Function ID

5-12

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

cols_unhide() to perform the inverse operation.

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_label

61

cols_label

Relabel one or more columns

Description

Column labels can be modified from their default values (the names of the columns from the input
table data). When you create a gt table object using gt (), column names effectively become the
column labels. While this serves as a good first approximation, column names as label defaults
aren’t often as appealing in a gt table as the option for custom column labels. The cols_label()
function provides the flexibility to relabel one or more columns and we even have the option to use
the md() or html() helper functions for rendering column labels from Markdown or using HTML.

Usage
cols_label(.data, ..., .list = list2(...), .fn = NULL, .process_units = NULL)
Arguments

.data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
Column label assignments
<multiple expressions>// required (or, use .list)
Expressions for the assignment of column labels for the table columns in . data.
Two-sided formulas (e.g., <LHS> ~ <RHS>) can be used, where the left-hand side
corresponds to selections of columns and the right-hand side evaluates to single-
length values for the label to apply. Column names should be enclosed in c().
Select helpers like starts_with(), ends_with(), contains(), matches(),
one_of (), and everything() can be used in the LHS. Named arguments are
also valid as input for simple mappings of column name to label text; they should
be of the form <column name> = <label>. Subsequent expressions that oper-
ate on the columns assigned previously will result in overwriting column label
values.

.list Alternative to . . .
<list of multiple expressions>// required (or, use ...)
Allows for the use of a list as an input alternative to

.fn Function to apply

.process_units

function // default: NULL (optional)

An option to specify a function that will be applied to all of the provided label
values.

Option to process any available units throughout
scalar<logical> // default: NULL (optional)

62 cols_label
Should your column text contain text that is already in gt’s units notation (and,
importantly, is surrounded by "{{"/"}3}"), using TRUE here reprocesses all col-
umn such that the units are properly registered for each of the column labels.
This ignores any column label assignments in . .. or .list.

Value

An object of class gt_tbl.

A note on column names and column labels

It’s important to note that while columns can be freely relabeled, we continue to refer to columns
by their original column names. Column names in a tibble or data frame must be unique whereas
column labels in gt have no requirement for uniqueness (which is useful for labeling columns as,
say, measurement units that may be repeated several times—usually under different spanner labels).
Thus, we can still easily distinguish between columns in other gt function calls (e.g., in all of the
fmt*() functions) even though we may lose distinguishability between column labels once they
have undergone relabeling.

Incorporating units with gt’s units notation

Measurement units are often seen as part of column labels and indeed it can be much more straight-
forward to include them here rather than using other devices to make readers aware of units for spe-
cific columns. The gt package offers the function cols_units() to apply units to various columns
with an interface that’s similar to that of this function. However, it is also possible to define units
here along with the column label, obviating the need for pattern syntax that joins the two text com-
ponents. To do this, we have to surround the portion of text in the label that corresponds to the units
definition with "{{"/"}}".

Now that we know how to mark text for units definition, we know need to know how to write
proper units with the notation. Such notation uses a succinct method of writing units and it should
feel somewhat familiar though it is particular to the task at hand. Each unit is treated as a separate
entity (parentheses and other symbols included) and the addition of subscript text and exponents is
flexible and relatively easy to formulate. This is all best shown with a few examples:

* "m/s" and "m / s” both render as "m/s"

* "ms*-1" will appear with the "-1" exponent intact

* "m/s" gives the the same result, as "/<unit>" is equivalent to "<unit>*-1"
* "E_h" will render an "E" with the "h" subscript

e "t_i*2.5" provides a t with an "i" subscript and a "2.5" exponent

* "m[_0"2]" will use overstriking to set both scripts vertically

e "g/L %C6H1206%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

* Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u” in "ug"”, "um”, "uL”, and "umol” will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

n

* We can transform shorthand symbol/unit names enclosed in ": " (e.g., " :angstrom: ", " :ohm: ",
etc.) into proper symbols

cols_label 63

* Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters

n o n

(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., " :Alpha:", ":Zeta:", etc.)

* The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "*x"

Examples

Let’s use a portion of the countrypops dataset to create a gt table. We can relabel all the table’s
columns with the cols_label() function to improve its presentation. In this simple case we are
supplying the name of the column on the left-hand side, and the label text on the right-hand side.

countrypops |>
dplyr::select(-contains("code”)) |>

dplyr::filter(country_name == "Uganda") |>
dplyr::slice_tail(n = 5) [|>
gt |>
cols_label(
country_name = "Name”,
year = "Year”,
population = "Population”
)

Using the countrypops dataset again, we label columns similarly to before but this time making the
column labels be bold through Markdown formatting (with the md() helper function). It’s possible
here to use either a = or a ~ between the column name and the label text.

countrypops |>
dplyr::select(-contains("code”)) |>

dplyr::filter(country_name == "Uganda") |>
dplyr::slice_tail(n = 5) |>
gt >

cols_label(
country_name = md("**Namex*x"),
year = md("**Year*x"),
population ~ md("**Population*x")

)

With a select portion of the metro dataset, let’s create a small gt table with three columns. Within
cols_label() we’d like to provide column labels that contain line breaks. For that, we can use

 to indicate where the line breaks should be. We also need to use the md() helper function
to signal to gt that this text should be interpreted as Markdown. Instead of calling md() on each
of labels as before, we can more conveniently use the . fn argument and provide the bare function
there (it will be applied to each label defined in the cols_label() call).

metro |>
dplyr::select(name, lines, passengers, connect_other) |>
dplyr::arrange(desc(passengers)) |>
dplyr::slice_head(n = 10) |>

64

cols_label

gt >

cols_hide(columns = passengers) |>

cols_label(
name = "Name of
Metro Station”,
lines = "Metro
Lines",
connect_other = "Train
Services”,
.fn = md

Using a subset of the towny dataset, we can create an interesting gt table. First, only certain columns
are selected from the dataset, some filtering of rows is done, rows are sorted, and then only the first
10 rows are kept. After the data is introduced to gt (), we then apply some spanner labels using
two calls of tab_spanner (). Below those spanners, we want to label the columns by the years of
interest. Using cols_label() and select expressions on the left side of the formulas, we can easily
relabel multiple columns with common label text. Note that we cannot use an = sign in any of the
expressions within cols_label (); because the left-hand side is not a single column name, we must
use formula syntax (i.e., with the ~).

towny |>

dplyr::select(

name, ends_with("2001"), ends_with("”2006"), matches("2001_2006")
) 1>
dplyr::filter(population_2001 > 100000) |>
dplyr::arrange(desc(pop_change_2001_2006_pct)) |>
dplyr::slice_head(n = 10) [|>
gt >
fmt_integer() |>
fmt_percent(columns = matches("”change”), decimals = 1) |>
tab_spanner(label = "Population”, columns = starts_with("population”)) [>
tab_spanner (label "Density"”, columns = starts_with("density")) |>
cols_label(

ends_with("01") ~ "2001",

ends_with("06") ~ "2006",

matches(”"change”) ~ md("Population Change,
2001 to 2006")
E
cols_width(everything() ~ px(120))

Here’s another table that uses the towny dataset. The big difference compared to the previous gt
table is that cols_label() as used here incorporates unit notation text (within "{{"/"}3}").

towny |>
dplyr::select(
name, population_2021, density_2021, land_area_km2, latitude, longitude
) 1>
dplyr::filter(population_2021 > 100000) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) [|>
gt >

cols_label 65

fmt_integer(columns = population_2021) |>
fmt_number (
columns = c(density_2021, land_area_km2),
decimals =1

) 1>
fmt_number(columns = latitude, decimals = 2) |>
fmt_number (columns = longitude, decimals = 2, scale_by = -1) |>

cols_label(
starts_with("population”) ~ "Population”,
starts_with("density”) ~ "Density, {{*persons* km*-23}}",
land_area_km2 ~ "Area, {{km*2}}",
latitude ~ "Latitude, {{:degrees:N}}",
longitude ~ "Longitude, {{:degrees:W}}"

) 1>

cols_width(everything() ~ px(120))

The illness dataset has units within the units column. They’re formatted in just the right way for
gt too. Let’s do some text manipulation through dplyr: :mutate() and some pivoting with tidyr’s
pivot_longer() and pivot_wider() in order to include the units as part of the column names
in the reworked table. These column names are in a format where the units are included within
"{{"/"}}", so, we can use cols_label() with the .process_units = TRUE option to register the
measurement units. In addition to this, because there is a
 included (for a line break), we should
use the . fn option and provide the md() helper function (as a bare function name). This ensures
that any line breaks will materialize.

illness |>
dplyr::mutate(test = paste@(test, ",
{{", units, "}}")) [|>
dplyr::slice_head(n = 8) |>
dplyr::select(-c(starts_with("norm”), units)) |>
tidyr::pivot_longer(
cols = starts_with("day"),

names_to = "day",
names_prefix = "day_",
values_to = "value”

) 1>

tidyr::pivot_wider(
names_from = test,
values_from = value
) 1>
gt(rowname_col = "day") |>
tab_stubhead(label = "Day") [>
cols_label(

.fn = md,
.process_units = TRUE
) 1>

cols_width(
stub() ~ px(50),
everything() ~ px(120)
)

66 cols_label with

Function ID
5-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_label_with Relabel columns with a function

Description

Column labels can be modified from their default values (the names of the columns from the input
table data). When you create a gt table object using gt (), column names effectively become the col-
umn labels. While this serves as a good first approximation, you may want to make adjustments so
that the columns names present better in the gt output table. The cols_label_with() function al-
lows for modification of column labels through a supplied function. By default, the function will be
invoked on all column labels but this can be limited to a subset via the columns argument. With the
fn argument, we provide either a bare function name, a RHS formula (with . representing the vector
of column labels), or, an anonymous function (e.g., function(x) tools::toTitleCase(x)).

Usage

cols_label_with(data, columns = everything(), fn)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target

<column-targeting expression>// default: everything()

The columns for which the column-labeling operations should be applied. Can
either be a series of column names provided in c(), a vector of column in-
dices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

cols_label with 67

fn Function to apply
function|formula // required
The function or function call to be applied to the column labels. This can take
the form of a bare function (e.g., tools::toTitleCase), a function call as a
RHS formula (e.g., ~ tools: :toTitleCase(.)), or an anonymous function as
in function(x) tools: :toTitleCase(x).

Value

An object of class gt_tbl.

A note on column names and column labels

It’s important to note that while columns can be freely relabeled, we continue to refer to columns
by their original column names. Column names in a tibble or data frame must be unique whereas
column labels in gt have no requirement for uniqueness (which is useful for labeling columns as,
say, measurement units that may be repeated several times—usually under different spanner labels).
Thus, we can still easily distinguish between columns in other gt function calls (e.g., in all of the
fmt* () functions) even though we may lose distinguishability in column labels once they have been
relabeled.

Examples

Use a subset of the sp500 dataset to create a gt table. We want all the column labels to be en-
tirely capitalized versions of the default labels but, instead of using cols_label() and rewriting
each label manually in capital letters we can use cols_label_with() and instruct it to apply the
toupper () function to all column labels.

sp500 |>
dplyr::filter(
date >= "2015-12-01" &
date <= "2015-12-15"
) 1>
dplyr::select(-c(adj_close, volume)) |>
gt |>
cols_label_with(fn = toupper)

Use the countrypops dataset to create a gt table. To improve the presentation of the table, we are
again going to change the default column labels via function calls supplied within cols_label_with().
We can, if we prefer, apply multiple types of column label changes in sequence with multiple calls

of cols_label_with(). Here, we use the make_clean_names() functions from the janitor pack-
age and follow up with the removal of a numeral with gsub().

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::filter(grepl(”*C", country_code_3)) |>
dplyr::select(-country_code_2, -year) |>
head(8) [>
gtO 1>

68 cols_label with

cols_move_to_start(columns = country_code_3) |>
fmt_integer(columns = population) [|>
cols_label_with(

fn = ~ janitor::make_clean_names(., case = "title")
) 1>
cols_label_with(

.Fn = ~ gsub(ll[e_gjﬂ, H”, .)

)

We can make a svelte gt table with the pizzaplace dataset. There are ways to use one instance
of cols_label_with() with multiple functions called on the column labels. In the example, we
use an anonymous function call (with the function(x) { ... } construction) to perform multiple
mutations of x (the vector of column labels). We can even use the md () helper function with that to
signal to gt that the column label should be interpreted as Markdown text.

pizzaplace |>

dplyr::mutate(month = substr(date, 6, 7)) |>
dplyr::group_by(month) |>
dplyr::summarize(pizze_vendute = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(frazione_della_quota = pizze_vendute / 4000) |>
dplyr::mutate(date = paste@(”2015/", month, "/01")) |>
dplyr::select(-month) |>
gt(rowname_col = "date") |>
fmt_date(date, date_style = "month”, locale = "it") |>
fmt_percent(columns = frazione_della_quota) |>
fmt_integer(columns = pizze_vendute) |>
cols_width(everything() ~ px(100)) |>
cols_label_with(

fn = function(x) {

janitor::make_clean_names(x, case = "title") |>
toupper() [>
stringr::str_replace_all("*|$", "*xx") |>
md()

Function ID

5-5

Function Introduced

v0.9.0 (March 31, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),

cols_merge 69

cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge Merge data from two or more columns to a single column

Description

This function takes input from two or more columns and allows the contents to be merged into a
single column by using a pattern that specifies the arrangement. We can specify which columns
to merge together in the columns argument. The string-combining pattern is to be provided in the
pattern argument. The first column in the columns series operates as the target column (i.e., the
column that will undergo mutation) whereas all following columns will be untouched. There is the
option to hide the non-target columns (i.e., second and subsequent columns given in columns). The
formatting of values in different columns will be preserved upon merging.

Usage

cols_merge(
data,
columns,
hide_columns = columns[-1],
rows = everything(),
pattern = NULL

)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
columns Columns to target

<column-targeting expression>// required

The columns for which the merging operations should be applied. The first
column resolved will be the target column (i.e., undergo mutation) and the other
columns will serve to provide input. Can either be a series of column names pro-
vided in c(), a vector of column indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything(). A vector is rec-
ommended because in that case we are absolutely certain about the order of
columns, and, that order information is needed for this and other arguments.

hide_columns Subset of columns to hide
<column-targeting expression>|FALSE // default: columns[-1]

Any column names provided here will have their state changed to hidden (via
internal use of cols_hide()) if they aren’t already hidden. This is convenient if

70 cols_merge

the shared purpose of these specified columns is only to provide string input to
the target column. To suppress any hiding of columns, FALSE can be used here.

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should par-

ticipate in the merging process. The default everything() results in all rows

in columns being formatted. Alternatively, we can supply a vector of row IDs

within c(), a vector of row indices, or a select helper function. Examples of

select helper functions include starts_with(), ends_with(), contains(),

matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

pattern Formatting pattern

scalar<character> // default: NULL (optional)

A formatting pattern that specifies the arrangement of the columns values and
any string literals. The pattern uses numbers (within { }) that correspond to
the indices of columns provided in columns. If two columns are provided in
columns and we would like to combine the cell data onto the first column, "{1}
{23}" could be used. If a pattern isn’t provided then a space-separated pattern
that includes all columns will be generated automatically. Further details are
provided in the How the pattern works section.

Value

An object of class gt_tbl.

How the pattern works
There are two types of templating for the pattern string:

1. { } for arranging single column values in a row-wise fashion
2. << >> to surround spans of text that will be removed if any of the contained { } yields a
missing value

Integer values are placed in { } and those values correspond to the columns involved in the merge, in
the order they are provided in the columns argument. So the pattern "{1} ({2}-{33})" corresponds
to the target column value listed first in columns and the second and third columns cited (formatted
as a range in parentheses). With hypothetical values, this might result as the merged string "38.2
(3-8)".

Because some values involved in merging may be missing, it is likely that something like "38.2
(3-NA) " would be undesirable. For such cases, placing sections of text in << >> results in the entire
span being eliminated if there were to be an NA value (arising from { } values). We could instead
opt for a pattern like "{13}<< ({23}-{33})>>", which results in "38.2" if either columns {2} or {3}
have an NA value. We can even use a more complex nesting pattern like "{1}<< ({2}-<<{3}>>)>>"
to retain a lower limit in parentheses (where {37} is NA) but remove the range altogether if {23} is NA.

One more thing to note here is that if sub_missing() is used on values in a column, those specific
values affected won’t be considered truly missing by cols_merge() (since it’s been handled with
substitute text). So, the complex pattern "{1}<< ({2}-<<{33}>>)>>" might result in something
like "38.2 (3-1imit)" if sub_missing(..., missing_text ="1limit") were used on the third
column supplied in columns.

cols_merge 71

Comparison with other column-merging functions

There are three other column-merging functions that offer specialized behavior that is optimized for
common table tasks: cols_merge_range(), cols_merge_uncert(), and cols_merge_n_pct().
These functions operate similarly, where the non-target columns can be optionally hidden from the
output table through the autohide option.

Examples

Use a subset of the sp500@ dataset to create a gt table. Use the cols_merge () function to merge the
open & close columns together, and, the low & high columns (putting an em dash between both).
Relabel the columns with cols_label().

sp500 |>
dplyr::slice(50:55) |>
dplyr::select(-volume, -adj_close) [>
gt |>
cols_merge(
columns = c(open, close),
pattern = "{1}—{2}"
) 1>
cols_merge(
columns = c(low, high),
pattern = "{1}—{2}"

) 1>
cols_label(
open = "open/close”,

low = "low/high”
)

Use a portion of gtcars to create a gt table. Use the cols_merge() function to merge the trq &
trq_rpm columns together, and, the mpg_c & mpg_h columns. Given the presence of NA values, we
can use patterns that drop parts of the output text whenever missing values are encountered.

gtcars |>
dplyr::filter(year == 2017) |>
dplyr::select(mfr, model, starts_with(c("trqg”, "mpg"))) |>
gt >
fmt_integer(columns = trqg_rpm) |>
cols_merge(
columns = starts_with("trq"),
pattern = "{13}<< ({2} rpm)>>"
Nk
cols_merge(
columns = starts_with("mpg"),
pattern = "<<{1} city<</{2} hwy>>>>"
e
cols_label(
mfr = "Manufacturer”,

72 cols_merge_n_pct

model = "Car Model”,
trqg = "Torque”,
mpg_c = "MPG"

Function ID
5-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_n_pct Merge two columns to combine counts and percentages

Description

The cols_merge_n_pct() function is a specialized variant of the cols_merge () function. It oper-
ates by taking two columns that constitute both a count (col_n) and a fraction of the total population
(col_pct) and merges them into a single column. What results is a column containing both counts
and their associated percentages (e.g., 12 (23.2%)). The column specified in col_pct is dropped
from the output table.

Usage

cols_merge_n_pct(data, col_n, col_pct, rows = everything(), autohide = TRUE)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
col_n Column to target for counts

<column-targeting expression>// required

The column that contains values for the count component. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

cols_merge_n_pct 73

col_pct Column to target for percentages
<column-targeting expression>// required
The column that contains values for the percentage component. While select
helper functions such as starts_with() and ends_with() can be used for col-
umn targeting, it’s recommended that a single column name be used. This is to
ensure that exactly one column is provided here. This column should be format-
ted such that percentages are displayed (e.g., with fmt_percent()).

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should par-

ticipate in the merging process. The default everything() results in all rows

in columns being formatted. Alternatively, we can supply a vector of row IDs

within c(), a vector of row indices, or a select helper function. Examples of

select helper functions include starts_with(), ends_with(), contains(),

matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

autohide Automatic hiding of the col_pct column
scalar<logical>// default: TRUE
An option to automatically hide the column specified as col_pct. Any columns
with their state changed to hidden will behave the same as before, they just won’t
be displayed in the finalized table.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge(), however, cols_merge_n_pct()
employs the following specialized semantics for NA and zero-value handling:

1. NAs in col_n result in missing values for the merged column (e.g., NA + 10.2% = NA)

2. NAs in col_pct (but not col_n) result in base values only for the merged column (e.g., 13 +
NA = 13)

3. NAs both col_n and col_pct result in missing values for the merged column (e.g., NA + NA =
NA)

4. If a zero (@) value is in col_n then the formatted output will be "@" (i.e., no percentage will
be shown)

Any resulting NA values in the col_n column following the merge operation can be easily formatted
using the sub_missing() function. Separate calls of sub_missing() can be used for the col_n
and col_pct columns for finer control of the replacement values. It is the responsibility of the
user to ensure that values are correct in both the col_n and col_pct columns (this function neither
generates nor recalculates values in either). Formatting of each column can be done independently
in separate fmt_number () and fmt_percent() calls.

This function is part of a set of four column-merging functions. The other three are the gen-
eral cols_merge () function and the specialized cols_merge_uncert() and cols_merge_range()
functions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

74 cols_merge_n_pct

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table that displays the
counts and percentages of the top 3 pizzas sold by pizza category in 2015. The cols_merge_n_pct()
function is used to merge the n and frac columns (and the frac column is formatted using fmt_percent()).

pizzaplace |>

dplyr::group_by(name, type, price) [|>
dplyr::summarize(

n = dplyr::n(Q),

frac = n/nrow(pizzaplace),

.groups = "drop”
) 1>
dplyr::arrange(type, dplyr::desc(n)) |>
dplyr::group_by(type) |>
dplyr::slice_head(n = 3) [>

gt(
rowname_col = "name"”,
groupname_col = "type”
) 1>

fmt_currency(price) |>
fmt_percent(frac) |>
cols_merge_n_pct(
col_n =n,
col_pct = frac
) 1>
cols_label(
n = md("*Nx (%)"),
price = "Price”
) 1>
tab_style(
style = cell_text(font = "monospace”),
locations = cells_stub()
) 1>
tab_stubhead(md(”"Cat. and \nPizza Code")) |[|>
tab_header(title = "Top 3 Pizzas Sold by Category in 2015") |>
tab_options(table.width = px(512))

Function ID

5-17

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_range(), cols_merge_uncert(), cols_merge(),

cols_merge_range 75

cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_range Merge two columns to a value range column

Description

The cols_merge_range() function is a specialized variant of the cols_merge() function. It op-
erates by taking a two columns that constitute a range of values (col_begin and col_end) and
merges them into a single column. What results is a column containing both values separated by a
long dash (e.g., 12.@ 20.0). The column specified in col_end is dropped from the output table.

Usage

cols_merge_range(
data,
col_begin,
col_end,
rows = everything(),
autohide = TRUE,

sep = NULL,
locale = NULL
)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
col_begin Column to target for beginning of range
<column-targeting expression>// required
The column that contains values for the start of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.
col_end Column to target for end of range

<column-targeting expression>// required

The column that contains values for the end of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

76 cols_merge_range

rows Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

autohide Automatic hiding of the col_end column
scalar<logical> // default: TRUE

An option to automatically hide the column specified as col_end. Any columns
with their state changed to hidden will behave the same as before, they just won’t
be displayed in the finalized table.

sep Separator text for ranges
scalar<character> // default: NULL (optional)

The separator text that indicates the values are ranged. If a sep value is not
provided then the range separator specific to the locale provided will be used
(if a locale isn’t specified then an en dash will be used). You can specify the use
of an en dash with "--"; a triple-hyphen sequence ("---") will be transformed
to an em dash. Should you want hyphens to be taken literally, the sep value can
be supplied within the base I() function.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for applying a sep pattern specific
to a locale’s rules. Examples include "en” for English (United States) and " fr"
for French (France). We can use the info_locales() function as a useful ref-
erence for all of the locales that are supported. A locale ID can be also set in the
initial gt () function call (where it would be used automatically by any function
with a locale argument) but a locale value provided here will override that
global locale.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge (), however, cols_merge_range()
employs the following specialized operations for NA handling:
1. NAs in col_begin (but not col_end) result in a display of only

2. NAs in col_end (but not col_begin) result in a display of only the col_begin values only for
the merged column (this is the converse of the previous)

3. NAs both in col_begin and col_end result in missing values for the merged column

cols_merge_uncert 77

Any resulting NA values in the col_begin column following the merge operation can be easily
formatted using the sub_missing() function. Separate calls of sub_missing() can be used for the
col_begin and col_end columns for finer control of the replacement values.

This function is part of a set of four column-merging functions. The other three are the gen-
eral cols_merge () function and the specialized cols_merge_uncert() and cols_merge_n_pct()
functions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

Examples

Let’s use a subset of the gtcars dataset to create a gt table, keeping only the model, mpg_c, and
mpg_h columns. Merge the "mpg*" columns together as a single range column (which is labeled as
MPQG, in italics) using the cols_merge_range() function. After the merging process, the column
label for the mpg_c column is updated with cols_label() to better describe the content.

gtcars |>
dplyr::select(model, starts_with("mpg"”)) [|>
dplyr::slice(1:8) |>
gt |>
cols_merge_range(
col_begin = mpg_c,
col_end = mpg_h
) 1>
cols_label(mpg_c = md("*MPG%x"))

Function ID

5-16

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_uncert Merge columns to a value-with-uncertainty column

78

Description

cols_merge_uncert

The cols_merge_uncert() function is a specialized variant of the cols_merge() function. It
takes as input a base value column (col_val) and either: (1) a single uncertainty column, or (2)
two columns representing lower and upper uncertainty bounds. These columns will be essentially
merged in a single column (that of col_val). What results is a column with values and associ-
ated uncertainties (e.g., 12.0 * @.1), and any columns specified in col_uncert are hidden from
appearing the output table.

Usage

cols_merge_uncert(

data,
col_val,
col_uncert,

rows = everything(),
sep - +/_ n’
autohide = TRUE

Arguments

data

col_val

col_uncert

rows

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt ()
function.

Column to target for base values
<column-targeting expression>// required

The column that contains values for the start of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

Column or columns to target for uncertainty values
<column-targeting expression>// required

The most common case involves supplying a single column with uncertainties;
these values will be combined with those in col_val. Less commonly, the lower
and upper uncertainty bounds may be different. For that case, two columns rep-
resenting the lower and upper uncertainty values away from col_val, respec-
tively, should be provided. While select helper functions such as starts_with()
and ends_with() can be used for column targeting, it’s recommended that one
or two column names be explicitly provided in a vector.

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),

cols_merge_uncert 79

matches(), one_of (), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

sep Separator text for uncertainties
scalar<character>// default: " +/-"

The separator text that contains the uncertainty mark for a single uncertainty
value. The default value of " +/- " indicates that an appropriate plus/minus
mark will be used depending on the output context. Should you want this special
symbol to be taken literally, it can be supplied within the I() function.

autohide Automatic hiding of the col_uncert column(s)
scalar<logical> // default: TRUE
An option to automatically hide any columns specified in col_uncert. Any
columns with their state changed to "hidden’ will behave the same as before,
they just won’t be displayed in the finalized table.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge() in the case where a single column
is supplied for col_uncert, however, cols_merge_uncert() employs the following specialized
semantics for NA handling:

1. NAs in col_val result in missing values for the merged column (e.g., NA + 0.1 = NA)

2. NAs in col_uncert (but not col_val) result in base values only for the merged column (e.g.,
12.0+NA=12.0)

3. NAs both col_val and col_uncert result in missing values for the merged column (e.g., NA +
NA = NA)

Any resulting NA values in the col_val column following the merge operation can be easily for-
matted using the sub_missing() function.

This function is part of a set of four column-merging functions. The other three are the general
cols_merge() function and the specialized cols_merge_range() and cols_merge_n_pct() func-
tions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). We’ll format the num column with the fmt_number () function. Next we merge
the currency and num columns into the currency column; this will contain a base value and an
uncertainty and it’s all done using the cols_merge_uncert() function. After the merging process,
the column label for the currency column is updated with cols_label() to better describe the
content.

exibble |>
dplyr::select(num, currency) |>

80 cols_move

dplyr::slice(1:7) |>
gt |>
fmt_number (
columns = num,
decimals = 3,
use_seps = FALSE
e
cols_merge_uncert(
col_val = currency,
col_uncert = num
) 1>

cols_label(currency = "value + uncert.")

Function ID

5-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_move Move one or more columns

Description

On those occasions where you need to move columns this way or that way, we can make use of the
cols_move() function. While it’s true that the movement of columns can be done upstream of gt,
it is much easier and less error prone to use the function provided here. The movement procedure
here takes one or more specified columns (in the columns argument) and places them to the right of
a different column (the after argument). The ordering of the columns to be moved is preserved,
as is the ordering of all other columns in the table.

Usage

cols_move(data, columns, after)

cols_move

Arguments

data

columns

afte

Details

r

81

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

Columns to target

<column-targeting expression>// default: everything()

The columns for which the moving operations should be applied. Can either be

a series of column names provided in c (), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().
The columns move as a group to a different position. The order of the remaining
columns will be preserved.

Column used as anchor

<column-targeting expression>// required

The column used to anchor the insertion of the moved columns. All of the moved
columns will be placed to the right of this column. While select helper functions
such as starts_with() and ends_with() can be used for column targeting, it’s
recommended that a single column name be used. This is to ensure that exactly
one column is provided here.

The columns supplied in columns must all exist in the table and none of them can be in the after
argument. The after column must also exist and only one column should be provided here. If you
need to place one or more columns at the beginning of the column series, the cols_move_to_start()
function should be used. Similarly, if those columns to move should be placed at the end of the col-
umn series then use cols_move_to_end().

Value

An object of class gt_tbl.

Examples

Use the countrypops dataset to create a gt table. We’ll choose to position the population column
after the country_name column by using the cols_move() function.

countrypops |>

dplyr::select(-contains("code”)) |>
dplyr::filter(country_name == "Japan") |>
dplyr::slice_tail(n = 10) |>

gt I>
cols_move(
columns

)

population,

after = country_name

| >

fmt_integer(columns = population)

82 cols_move_to_end

Function ID
5-9

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_move_to_end Move one or more columns to the end

Description

It’s possible to move a set of columns to the end of the column series, we only need to specify which
columns are to be moved. While this can be done upstream of gt, this function makes to process
much easier and it’s less error prone. The ordering of the columns that are moved to the end is
preserved (same with the ordering of all other columns in the table).

Usage

cols_move_to_end(data, columns)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
The columns for which the moving operations should be applied. Can either be
a series of column names provided in c (), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().
The columns move as a group to the right-most side of the table. The order of
the remaining columns will be preserved.
Details

The columns supplied in columns must all exist in the table. If you need to place one or columns at
the start of the column series, the cols_move_to_start() function should be used. More control
is offered with the cols_move () function, where columns could be placed after a specific column.

cols_move_to_end 83

Value

An object of class gt_tbl.

Examples

For this example, we’ll use a portion of the countrypops dataset to create a simple gt table. Let’s
move the year column, which is the middle column, to the end of the column series with the
cols_move_to_end() function.

countrypops |>
dplyr::select(-contains(”code”)) |>

dplyr::filter(country_name == "Benin”) |>
dplyr::slice_tail(n = 5) |>
gt >

cols_move_to_end(columns = year)

We can also move multiple columns at a time. With the same countrypops-based table, let’s move
both the year and country_name columns to the end of the column series.

countrypops |>
dplyr::select(-contains("code”)) |>

dplyr::filter(country_name == "Benin") |>
dplyr::slice_tail(n = 5) |>
gtO 1>

cols_move_to_end(columns = c(year, country_name))

Function ID

5-11

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(), cols_units(),
cols_width()

84 cols_move_to_start

cols_move_to_start Move one or more columns to the start

Description

We can easily move set of columns to the beginning of the column series and we only need to specify
which columns. It’s possible to do this upstream of gt, however, it is easier with this function and
it presents less possibility for error. The ordering of the columns that are moved to the start is
preserved (same with the ordering of all other columns in the table).

Usage

cols_move_to_start(data, columns)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
The columns for which the moving operations should be applied. Can either be
a series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().
The columns move as a group to the left-most side of the table. The order of the
remaining columns will be preserved.
Details

The columns supplied in columns must all exist in the table. If you need to place one or columns
at the end of the column series, the cols_move_to_end() function should be used. More control is
offered with the cols_move () function, where columns could be placed after a specific column.

Value

An object of class gt_tbl.

Examples

For this example, we’ll use a portion of the countrypops dataset to create a simple gt table. Let’s
move the year column, which is the middle column, to the start of the column series with the
cols_move_to_start() function.

cols_nanoplot 85

countrypops |>
dplyr::select(-contains(”"code”)) |>

dplyr::filter(country_name == "Fiji") |>
dplyr::slice_tail(n = 5) |>
gtO 1>

cols_move_to_start(columns = year)

We can also move multiple columns at a time. With the same countrypops-based table, let’s move
both the year and population columns to the start of the column series.

countrypops |>
dplyr::select(-contains("code”)) |>

dplyr::filter(country_name == "Fiji") |>
dplyr::slice_tail(n = 5) |>
gt >

cols_move_to_start(columns = c(year, population))

Function ID

5-10

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move(), cols_nanoplot(), cols_unhide(), cols_units(),
cols_width()

cols_nanoplot Add a new column of nanoplots, taking input data from selected
columns

Description

Nanoplots are tiny plots you can use in your gt table. They are simple by design, mainly be-
cause there isn’t a lot of space to work with. With that simplicity, however, you do get a set of
very succinct data visualizations that adapt nicely to the amount of data you feed into them. With
cols_nanoplot() you take data from one or more columns as the basic inputs for the nanoplots
and generate a new column containing the plots. The nanoplots are robust against missing values,
and multiple strategies are available for handling missingness.

Nanoplots try to show individual data with reasonably good visibility. Interactivity is included as
a basic feature so one can hover over the data points and vertical guides will display the value as-
cribed to each data point. Because gt knows all about numeric formatting, values will be compactly

86 cols_nanoplot

formatted so as to not take up valuable real estate. If you need to create a nanoplot based on mone-
tary values, that can be handled by providing the currency code to the nanoplot_options() helper
(then hook that up to the options argument). A guide on the left-hand side of the plot area will
appear on hover and display the minimal and maximal y values.

There are three types of nanoplots available: "1ine", "bar"”, "boxplot”. A line plot shows indi-
vidual data points and has smooth connecting lines between them to allow for easier scanning of
values. You can opt for straight-line connections between data points, or, no connections at all (it’s
up to you). You can even eschew the data points and just have a simple line. Regardless of how you
mix and match difference plot layers, the plot area focuses on the domain of the data points with
the goal of showing you the overall trend of the data. The data you feed into a line plot can consist
of a single vector of values (resulting in equally-spaced y values), or, you can supply two vectors
representative of x and y.

A bar plot is built a little bit differently. The focus is on evenly-spaced bars (requiring a single
vector of values) that project from a zero line, clearly showing the difference between positive and
negative values. By default, any type of nanoplot will have basic interactivity. One can hover over
the data points and vertical guides will display values ascribed to each. A guide on the left-hand
side of the plot area will display the minimal and maximal y values on hover.

Every box plot will take the collection of values for a row and construct the plot horizontally. This is
essentially a standard box-and-whisker diagram where outliers are automatically displayed outside
the left and right fences.

While basic customization options are present in the cols_nanoplot(), many more opportunities
for customizing nanoplots on a more granular level are possible with the nanoplot_options()
helper function. That function should be invoked at the options argument of cols_nanoplot().
Through that helper, layers of the nanoplots can be selectively removed and the aesthetics of the
remaining plot components can be modified.

Usage

cols_nanoplot(
data,
columns,
rows = everything(),
plot_type = c("line”, "bar", "boxplot"),
plot_height = "2em”,
missing_vals = c("gap"”, "zero", "remove"),
autoscale = FALSE,
autohide = TRUE,
columns_x_vals = NULL,
reference_line = NULL,
reference_area = NULL,
expand_x = NULL,
expand_y = NULL,
new_col_name = NULL,
new_col_label = NULL,
before = NULL,
after = NULL,
options = NULL

cols_nanoplot 87

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns from which to get data for the dependent variable
<column-targeting expression>// required

The columns which contain the numeric data to be plotted as nanoplots. Can
either be a series of column names provided in c(), a vector of column in-
dices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything(). Data collected from the columns will be concatenated to-
gether in the order of resolution.

rows Rows that should contain nanoplots
<row-targeting expression>// default: everything()

With rows we can specify which rows should contain nanoplots in the new col-
umn. The default everything() results in all rows in columns being format-
ted. Alternatively, we can supply a vector of row IDs within c(), a vector of
row indices, or a select helper function. Examples of select helper functions
include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

plot_type The type of nanoplot to display

singl-kw:[line|bar|boxplot] // default: "1ine"

Nanoplots can either take the form of a line plot (using "1ine"), a bar plot (with
"bar"), or a box plot ("boxplot”). A line plot, by default, contains layers for
a data line, data points, and a data area. Each of these can be deactivated by
using nanoplot_options(). With a bar plot, the always visible layer is that of
the data bars. Furthermore, a line plot can optionally take in x values through
the columns_x_vals argument whereas bar plots and box plots both ignore any
data representing the independent variable.

plot_height The height of the nanoplots
scalar<character> // default: "2em"

The height of the nanoplots. The default here is a sensible value of "2em”. By
way of comparison, this is a far greater height than the default for icons through
fmt_icon() ("1em") and is the same height as images inserted via fmt_image ()
(also having a "2em" height default).

missing_vals Treatment of missing values
singl-kw: [gap|zero|remove] // default: "gap"
If missing values are encountered within the input data, there are three strategies
available for their handling: (1) "gap” will display data gaps at the sites of
missing data, where data lines will have discontinuities; (2) "zero” will replace
NA values with zero values; and (3) "remove” will remove any incoming NA
values.

autoscale Automatically set x- and y-axis scale limits based on data

88

autohide

columns_x_vals

reference_line

reference_area

cols_nanoplot

scalar<logical>// default: FALSE

Using autoscale = TRUE will ensure that the bounds of all nanoplots produced
are based on the limits of data combined from all input rows. This will result in
a shared scale across all of the nanoplots (for y- and x-axis data), which is useful
in those cases where the nanoplot data should be compared across rows.

Automatically hide the columns/columns_x_vals column(s)
scalar<logical> // default: TRUE

An option to automatically hide any columns specified in columns and also
columns_x_vals (if used). Any columns with their state changed to "hidden’
will behave the same as before, they just won’t be displayed in the finalized
table. Should you want to have these “input’ columns be viewable, set autohide
= FALSE.

Columns containing values for the optional x variable

<column-targeting expression>// default: NULL (optional)

We can optionally obtain data for the independent variable (i.e., the x-axis data)

if specifying columns in columns_x_vals. This is only for the "1ine" type of
plot (set via the plot_type argument). We can supply either be a series of col-

umn names provided in c(), a vector of column indices, or a select helper func-

tion. Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything(). Data

collected from the columns will be concatenated together in the order of resolu-

tion.

Add a reference line

scalar<numeric|integer|character> // default: NULL (optional)

A reference line requires a single input to define the line. It could be a static
numeric value, applied to all nanoplots generated. Or, the input can be one of
the following for generating the line from the underlying data: (1) "mean”, (2)
"median”, (3) "min”, (4) "max", (5) "q1", (6) "g3", (7) "first”, or (8) "last".
Add a reference area

vector<numeric|integer|character>|list // default: NULL (optional)

A reference area requires two inputs to define bottom and top boundaries for a
rectangular area. The types of values supplied are the same as those expected for
reference_line, which is either a static numeric value or one of the following
keywords for the generation of the value: (1) "mean”, (2) "median”, (3) "min”",
(4) "max", (5) "q1",(6) "q3", (7) "first”, or (8) "last". Input can either be a
vector or list with two elements.

expand_x, expand_y

new_col_name

Expand plot scale in the x and y directions

vector<numeric|integer> // default: NULL (optional)

Should you need to have plots expand in the x or y direction, provide one or
more values to expand_x or expand_y. Any values provided that are outside of
the range of data provided to the plot should result in a scale expansion.
Column name for the new column containing the plots

scalar<character> // default: NULL (optional)

A single column name in quotation marks. Values will be extracted from this
column and provided to compatible arguments. If not provided the new column
name will be "nanoplots”.

cols_nanoplot 89

new_col_label Column label for the new column containing the plots
scalar<character> // default: NULL (optional)
A single column label. If not supplied then the column label will inherit from
new_col_name (if nothing provided to that argument, the label will be "nanoplots”).

before, after Column used as anchor

<column-targeting expression>// default: NULL (optional)

A single column-resolving expression or column index can be given to either
before or after. The column specifies where the new column containing the
nanoplots should be positioned among the existing columns in the input data
table. While select helper functions such as starts_with() and ends_with()
can be used for column targeting, it’s recommended that a single column name
or index be used. This is to ensure that exactly one column is provided to either
of these arguments (otherwise, the function will be stopped). If nothing is pro-
vided for either argument then the new column will be placed at the end of the
column series.

options Set options for the nanoplots
obj:<nanoplot_options // default: NULL (optional)
By using the nanoplot_options() helper function here, you can alter the lay-
out and styling of the nanoplots in the new column.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values to insert into the nanoplots is done through columns and additionally by rows (if
nothing is provided for rows then entire columns are selected). Aside from declaring column names
in c() (with bare column names or names in quotes) we can use also tidyselect-style expressions.
This can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector.

How to supply data for nanoplots

The input data for nanoplots naturally needs to be numeric and there are two major ways to formu-
late that data: (1) from single values across many columns, and (2) using text-based value streams.

90

cols_nanoplot

It’s pretty easy to rationalize the first, and we may already have wide data in the input data frame
anyway (take a look at the illness and towny datasets for examples of this). There’s one data
value per column so the key thing here is to reference the columns in the correct order. With a select
helper, good column naming, and the columns being in the intended order, this is a snap.

The second option is to use text-based value streams. Sometimes you simply don’t want or don’t
need multiple columns and so a single column with all of the data might be more practical. To make
this work, you’d need to have a set of numerical values separated by some sort of delimiter (could be
a comma, a space, a semicolon, you get the idea). Here’s an example with three numbers, written
three ways: "3.6 -2.441.98", "3.6, -2.44, 1.98", and "3.6;-2.44;1.98". You can include
NA values, not a problem, and here’s an example of that: "6.232 NA 3.7 0.93". Another form of
value stream involves using datetimes in the ISO 8601 form of YYYY-MM-DD HH:MM:SS. These will
be internally converted to numeric values (seconds elapsed since "1970-01-01 00:00:00"). An
example of a datetime-based value stream is: "2012-06-12 08:24:13, 2012-06-12 10:37:08,
2012-06-12 14:03:24".

Value streams can be pretty big if you want them to be, and you don’t have to deal with containing
individual values across multiple columns. For the case where you need to provide two sets of
values (x and y, for line plots with columns and columns_x_vals), have two equivalently sized
value streams in two columns. Value streams can also be concatenated together by referencing
columns having their own separate value streams.

Reference line and reference area

Neither a horizontal reference line nor a reference area is present in the default view but these can
be added by providing valid input values in the reference_line and reference_area arguments.
A reference line can be either be a static numeric value (supply any number to reference_line), or
it can be a keyword that computes the reference line y value using the data values for each nanoplot.
The following keywords can be used:

"mean”: The mean of the data values
"median”: Median of data values

n

min": Minimum value in set of data values
"max": The maximum value

"q1": The first, or lower, quartile of the data values

"q3": The third quartile, otherwise known as the upper quartile

"first": The first data value

® N kWb =

"last": The last data value

The reference area accepts two inputs, and this can be two of the above keywords, a keyword and a
static numeric value, or two numeric values.

Examples

Let’s make some nanoplots with the i11lness dataset. The columns beginning with ’day’ all contain
ordered measurement values, comprising seven individual daily results. Using cols_nanoplot()
we create a new column to hold the nanoplots (with new_col_name = "nanoplots"), referencing
the columns containing the data (with columns = starts_with("day")). It’s also possible to define
a column label here using the new_col_label argument.

cols_nanoplot 91

illness [>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "test") |>

tab_header("Partial summary of daily tests performed on YF patient”) |>
tab_stubhead(label = md("x*Test**")) |>
cols_hide(columns = starts_with("norm”)) |>
fmt_units(columns = units) |>
cols_nanoplot(
columns = starts_with("day"),

new_col_name = "nanoplots”,
new_col_label = md("*Progression*")
) 1>
cols_align(align = "center”, columns = nanoplots) |[>

cols_merge(columns = c(test, units), pattern = "{1} ({2})") |>
tab_footnote(
footnote = "Measurements from Day 3 through to Day 8.",
locations = cells_column_labels(columns = nanoplots)

)

The previous table showed us some line-based nanoplots. We can also make very small bar plots
with cols_nanoplot (). Let’s take the pizzaplace dataset and make a small summary table show-
ing daily pizza sales by type (there are four types). This will be limited to the first ten days of
pizza sales in 2015, so, there will be ten rows in total. We can use plot_type = "bar” to make
bar plots from the daily sales counts in the chicken, classic, supreme, and veggie columns.
Because we know there will always be four bars (one for each type of pizza) we can be a little
creative and apply colors to each of the bars through use of the data_bar_fill_color argument
in nanoplot_options().

pizzaplace |>
dplyr::select(type, date) |>
dplyr::group_by(date, type) |>
dplyr::summarize(sold = dplyr::n(), .groups = "drop") |>
tidyr::pivot_wider(names_from = type, values_from = sold) |[>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "date") |>
tab_header(
title = md("First Ten Days of Pizza Sales in 2015")
) 1>
cols_nanoplot(
columns = c(chicken, classic, supreme, veggie),
plot_type = "bar”,
autohide = FALSE,
new_col_name = "pizzas_sold",
new_col_label = "Sales by Type",
options = nanoplot_options(
show_data_line = FALSE,
show_data_area = FALSE,
data_bar_stroke_color = "transparent”,
data_bar_fill_color = c("brown”, "gold"”, "purple”, "green")

92

cols_nanoplot

)
) 1>
cols_width(pizzas_sold ~ px(150)) |>
cols_align(columns = -date, align = "center"”) |>

fmt_date(columns = date, date_style = "yMMMEd") |>
opt_all_caps()

Now we’ll make another table that contains two columns of nanoplots. Starting from the towny
dataset, we first reduce it down to a subset of columns and rows. All of the columns related to either
population or density will be used as input data for the two nanoplots. Both nanoplots will use a
reference line that is generated from the median of the input data. And by naming the new nanoplot-
laden columns in a similar manner as the input data columns, we can take advantage of select helpers
(e.g., when using tab_spanner()). Many of the input data columns are now redundant because of
the plots, so we’ll elect to hide most of those with cols_hide().

towny |>
dplyr::select(name, starts_with("population"), starts_with("density")) |>
dplyr::filter(population_2021 > 200000) |>
dplyr::arrange(desc(population_2021)) |>
gt |>
fmt_integer(columns = starts_with("population”)) [>
fmt_number (columns = starts_with("density"), decimals = 1) |>
cols_nanoplot(
columns = starts_with("”population”),

reference_line = "median”,
autohide = FALSE,
new_col_name = "population_plot”,
new_col_label = md(”"*xChangex*")

) 1>

cols_nanoplot(
columns = starts_with("density"),
plot_type = "bar”,
autohide = FALSE,

new_col_name = "density_plot”,
new_col_label = md("*Changex*")
) 1>

cols_hide(columns = matches("2001|2006|2011[2016")) |>
tab_spanner(
label = "Population”,
columns = starts_with("”population”)
) 1>
tab_spanner(
label = "Density ({{*persons* km*-23}3})",
columns = starts_with("density")
) 1>
cols_label_with(
columns = -matches("plot"),
fn = function(x) gsub("\\D+", "", x)
) 1>

cols_nanoplot 93

cols_align(align = "center”, columns = matches("plot”)) |>
cols_width(
name ~ px(140),
everything() ~ px(100)
) 1>
opt_horizontal_padding(scale = 2)

The sza dataset can, with just some use of dplyr and tidyr, give us a wide table full of nanoplottable
values. We’ll transform the solar zenith angles to solar altitude angles and create a column of
nanoplots using the newly calculated values. There are a few NA values during periods where the
sun hasn’t risen (usually before 06:30 in the winter months) and those values will be replaced with
0 using missing_vals = "zero". We’ll also elect to create bar plots using the plot_type = "bar”
option. The height of the plots will be bumped up to "2.5em” from the default of "2em"”. Finally,
we will use nanoplot_options() to modify the coloring of the data bars.

sza |>
dplyr::filter(latitude == 20 & tst <= "1200") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>
dplyr::mutate(saa = 90 - sza) |>
dplyr::select(-sza) |>
tidyr::pivot_wider(
names_from = tst,
values_from = saa,
names_sort = TRUE
) 1>
gt(rowname_col = "month”) [|>
tab_header(
title = "Solar Altitude Angles”,
subtitle = "Average values every half hour from 05:30 to 12:00"
) 1>
cols_nanoplot(
columns = matches("0"),
plot_type = "bar”,
missing_vals = "zero",
new_col_name = "saa",
plot_height = "2.5em",
options = nanoplot_options(
data_bar_stroke_color = "GoldenRod",
data_bar_fill_color = "DarkOrange”
)
) 1>
tab_options(
table.width = px(400),
column_labels.hidden = TRUE
) 1>
cols_align(
align = "center”,
columns = everything()

94

cols_nanoplot

) 1>

tab_source_note(
source_note = "The solar altitude angle is the complement to
the solar zenith angle. TMYK."

)

You can use number and time streams as data for nanoplots. Let’s demonstrate how we can make
use of them with some creative transformation of the pizzaplace dataset. A value stream is really
a string with delimited numeric values, like this: "7.24,84.2,14". A value stream can also con-
tain dates and/or datetimes, and here’s an example of that: "2020-06-02 13:05:13,2020-06-02
14:24:05,2020-06-02 18:51:37". Having data in this form can often be more convenient since
different nanoplots might have varying amounts of data (and holding different amounts of data in
a fixed number of columns is cumbersome). There are date and time columns in this dataset and
we’ll use that to get x values denoting high-resolution time instants: the second of the day that a
pizza was sold (this is true pizza analytics). We also have the sell price for a pizza, and that’ll serve
as the y values. The pizzas belong to four different groups (in the type column) and we’ll group
by that and create value streams with paste(..., collapse=",") in the dplyr summarize call.
With two value streams in each row (having the same number of values) we can now make a gt
table with nanoplots.

pizzaplace |>
dplyr::filter(date == "2015-01-01") |>
dplyr::mutate(date_time = paste(date, time)) |>
dplyr::select(type, date_time, price) |>
dplyr::group_by(type) |>
dplyr::summarize(

date_time = paste(date_time, collapse = ","),
sold = paste(price, collapse = ",")

) 1>

gt(rowname_col = "type") |>

tab_header(
title = md("Pizzas sold on **January 1, 2015xx"),
subtitle = "Between the opening hours of 11:30 to 22:30"
) 1>
cols_nanoplot(
columns = sold,
columns_x_vals = date_time,
expand_x = c("2015-01-01 11:30", "2015-01-01 22:30"),

reference_line = "median”,
new_col_name = "pizzas_sold”,
new_col_label = "Pizzas Sold”,

options = nanoplot_options(
show_data_line = FALSE,
show_data_area = FALSE,
currency = "USD”
)
) 1>
cols_width(pizzas_sold ~ px(200)) |>
cols_align(columns = pizzas_sold, align = "center"”) |>

cols_nanoplot 95

opt_all_caps()

Notice that we hid the columns containing the value streams with cols_hide() because, while
useful, they don’t need to be displayed to anybody viewing a table. We have a lot of data points and
a connecting line is not as valuable here. It’s more interesting to see the clusters of the differently
priced pizzas over the entire day. Specifying a currency in nanoplot_options() is a nice touch
since the y values are sale prices in U.S. Dollars (hovering over data points gives correctly formatted
values). Finally, having a reference line based on the median gives pretty useful information. Seems
like customers preferred getting the "chicken”-type pizzas in large size!

Box plots can be generated, and we just need to use plot_type = "boxplot” to make that type
of nanoplot. Using a small portion of the pizzaplace dataset, we will create a simple table that
displays a box plot of pizza sales for a selection of days. By converting the string-time 24-hour-
clock time values to the number of seconds elapsed in a day, we get continuous values that can
be incorporated into each box plot. And, by supplying a function to the y_val_fmt_fn argument
within nanoplot_options(), we can transform the integer seconds values back to clock times for
display on hover.

pizzaplace |>
dplyr::filter(date <= "2015-01-14") |>
dplyr::mutate(time = as.numeric(hms::as_hms(time))) |>

dplyr::summarize(time = paste(time, collapse = ","), .by = date) |>
dplyr::mutate(is_weekend = lubridate::wday(date) %in% 6:7) |>
gt I>

tab_header(title = "Pizza Sales in Early January 2015") [>
fmt_date(columns = date, date_style = 2) [>
cols_nanoplot(

columns = time,

plot_type = "boxplot”,

options = nanoplot_options(y_val_fmt_fn = function(x) hms::as_hms(x))
E
cols_hide(columns = is_weekend) |>
cols_width(everything() ~ px(250)) |>

cols_align(align = "center”, columns = nanoplots) |>
cols_align(align = "left”, columns = date) |>
tab_style(

style = cell_borders(
sides = "left"”, color = "gray"),
locations = cells_body(columns = nanoplots)
) 1>
tab_style_body(
style = cell_fill(color = "#ESFEFE"),
values = TRUE,

targets = "row

) 1>
tab_options(column_labels.hidden = TRUE)

Function ID

5-8

96 cols_unhide

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_unhide(),
cols_units(), cols_width()

cols_unhide Unhide one or more columns

Description

The cols_unhide() function allows us to take one or more hidden columns (usually made so via
the cols_hide() function) and make them visible in the final output table. This may be important
in cases where the user obtains a gt_tbl object with hidden columns and there is motivation to
reveal one or more of those.

Usage

cols_unhide(data, columns)

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
The columns to unhide in the output display table. Can either be a series of col-
umn names provided in c(), a vector of column indices, or a select helper func-
tion. Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of (), num_range(), and everything().
Details

The hiding and unhiding of columns is internally a rendering directive, so, all columns that are *hid-
den’ are still accessible and useful in any expression provided to a rows argument. The cols_unhide()
function quietly changes the visible state of a column (much like the cols_hide() function) and
doesn’t yield warnings or messages when changing the state of already-visible columns.

Value

An object of class gt_tbl.

cols_units 97

Examples

Let’s use a small portion of the countrypops dataset to create a gt table. We’ll hide the country_code_2
and country_code_3 columns with the cols_hide() function.

tab_1 <-
countrypops |>
dplyr::filter(country_name == "Singapore”) |>
dplyr::slice_tail(n = 5) [|>
gt |>

cols_hide(columns = c(country_code_2, country_code_3))
tab_1

If the tab_1 object is provided without the code or source data to regenerate it, and, the user wants
to reveal otherwise hidden columns then the cols_unhide() function becomes useful.

tab_1 |> cols_unhide(columns = country_code_2)

Function ID
5-13

Function Introduced

v0.3.0 (May 12, 2021)

See Also

cols_hide() to perform the inverse operation.

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_units(), cols_width()

cols_units Define units for one or more columns

Description

Column labels can sometimes contain measurement units, and these might range from easy to de-
fine and typeset (e.g., "m/s") to very difficult. Such difficulty can arise from the need to include
subscripts or superscripts, non-ASCII symbols, etc. The cols_units() function tries to make this
task easier by letting you apply text pertaining to units to various columns. This takes advantage of
gt’s specialized units notation (e.g., "J Hz*-1 mol*-1" can be used to generate units for the molar
Planck constant). The notation here provides several conveniences for defining units, letting you
produce the correct formatting no matter what the table output format might be (i.e., HTML, La-
TeX, RTF, etc.). Details pertaining to the units notation can be found in the section entitled How fo
use gt’s units notation.

98 cols_units

Usage
cols_units(.data, ..., .list = list2(...), .units_pattern = NULL)
Arguments

.data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
Column units definitions
<multiple expressions>// required (or, use .list)
Expressions for the assignment of column units for the table columns in . data.
Two-sided formulas (e.g., <LHS> ~ <RHS>) can be used, where the left-hand side
corresponds to selections of columns and the right-hand side evaluates to single-
length values for the units to apply. Column names should be enclosed in c().
Select helpers like starts_with(), ends_with(), contains(), matches(),
one_of (), and everything() can be used in the LHS. Named arguments are
also valid as input for simple mappings of column name to the gt units syntax;
they should be of the form <column name> = <units text>. Subsequent
expressions that operate on the columns assigned previously will result in over-
writing column units defintion values.

.list Alternative to . . .

<list of multiple expressions>// required (or, use ...)

Allows for the use of a list as an input alternative to
.units_pattern Pattern to combine column labels and units

scalar<character>// default: NULL (optional)

An optional pattern to be used for combining column labels with the defined

units. The default pattern is "{13}, {2}", where "{1}" refers to the column

label text and "{23}" is the text related to the associated units. This default

can be modified through the column_labels.units_pattern option found in

tab_options(). Setting a value here will provide an override to the column_labels.units_pattern
default (only for the resolved columns in the invocation of cols_units()).

Value

An object of class gt_tbl.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

* "m/s" and "m / s" both render as "m/s"

* "ms*-1" will appear with the "-1" exponent intact

* "m/s" gives the the same result, as "/<unit>" is equivalent to "<unit>*-1"

cols_units 99

e "E_h" will render an "E" with the "h" subscript
e "t_i*2.5" provides a t with an "i" subscript and a "2.5" exponent
* "m[_0"2]" will use overstriking to set both scripts vertically

e "g/L %C6H1206%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

» Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u” in "ug"”, "um”, "uL”, and "umol” will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

* We can transform shorthand symbol/unit names enclosed in ": " (e.g., " :angstrom: ", " :ohm: ",
etc.) into proper symbols

* Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

* The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "*x"

Examples

Let’s analyze some pizzaplace data with dplyr and then make a gt table. Here we are sepa-
rately defining new column labels with cols_label() and then defining the units (to combine to
those labels) through cols_units(). The default pattern for combination is "{13}, {2}" which is
acceptable here.

pizzaplace |>
dplyr::mutate(month = lubridate::month(date, label = TRUE, abbr = TRUE)) |>
dplyr::group_by(month) |>
dplyr::summarize(
n_sold = dplyr::n(),
rev = sum(price)
) 1>
dplyr::mutate(chg = (rev - dplyr::lag(rev)) / dplyr::lag(rev)) |>
dplyr::mutate(month = as.character(month)) |>
gt(rowname_col = "month”) |>
fmt_integer(columns = n_sold) |>
fmt_currency(columns = rev, use_subunits = FALSE) |>
fmt_percent(columns = chg) |>
sub_missing() |>
cols_label(

n_sold = "Number of Pizzas Sold",
rev = "Revenue Generated”,
chg = "Monthly Changes in Revenue”
) 1>
cols_units(
n_sold = "units month*-1",
rev = "USD month*-1",
chg = "% change *mx/*mx"
) 1>

cols_width(

100

cols_units

stub() ~ px(40),
everything() ~ px(200)

)

The sza dataset has a wealth of information and here we’ll generate a smaller table that contains
the average solar zenith angles at noon for different months and at different northern latitudes. The
column labels are numbers representing the latitudes and it’s convenient to apply units of *degrees
north’ to each of them with cols_units(). The extra thing we wanted to do here was to ensure
that the units are placed directly after the column labels, and we do that with .units_pattern =
"{13{23}". This append the units ("{23}") right to the column label ("{13}").

sza |>

dplyr:
dplyr:
dplyr:
tidyr:

:filter(tst == "1200") |>
:select(-tst) |>
:arrange(desc(latitude)) |>
:pivot_wider(

names_from = latitude,
values_from = sza

) 1>
gt(rowname_col = "month”) |>
cols_units(

everything() ~ ":degree:N",

.units_pattern = "{1}{2}"

) 1>

tab_spanner(
label = "Solar Zenith Angle”,
columns = everything()

) 1>

text_transform(
fn = toupper,
locations = cells_stub()

) 1>

tab_style(

style

= cell_text(align = "right"),

locations = cells_stub()

Taking a portion of the towny dataset, let’s use spanners to describe what’s in the columns and
use only measurement units for the column labels. The columns labels that have to do with pop-
ulation and density information will be replaced with units defined in cols_units(). We’ll use
a .units_pattern value of "{23}", which means that only the units will be present (the "{13}",
representing the column label text, is omitted). Spanners added through several invocations of
tab_spanner () will declare what the last four columns contain.

towny |>

dplyr::select(
name, land_area_km2,
ends_with("2016"), ends_with("2021")

cols_units 101

) 1>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "name") |>
tab_stubhead(label = "City") [>
fmt_integer() |>
cols_label(
land_area_km2 ~ "Area, {{km*2}}",
starts_with("population”) ~ "",
starts_with("density"”) ~ ""
) 1>
cols_units(
starts_with("population”) ~ "*pplx",
starts_with("density"”) ~ "xpplx km*-2",
.units_pattern = "{2}"
) 1>
tab_spanner(
label = "Population”,
columns = starts_with("population”),
gather = FALSE
) 1>
tab_spanner(
label = "Density”,
columns = starts_with("density"),
gather = FALSE
) 1>
tab_spanner(
label = "2016",
columns = ends_with("2016"),
gather = FALSE
) 1>
tab_spanner(
label = "2021",
columns = ends_with("2021"),
gather = FALSE
E
tab_style(
style = cell_text(align = "center"),
locations = cells_column_labels(
c(starts_with("population”), starts_with("density"))
)
) 1>
cols_width(everything() ~ px(120)) |>
opt_horizontal_padding(scale = 3)

Function ID

5-6

102 cols_width

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_width()

cols_width Set the widths of columns

Description

Manual specifications of column widths can be performed using the cols_width() function. We
choose which columns get specific widths. This can be in units of pixels (easily set by use of
the px () helper function), or, as percentages (where the pct() helper function is useful). Width
assignments are supplied in . .. through two-sided formulas, where the left-hand side defines the
target columns and the right-hand side is a single dimension.

Usage
cols_width(.data, ..., .list = list2(...))

Arguments

.data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

Column width assignments

<multiple expressions>// required (or, use .list)

Expressions for the assignment of column widths for the table columns in . data.
Two-sided formulas (e.g, <LHS> ~ <RHS>) can be used, where the left-hand
side corresponds to selections of columns and the right-hand side evaluates to
single-length character values in the form {##3}px (i.e., pixel dimensions); the
px () helper function is best used for this purpose. Column names should be en-
closed in c(). The column-based select helpers starts_with(), ends_with(),
contains(), matches(), one_of (), and everything() can be used in the
LHS. Subsequent expressions that operate on the columns assigned previously
will result in overwriting column width values (both in the same cols_width()
call and across separate calls). All other columns can be assigned a default width
value by using everything() on the left-hand side.

.list Alternative to . . .
<list of multiple expressions>// required (or, use ...)
Allows for the use of a list as an input alternative to

cols_width 103

Details

Column widths can be set as absolute or relative values (with px and percentage values). Those
columns not specified are treated as having variable width. The sizing behavior for column widths
depends on the combination of value types, and, whether a table width has been set (which could, it-
self, be expressed as an absolute or relative value). Widths for the table and its container can be indi-
vidually modified with the table.width and container.width arguments within tab_options()).

Value

An object of class gt_tbl.

Examples

Use select columns from the exibble dataset to create a gt table. We can specify the widths of
columns with cols_width(). This is done with named arguments in ..., specifying the exact
widths for table columns (using everything() at the end will capture all remaining columns).

exibble |>

dplyr::select(
num, char, date,
datetime, row

e

gt |>

cols_width(
num ~ px(150),
ends_with("r") ~ px(100),
starts_with("date”) ~ px(200),
everything() ~ px(60)

Function ID

5-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_units()

104 constants

constants The fundamental physical constants

Description

This dataset contains values for over 300 basic fundamental constants in nature. The values orig-
inate from the 2018 adjustment which is based on the latest relevant precision measurements and
improvements of theoretical calculations. Such work has been carried out under the authority of the
Task Group on Fundamental Constants (TGFC) of the Committee on Data of the International Sci-
ence Council (CODATA). These updated values became available on May 20, 2019. They are pub-
lished at http://physics.nist.gov/constants, a website of the Fundamental Constants Data
Center of the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland,
USA.

Usage

constants

Format
A tibble with 354 rows and 4 variables:

name The name of the constant.
value The value of the constant.

uncert The uncertainty associated with the value. If NA then the value is seen as an ’exact’ value
(e.g., an electron volt has the exact value of 1.602 176 634 e-19 J).

sf_value,sf_uncert The number of significant figures associated with the value and any uncertainty
value.

units The units associated with the constant.

Examples

Here is a glimpse at the data available in constants.

dplyr::glimpse(constants)

#> Rows: 354

#> Columns: 6

#> $ name <chr> "alpha particle-electron mass ratio”, "alpha particle mass”,~
#> $ value <dbl> 7.294300e+03, 6.644657e-27, 5.971920e-10, 3.727379e+03, 4.00~
#> $ uncert <dbl> 2.4e-07, 2.0e-36, 1.8e-19, 1.1e-06, 6.3e-11, 1.2e-12, 2.2e-1~
#> $ sf_value <dbl> 12, 11, 11, 11, 13, 11, 12, 13, 9, 12, 12, 11, 11, 11, 12, 1~
#> $ sf_uncert <dbl> 2, 2, 2, 2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,~
#> $ units <chr> NA, "kg", "J", "MeV", "u", "kg mol*-1", NA, NA, "m", "kg", "~

Dataset ID and Badge
DATA-9

http://physics.nist.gov/constants

countrypops 105

Dataset Introduced

v0.10.0 (October 7, 2023)

See Also

Other datasets: countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

countrypops Yearly populations of countries from 1960 to 2022

Description

A dataset that presents yearly, total populations of countries. Total population is based on counts
of all residents regardless of legal status or citizenship. Country identifiers include the English-
language country names, and the 2- and 3-letter ISO 3166-1 country codes. Each row contains a
population value for a given year (from 1960 to 2022). Any NA values for populations indicate
the non-existence of the entity during that year.

Usage

countrypops

Format

A tibble with 13,545 rows and 5 variables:

country_name The name of the country.
country_code_2, country_code_3 The 2- and 3-letter ISO 3166-1 country codes.
year The year for the population estimate.

population The population estimate, midway through the year.

Examples

Here is a glimpse at the data available in countrypops.

dplyr::glimpse(countrypops)

#> Rows: 13,545

#> Columns: 5

#> $ country_name <chr> "Aruba”, "Aruba”, "Aruba”, "Aruba”, "Aruba”, "Aruba”, "~
#> $ country_code_2 <chr> "AW", "AW", "AW", "AW", "AW", "AW", "AW", "AW", "AW", "~
#> $ country_code_3 <chr> "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW",6~
#> $ year <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1~
#> $ population <int> 54608, 55811, 56682, 57475, 58178, 58782, 59291, 59522,~

106 currency

Dataset ID and Badge

DATA-1

Dataset Introduced

v0.2.0.5 (March 31, 2020)

Source

https://data.worldbank.org/indicator/SP.POP.TOTL

See Also

Other datasets: constants, exibble, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

currency Supply a custom currency symbol to fmt_currency ()

Description

The currency() helper function makes it easy to specify a context-aware currency symbol to
currency argument of fmt_currency(). Since gt can render tables to several output formats,
currency () allows for different variations of the custom symbol based on the output context (which
are html, latex, rtf, and default). The number of decimal places for the custom currency defaults
to 2, however, a value set for the decimals argument of fmt_currency () will take precedence.

Usage
currency(..., .list = 1list2(...))
Arguments
Currency symbols by output context
<named arguments> // required (or, use .1list)
One or more named arguments using output contexts as the names and currency
symbol text as the values.
.list Alternative to . . .

<list of multiple expressions>// required (or, use ...)

Allows for the use of a list as an input alternative to

https://data.worldbank.org/indicator/SP.POP.TOTL

currency 107

Details

We can use any combination of html, latex, rtf, and default as named arguments for the cur-
rency text in each of the namesake contexts. The default value is used as a fallback when there
doesn’t exist a dedicated currency text value for a particular output context (e.g., when a table is
rendered as HTML and we use currency(latex = "LTC", default = "1tc"), the currency sym-
bol will be "1tc". For convenience, if we provide only a single string without a name, it will
be taken as the default (i.e., currency(”1tc") is equivalent to currency(default = "1tc")).
However, if we were to specify currency strings for multiple output contexts, names are required
each and every context.

Value

A list object of class gt_currency.

Examples

Use the exibble dataset to create a gt table. Within the fmt_currency() call, we’ll format the
currency column to have currency values in guilder (a defunct Dutch currency). We can register
this custom currency with the currency() helper function, supplying the "ƒ " HTML entity
for html outputs and using "f" for any other type of gt output.

exibble |>
gt >
fmt_currency(
columns = currency,
currency = currency(
html = "ƒ",
default = "f"
),

decimals = 2

Function ID

8-6

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(),cells_title(),default_fonts(),define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

108

data_color

data_color Perform data cell colorization

Description

It’s possible to add color to data cells according to their values with the data_color() function.
There is a multitude of ways to perform data cell colorizing here:

targeting: we can constrain which columns and rows should receive the colorization treatment
(through the columns and rows arguments)

direction: ordinarily we perform coloring in a column-wise fashion but there is the option to
color data cells in a row-wise manner (this is controlled by the direction argument)

coloring method: data_color() automatically computes colors based on the column type
but you can choose a specific methodology (e.g., with bins or quantiles) and the function will
generate colors accordingly; the method argument controls this through keywords and other
arguments act as inputs to specific methods

coloring function: a custom function can be supplied to the fn argument for finer control over
color evaluation with data; the color mapping col_x() functions in the scales package can be
used here or any function you might want to define

color palettes: with palette we could supply a vector of colors, a virdis or RColorBrewer
palette name, or, a palette from the paletteer package

value domain: we can either opt to have the range of values define the domain, or, specify one
explicitly with the domain argument

indirect color application: it’s possible to compute colors from one column and apply them to
one or more different columns; we can even perform a color mapping from multiple source
columns to the same multiple of target columns

color application: with the apply_to argument, there’s an option for whether to apply the
cell-specific colors to the cell background or the cell text

text autocoloring: if colorizing the cell background, data_color () will automatically recolor
the foreground text to provide the best contrast (can be deactivated with autocolor_text =
FALSE)

The data_color () function won’t fail with the default options used, but that won’t typically pro-
vide you the type of colorization you really need. You can however safely iterate through a collec-
tion of different options without running into too many errors.

Usage

data_color(
data,
columns = everything(),
rows = everything(),
direction = c("column”, "row"),
target_columns = NULL,
method = c("auto”, "numeric”, "bin", "quantile"”, "factor”),

data_color 109

palette = NULL,

domain = NULL,

bins = 8,

quantiles = 4,

levels = NULL,

ordered = FALSE,

na_color = NULL,

alpha = NULL,

reverse = FALSE,

fn = NULL,

apply_to = c("fill", "text"),
autocolor_text = TRUE,
contrast_algo = c("apca”, "wcag"),
colors = NULL

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns to target
<column-targeting expression>// default: everything()
The columns to which cell data color operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should form a

constraint for cell data color operations. The default everything() results in all

rows in columns being formatted. Alternatively, we can supply a vector of row

IDs within c(), a vector of row indices, or a select helper function. Examples

of select helper functions include starts_with(), ends_with(), contains(),

matches(), one_of (), num_range(), and everything(). We can also use ex-

pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

direction Color computation direction
singl-kw:[column|row] // default: "column"
Should the color computations be performed column-wise or row-wise? By
default this is set with the "column” keyword and colors will be applied down
columns. The alternative option with the "row” keyword ensures that the color
mapping works across rows.

target_columns Indirect columns to target
<row-targeting expression>// default: NULL optional

For indirect column coloring treatments, we can supply the columns that will
receive the styling. The necessary precondition is that we must use direction

110

method

palette

domain

bins

quantiles

levels

ordered

data_color

= "column”. If columns resolves to a single column then we may use one or
more columns in target_columns. If on the other hand columns resolves to
multiple columns, then target_columns must resolve to the same multiple.

Color computation method
singl-kw:[auto|numeric|bin|quantile|factor] // default: "auto”

A method for computing color based on the data within body cells. Can be
"auto" (the default), "numeric”, "bin", "quantile”, or "factor”. The "auto”
method will automatically choose the "numeric” method for numerical input

data or the "factor"” method for any non-numeric inputs.

Color palette

vector<character> // default: NULL (optional)

A vector of color names, the name of an RColorBrewer palette, the name of a
viridis palette, or a discrete palette accessible from the paletteer package using
the <package>: :<palette> syntax (e.g., "wesanderson: :IsleofDogs1"). If
providing a vector of colors as a palette, each color value provided must either be
a color name (Only R/X11 color names or CSS 3.0 color names) or a hexadec-
imal string in the form of "#RRGGBB" or "#RRGGBBAA". If nothing is provided
here, the default R color palette is used (i.e., the colors from palette()).

Value domain
vector<numeric|integer|character>// default: NULL (optional)

The possible values that can be mapped. For the "numeric” and "bin" methods,
this can be a numeric range specified with a length of two vector. Representative
numeric data is needed for the "quantile” method and categorical data must
be used for the "factor” method. If NULL (the default value), the values in each
column or row (depending on direction) value will represent the domain.

Specification of bin number
scalar<numeric|integer>// default: 8

For method = "bin" this can either be a numeric vector of two or more unique
cut points, or, a single numeric value (greater than or equal to 2) giving the
number of intervals into which the domain values are to be cut. By default, this
is 8.

Specification of quantile number

scalar<numeric|integer>// default: 4

For method = "quantile” this is the number of equal-size quantiles to use. By
default, this is set to 4.

Specification of factor levels
vector<character> // default: NULL (optional)

For method = "factor” this allows for an alternate way of specifying levels. If
anything is provided here then any value supplied to domain will be ignored.
This should be a character vector of unique values.

Use an ordered factor

scalar<logical>// default: FALSE

For method = "factor"”, setting this to TRUE means that the vector supplied to
domain will be treated as being in the correct order if that vector needs to be
coerced to a factor. By default, this is FALSE.

data_color

na_color

alpha

reverse

fn

apply_to

111

Default color for NA values
scalar<character> // default: NULL (optional)

The color to use for missing values. By default (with na_color = NULL), the
color gray ("#808080") will be used. This option has no effect if providing a
color-mapping function to fn.

Transparency value
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)

An optional, fixed alpha transparency value that will be applied to all color
palette values (regardless of whether a color palette was directly supplied in
palette or generated through a color mapping function via fn).

Reverse order of computed colors
scalar<logical>// default: FALSE

Should the colors computed operate in the reverse order? If TRUE then colors
that normally change from red to blue will change in the opposite direction.

Color-mapping function
function // default: NULL (optional)

A color-mapping function. The function should be able to take a vector of data
values as input and return an equal-length vector of color values. The col_*()

functions provided in the scales package (i.e., scales: :col_numeric(), scales
and scales::col_factor()) can be invoked here with options, as those func-

tions themselves return a color-mapping function.

How to apply color
singl-kw: [fill|text] // default: "fill"

Which style element should the colors be applied to? Options include the cell
background (the default, given as "fill") or the cell text ("text").

autocolor_text Automatically recolor text

contrast_algo

colors

Value

scalar<logical> // default: TRUE

An option to let gt modify the coloring of text within cells undergoing back-
ground coloring. This will result in better text-to-background color contrast. By
default, this is set to TRUE.

Color contrast algorithm choice
singl-kw: [apca|wcag] // default: "apca”

The color contrast algorithm to use when autocolor_text = TRUE. By default
this is "apca” (Accessible Perceptual Contrast Algorithm) and the alternative to
this is "wcag"” (Web Content Accessibility Guidelines).

Deprecated Color mapping function

function // default: NULL (optional)

This argument is deprecated. Use the fn argument instead to provide a scales-
based color-mapping function. If providing a palette, use the palette argument.

An object of class gt_tbl.

::col_bin(),

112 data_color

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that are
incompatible with a given coloring function/method will be skipped over. One strategy is to color
the bulk of cell values with one formatting function and then constrain the columns for later passes
(the last coloring done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Color computation methods

The data_color() function offers four distinct methods for computing color based on cell data
values. They are set by the method argument and the options go by the keywords "numeric”,
"bin”, "quantile”, and "factor”. There are other arguments in data_color() that variously
support these methods (e.g., bins for the "bin” method, etc.). Here we’ll go through each method,
providing a short explanation of what each one does and which options are available.

"numeric”:

The "numeric” method provides a simple linear mapping from continuous numeric data to an
interpolated palette. Internally, this uses the scales::col_numeric() function. This method
is suited for numeric data cell values and can make use of a supplied domain value, in the form of
a two-element numeric vector describing the range of values, if provided.

"bin":

The "bin" method provides a mapping of continuous numeric data to value-based bins. Inter-
nally, this uses the scales::col_bin() function which itself uses base::cut(). As with the
"numeric” method, "bin"” is meant for numeric data cell values. The use of a domain value
is supported with this method. The bins argument in data_color() is specific to this method,
offering the ability to: (1) specify the number of bins, or (2) provide a vector of cut points.

"quantile":

data_color 113

The "quantile” method provides a mapping of continuous numeric data to quantiles. Internally,
this uses the scales::col_quantile() function which itself uses stats::quantile(). Input
data cell values should be numeric, as with the "numeric” and "bin" methods. A numeric domain
value is supported with this method. The quantiles argument in data_color() controls the
number of equal-size quantiles to use.

"factor":

The "factor” method provides a mapping of factors to colors. With discrete palettes, color
interpolation is used when the number of factors does not match the number of colors in the
palette. Internally, this uses the scales::col_factor() function. Input data cell values can
be of any type (i.e., factor, character, numeric values, and more are supported). The optional
input to domain should take the form of categorical data. The levels and ordered arguments in
data_color() support this method.

Color palette access from RColorBrewer and viridis

All palettes from the RColorBrewer package and select palettes from viridis can be accessed by
providing the palette name in palette. RColorBrewer has 35 available palettes:

Palette Name Colors Category Colorblind Friendly

1 "BrBG" 11 Diverging Yes
2 "PiYG" 11 Diverging Yes
3 "PRGn" 11 Diverging Yes
4 "PuOr” 11 Diverging Yes
5 "RdBu"” 11 Diverging Yes
6 "RdY1Bu” 11 Diverging Yes
7 "RdGy" 11 Diverging No

8 "RdY1Gn" 11 Diverging No

9 "Spectral” 11 Diverging No

10 "Dark2" 8 Qualitative Yes
11 "Paired” 12 Qualitative Yes
12 "Set1” 9 Qualitative No

13 "Set2"” 8 Qualitative Yes
14 "Set3” 12 Qualitative No

15 "Accent” 8 Qualitative No

16 "Pastell” 9 Qualitative No

17 "Pastel2” 8 Qualitative No

18 "Blues” 9 Sequential ~ Yes
19 "BuGn” 9 Sequential ~ Yes
20 "BuPu” 9 Sequential ~ Yes
21 "GnBu" 9 Sequential Yes
22 "Greens” 9 Sequential ~ Yes
23 "Greys” 9 Sequential ~ Yes
24 "Oranges" 9 Sequential ~ Yes
25 "OrRd" 9 Sequential Yes
26 "PuBu" 9 Sequential Yes
27 "PuBuGn” 9 Sequential ~ Yes
28 "PuRd" 9 Sequential ~ Yes
29 "Purples” 9 Sequential Yes

114 data_color

30 "RdPu” 9 Sequential Yes
31 "Reds” 9 Sequential Yes
32 "YlGn" 9 Sequential ~ Yes
33 "Y1GnBu" 9 Sequential ~ Yes
34 "Y10rBr" 9 Sequential ~ Yes
35 "Y1OrRd" 9 Sequential ~ Yes

non non

We can access four colorblind-friendly palettes from viridis: "viridis”, "magma”,
"inferno"”. Simply provide any one of those names to palette.

plasma”, and

Color palette access from paletteer

Choosing the right color palette can often be difficult because it’s both hard to discover suitable
palettes and then obtain the vector of colors. To make this process easier we can elect to use
the paletteer package, which makes a wide range of palettes from various R packages readily
available. The info_paletteer() information table allows us to easily inspect all of the discrete
color palettes available in paletteer. We only then need to specify the palette and associated package
using the <package>: :<palette>syntax (e.g., "tvthemes: :Stannis") for the palette argument.

A requirement for using paletteer in this way is that the package must be installed (gt doesn’t
import paletteer currently). This can be easily done with install.packages("paletteer”). Not
having this package installed with result in an error when using the <package>: : <palette> syntax
in palette.

Foreground text and background fill

By default, gt will choose the ideal text color (for maximal contrast) when colorizing the back-
ground of data cells. This option can be disabled by setting autocolor_text to FALSE. The
contrast_algo argument lets us choose between two color contrast algorithms: "apca” (Accessi-
ble Perceptual Contrast Algorithm, the default algo) and "wcag” (Web Content Accessibility Guide-
lines).

Examples

The data_color() function can be used without any supplied arguments to colorize a gt table.
Let’s do this with the exibble dataset:

exibble |>

gt >
data_color()

What’s happened is that data_color () applies background colors to all cells of every column with
the default palette in R (accessed through palette()). The default method for applying color is
"auto”, where numeric values will use the "numeric” method and character or factor values will
use the "factor” method. The text color undergoes an automatic modification that maximizes
contrast (since autocolor_text is TRUE by default).

You can use any of the available method keywords and gt will only apply color to the compatible
values. Let’s use the "numeric” method and supply palette values of "red” and "green”.

data_color 115

exibble |>
gt |>
data_color(
method = "numeric”,
palette = c("red”, "green")

)

With those options in place we see that only the numeric columns num and currency received color
treatments. Moreover, the palette colors were mapped to the lower and upper limits of the data in
each column; interpolated colors were used for the values in between the numeric limits of the two
columns.

We can constrain the cells to which coloring will be applied with the columns and rows arguments.
Further to this, we can manually set the limits of the data with the domain argument (which is
preferable in most cases). Here, the domain will be set as domain = c(@, 50).

exibble |>

gt 1>

data_color(
columns = currency,
rows = currency < 50,
method = "numeric”,
palette = c("red"”, "green"),
domain = c(0, 50)

We can use any of the palettes available in the RColorBrewer and viridis packages. Let’s make a
new gt table from a subset of the countrypops dataset. Then, through data_color (), we’ll apply
coloring to the population column with the "numeric” method, use a domain between 2.5 and 3.4
million, and specify palette = "viridis”.

countrypops |>

dplyr::filter(country_name == "Bangladesh") |>
dplyr::select(-contains("code”)) |>
dplyr::slice_tail(n = 10) |>
gtO) |>
data_color(

columns = population,

method = "numeric”,

palette = "viridis",

domain = c(150E6, 170E6),

reverse = TRUE

We can alternatively use the fn argument for supplying the scales-based function scales: :col_numeric().
That function call will itself return a function (which is what the fn argument actually requires) that

takes a vector of numeric values and returns color values. Here is an alternate version of the code

that returns the same table as in the previous example.

116 data_color

countrypops |>
dplyr::filter(country_name == "Bangladesh") |>
dplyr::select(-contains("code")) |>
dplyr::slice_tail(n = 10) |>
gt 1>
data_color(
columns = population,
fn = scales::col_numeric(
palette = "viridis”,
domain = c(150QE6, 170QE6),
reverse = TRUE

Using your own function in fn can be very useful if you want to make use of specialized argu-
ments in the scales col_x() functions. You could even supply your own specialized function for
performing complex colorizing treatments!

The data_color() function has a way to apply colorization indirectly to other columns. That is,
you can apply colors to a column different from the one used to generate those specific colors. The
trick is to use the target_columns argument. Let’s do this with a more complete countrypops-
based table example.

countrypops |>

dplyr::filter(country_code_3 %in% c("FRA", "GBR")) |>
dplyr::filter(year %% 10 == @) |>
dplyr::select(-contains("code”)) |>
dplyr::mutate(color = "") |>
gt(groupname_col = "country_name”) |>
fmt_integer(columns = population) [>
data_color(

columns = population,

target_columns = color,

method = "numeric”,

palette = "viridis",

domain = c(4E7, 7E7)
) 1>
cols_label(

year = ""

population = "Population”,

color = ""
) 1>
opt_vertical_padding(scale = 0.65)

When specifying a single column in columns we can use as many target_columns values as we
want. Let’s make another countrypops-based table where we map the generated colors from the
year column to all columns in the table. This time, the palette used is "inferno” (also from the
viridis package).

data_color 117

countrypops |>
dplyr::filter(country_code_3 %in% c("FRA", "GBR", "ITA")) |>
dplyr::select(-contains("code")) |>
dplyr::filter(year %% 5 == @) |>
tidyr::pivot_wider(

names_from = "country_name",
values_from = "population”

) 1>

gt |>

fmt_integer(columns = c(everything(), -year)) |>
cols_width(
year ~ px(80),
everything() ~ px(160)
) 1>
opt_all_caps() |>
opt_vertical_padding(scale = 0.75) |>
opt_horizontal_padding(scale = 3) |>
data_color(
columns = year,
target_columns = everything(),
palette = "inferno”
) 1>
tab_options(
table_body.hlines.style = "none”,
column_labels.border.top.color = "black”,
column_labels.border.bottom.color = "black”,
table_body.border.bottom.color = "black”

)

Now, it’s time to use pizzaplace to create a gt table. The color palette to be used is the "ggsci: :red_material”
one (it’s in the ggsci R package but also obtainable from the the paletteer package). Colorization

will be applied to the to the sold and income columns. We don’t have to specify those in columns

because those are the only columns in the table. Also, the domain is not set here. We’ll use the

bounds of the available data in each column.

pizzaplace |>

dplyr::group_by(type, size) |>
dplyr::summarize(

sold = dplyr::n(),

income = sum(price),

.groups = "drop_last”
) 1>
dplyr::group_by(type) |>
dplyr::mutate(f_sold = sold / sum(sold)) |>
dplyr::mutate(size = factor(

size, levels = c("S", "M", "L", "XL", "XXL"))
) 1>
dplyr::arrange(type, size) |>
gt(

118 data_color

rowname_col = "size",
groupname_col = "type”
) 1>

fmt_percent(
columns = f_sold,
decimals = 1
e
cols_merge(
columns = c(size, f_sold),
pattern = "{1} ({2})"
) 1>
cols_align(align = "left"”, columns = stub()) |>
data_color(
method = "numeric”,
palette = "ggsci::red_material”

)

Colorization can occur in a row-wise manner. The key to making that happen is by using direction
="row". Let’s use the sza dataset to make a gt table. Then, color will be applied to values across
each 'month’ of data in that table. This is useful when not setting a domain as the bounds of each
row will be captured, coloring each cell with values relative to the range. The palette is "PuOr”
from the RColorBrewer package (only the name here is required).

sza |>
dplyr::filter(latitude == 20 & tst <= "1200") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>
tidyr::spread(key = "tst"”, value = sza) |>

gt(rowname_col = "month”) |>
sub_missing(missing_text = "") |>
data_color(

direction = "row",

palette = "PuOr”,

na_color = "white”
)

Notice that na_color = "white"” was used, and this avoids the appearance of gray cells for the
missing values (we also removed the "NA" text with sub_missing(), opting for empty strings).

Function ID

3-32

Function Introduced

v0.2.0.5 (March 31, 2020)

default_fonts 119

See Also

Other data formatting functions: fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(), fmt_datetime(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

default_fonts Provide a vector of sensible system fonts for use with gt tables

Description

The vector of fonts given by default_fonts() can be safely used with a gt table rendered as
HTML since the font stack is expected to be available across a wide set of systems. We can always
specify additional fonts to use and place them higher in precedence order, done through prepending
to this vector (i.e., this font stack should be placed after that to act as a set of fallbacks).

This vector of fonts is useful when specifying font values in the cell_text() function (itself
usable in the tab_style() and tab_style_body() functions). If using opt_table_font() (which
also has a font argument) we probably don’t need to specify this vector of fonts since that function
prepends font names (this is handled by its add option, which is TRUE by default).

Usage
default_fonts()

Value

A character vector of font names.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the char
and time columns). Attempting to modify the fonts used for the time column is much safer if
default_fonts() is appended to the end of the font listing in the cell_text() call. What will
happen, since the "Comic Sansa” and "Menloa” fonts shouldn’t exist, is that we’ll get the first
available font from vector of fonts that default_fonts() provides.

exibble |>
dplyr::select(char, time) [>
gt >
tab_style(
style = cell_text(
font = c("Comic Sansa”, "Menloa”, default_fonts())
),

locations = cells_body(columns = time)

120 define_units

Function ID
8-31

Function Introduced

v@.2.2 (August 5, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(),cells_title(), currency(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

define_units Define measurement units with gt’s units notation

Description

The define_units() function is available for working with text in gt’s units notation.

Usage

define_units(units_notation)

Arguments

units_notation Text in specialized units notation
scalar<character> // required

A single string that defines the units (e.g., "m/s") to be used.

Value

An object of class units_definition.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

* "m/s" and "m / s" both render as "m/s"

* "ms*-1" will appear with the "-1" exponent intact

* "m/s" gives the the same result, as "/<unit>" is equivalent to "<unit>*-1"

escape_latex 121

e "E_h" will render an "E" with the "h" subscript
e "t_i*2.5" provides a t with an "i" subscript and a "2.5" exponent
e "m[_0"2]" will use overstriking to set both scripts vertically

o "g/L %C6H1206%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

* Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u” in "ug"”, "um”, "uL”, and "umol” will be converted to the
Greek mu symbol; "degC"” and "degF" will render a degree sign before the temperature unit)

* We can transform shorthand symbol/unit names enclosed in ": " (e.g., " :angstrom: ", " :ohm: ",
etc.) into proper symbols

* Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., " :Alpha:", ":Zeta:", etc.)

* The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "*x"

Function ID
8-9

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html (), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

escape_latex Perform LaTeX escaping

Description

Text may contain several characters with special meanings in LaTeX. The escape_latex() func-
tion will transform a character vector so that it is safe to use within LaTeX tables.

Usage

escape_latex(text)

122 exibble

Arguments
text LaTeX text
vector<character>// required
A character vector containing the text that is to be LaTeX-escaped.
Value

A character vector.

Function ID

8-28

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), from_column(), google_font(), gt_latex_dependencies(), html (), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

exibble A toy example tibble for testing with gt: exibble

Description

This tibble contains data of a few different classes, which makes it well-suited for quick experimen-
tation with the functions in this package. It contains only eight rows with numeric, character, and
factor columns. The last 4 rows contain NA values in the majority of this tibble’s columns (1 miss-
ing value per column). The date, time, and datetime columns are character-based dates/times
in the familiar ISO 8601 format. The row and group columns provide for unique rownames
and two groups (grp_a and grp_b) for experimenting with the gt () function’s rowname_col and
groupname_col arguments.

Usage

exibble

exibble 123

Format

A tibble with 8 rows and 9 variables:

num A numeric column ordered with increasingly larger values.

char A character column composed of names of fruits from a to h.

fetr A factor column with numbers from 1 to 8, written out.

date, time, datetime Character columns with dates, times, and datetimes.
currency A numeric column that is useful for testing currency-based formatting.

row A character column in the format row_X which can be useful for testing with row labels in a
table stub.

group A character column with four grp_a values and four grp_b values which can be useful for
testing tables that contain row groups.

Examples

Here is the entirety of the exibble table.

exibble

#> # A tibble: 8 x 9

#> num char fctr date time datetime currency row group
#> <dbl> <chr> <fct> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 0.111 apricot one 2015-01-15 13:35 2018-01-01~ 50.0 row_1 grp_a
#> 2 2.22 banana two 2015-02-15 14:40 2018-02-02~ 18.0 row_2 grp_a
#> 3 33.3 coconut three 2015-03-15 15:45 2018-03-03~ 1.39 row_3 grp_a
#> 4 444, durian four 2015-04-15 16:50 2018-04-04~ 65100 row_4 grp_a
#> 5 5550 <NA> five 2015-05-15 17:55 2018-05-05~ 1326. row_5 grp_b
#> 6 NA fig six 2015-06-15 <NA> 2018-06-06~ 13.3 row_6 grp_b
#> 7 777000 grapefruit seven <NA> 19:10 2018-07-07~ NA row_7 grp_b
#> 8 8880000 honeydew eight 2015-08-15 20:20 <NA> 0.44 row_8 grp_b

Dataset ID and Badge
DATA-6

Dataset Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other datasets: constants, countrypops, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

124

extract_body

extract_body Extract the table body from a gt object

Description

We can extract the body of a gt table, even at various stages of its rendering, from a gt_tbl object
using the extract_body () function. By default, the data frame returned will have gone through all
of the build stages but we can intercept the table body after a certain build stage. Here are the eight
different build stages and some notes about each:

1.

Usage

"init": the body table is initialized here, entirely with NA values. It’s important to note that
all columns of the are of the character type in this first stage. And all columns remain in the
same order as the input data table.

. "fmt_applied”: Any cell values that have had formatting applied to them are migrated to the

body table. All other cells remain as NA values. Depending on the output type, the formatting
may also be different.

. "sub_applied”: Any cell values that have had substitution functions applied to them (whether

or not they were previously formatted) are migrated to the body table or modified in place (if
formatted). All cells that had neither been formatted nor undergone substitution remain as NA
values.

. "unfmt_included"”: All cells that either didn’t have any formatting or any substitution oper-

ations applied are migrated to the body table. NA values now become the string "NA", so, there
aren’t any true missing values in this body table.

. "cols_merged": The result of column-merging operations (though cols_merge () and related

functions) is materialized here. Columns that were asked to be hidden will be present here (i.e.,
hiding columns doesn’t remove them from the body table).

. "body_reassembled”: Though columns do not move positions rows can move to different

positions, and this is usually due to migration to different row groups. At this stage, rows will
be in the finalized order that is seen in the associated display table.

. "text_transformed”: Various text_x() functions in gt can operate on body cells (now fully

formatted at this stage) and return transformed character values. After this stage, the effects
of those functions are apparent.

. "footnotes_attached”: Footnote marks are attached to body cell values (either on the left

or right of the content). This stage performs said attachment.

extract_body(
data,
build_stage = NULL,
output = c("html”, "latex"”, "rtf”, "word")

)

extract_cells 125

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
build_stage The build stage of the formatted R data frame
scalar<character> // default: NULL (optional)

When a gt undergoes rendering, the body of the table proceeds through several
build stages. Providing a single stage name will yield a data frame that has
been extracted after completed that stage. Here are the build stages in order: (1)
"init", (2) "fmt_applied”, (3) "sub_applied”, (4) "unfmt_included”, (5)
"cols_merged”, (6) "body_reassembled”, (7) "text_transformed”, and (8)
"footnotes_attached”. If not supplying a value for build_stage then the en-
tire build for the table body (i.e., up to and including the "footnotes_attached”
stage) will be performed before returning the data frame.

output Output format
singl-kw:[html|latex|rtf|word] // default: "html"

The output format of the resulting data frame. This can either be "html” (the
default), "latex”, "rtf", or "word".
Value

A data frame or tibble object containing the table body.

Function ID

13-6

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf (), as_word(), extract_cells(),
extract_summary(), gtsave()

extract_cells Extract a vector of formatted cells from a gt object

Description

Get a vector of cell data from a gt_tbl object. The output vector will have cell data formatted in
the same way as the table.

126 extract_cells

Usage

extract_cells(
data,
columns,
rows = everything(),
output = c("auto”, "plain”, "html", "latex", "rtf", "word")

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for extraction. The default everything() results in all rows in
columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of (), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto”
The output format of the resulting character vector. This can either be "auto”
(the default), "plain”, "html"”, "latex”, "rtf", or "word". In Knitr rendering
(i.e., Quarto or R Markdown), the "auto” option will choose the correct output
value

Value

A vector of cell data extracted from a gt table.

Examples
Let’s create a gt table with the exibble dataset to use in the next few examples:

n

gt_tbl <- gt(exibble, rowname_col = "row"”, groupname_col = "group")

We can extract a cell from the table with the extract_cells() function. This is done by providing
a column and a row intersection:

extract_summary 127
extract_cells(gt_tbl, columns = num, row = 1)
[1] "1.111e-01"
Multiple cells can be extracted. Let’s get the first four cells from the char column.
extract_cells(gt_tbl, columns = char, rows = 1:4)

n on

#> [1] "apricot” "banana" "coconut” "durian”

We can format cells and expect that the formatting is fully retained after extraction.

gt_tbl |>
fmt_number (columns = num, decimals = 2) |>
extract_cells(columns = num, rows = 1)

[1]1 "e.11"

Function ID

13-8

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf (), as_word(), extract_body(),
extract_summary(), gtsave()

extract_summary Extract a summary list from a gt object

Description

Get a list of summary row data frames from a gt_tbl object where summary rows were added via
the summary_rows () function. The output data frames contain the group_id and rowname columns,
whereby rowname contains descriptive stub labels for the summary rows.

Usage

extract_summary(data)

128 extract_summary

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
Value

A list of data frames containing summary data.

Examples

Use a modified version of sp500 the dataset to create a gt table with row groups and row labels.
Create summary rows labeled as min, max, and avg for every row group with summary_rows().
Then, extract the summary rows as a list object.

summary_extracted <-
sp500 |>
dplyr::filter(date >= "2015-01-05" & date <="2015-01-30") |>
dplyr::arrange(date) |>
dplyr::mutate(week = paste@("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>

gt(
rowname_col = "date"”,
groupname_col = "week”
) 1>

summary_rows (
groups = everything(),
columns = c(open, high, low, close),

fns = list(
min = ~min(.),
max = ~max(.),
avg = ~mean(.)
),
) 1>

extract_summary()

summary_extracted

#> $summary_df_data_list

#> $summary_df_data_list$we?2

#> # A tibble: 3 x 9

#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Wo2 min min NA 2006. 2030. 1992. 2003. NA
#> 2 W02 max max NA 2063. 2064. 2038. 2062. NA
#> 3 Wo2 avg avg NA 2035. 2049. 2017. 2031. NA
#>

#> $summary_df_data_list$we3s

extract_summary 129

#> # A tibble: 3 x 9
#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Wo3 min min NA 1992. 2018. 1988. 1993. NA
#> 2 Wo3 max max NA 2046. 2057. 2023. 2028. NA
#> 3 Wo3 avg avg NA 2020. 2033. 2000. 2015. NA
#>

#> $summary_df_data_list$wo4

#> # A tibble: 3 x 9

#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Wo4 min min NA 2020. 2029. 2004. 2023. NA
#> 2 Wo4 max max NA 2063. 2065. 2051. 2063. NA
#> 3 Wo4 avg avg NA 2035. 2049. 2023. 2042. NA
#>

#> $summary_df_data_list$wes

#> # A tibble: 3 x 9

#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 We5 min min NA 2002. 2023. 1989. 1995. NA
#> 2 Wo5 max max NA 2050. 2058. 2041. 2057. NA
#> 3 Wo5 avg avg NA 2030. 2039. 2009. 2021. NA

Use the summary list to make a new gt table. The key thing is to use dplyr::bind_rows() and
then pass the tibble to gt ().

summary_extracted |>
unlist(recursive = FALSE) |>
dplyr::bind_rows() |>
gt(groupname_col = "group_id") |>
cols_hide(columns = row_id)

Function ID

13-7

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf (), as_word(), extract_body(),
extract_cells(), gtsave()

130 fmt

fmt Set a column format with a formatter function

Description

The fmt () function provides a way to execute custom formatting functionality with raw data values
in a way that can consider all output contexts.

Along with the columns and rows arguments that provide some precision in targeting data cells, the
fns argument allows you to define one or more functions for manipulating the raw data.

If providing a single function to fns, the recommended format is in the form: fns = function(x)
.. .. This single function will format the targeted data cells the same way regardless of the output
format (e.g., HTML, LaTeX, RTF).

If you require formatting of x that depends on the output format, a list of functions can be provided
for the html, latex, rtf, and default contexts. This can be in the form of fns =1ist(html
= function(x) ..., latex = function(x) ..., default = function(x) ...). In this multiple-
function case, we recommended including the default function as a fallback if all contexts aren’t
provided.

Usage

fmt(data, columns = everything(), rows = everything(), compat = NULL, fns)

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

fmt

131

compat Formatting compatibility
vector<character> // default: NULL (optional)

An optional vector that provides the compatible classes for the formatting. By
default this is NULL.
fns Formatting functions
function|list of functions // required
Either a single formatting function or a named list of functions.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Examples

Use the exibble dataset to create a gt table. Using the fmt () function, we’ll format the numeric
values in the num column with a function supplied to the fns argument. This supplied function will
take values in the column (x), multiply them by 1000, and exclose them in single quotes.

132 fmt_auto

exibble |>
dplyr::select(-row, -group) |>
gt |>
fmt(

columns = num,
fns = function(x) {
pasteo("'", x * 1000, "'")
3
)

Function ID

3-26

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index (), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_units(), fmt_url(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_auto Automatically format column data according to their values

Description

The fmt_auto() function will automatically apply formatting of various types in a way that best
suits the data table provided. The function will attempt to format numbers such that they are con-
densed to an optimal width, either with scientific notation or large-number suffixing. Currency
values are detected by currency codes embedded in the column name and formatted in the correct
way. Although the functionality here is comprehensive it’s still possible to reduce the scope of au-
tomatic formatting with the scope argument and also by choosing a subset of columns and rows to
which the formatting will be applied.

Usage

fmt_auto(
data,
columns = everything(),
rows = everything(),
scope = c("numbers”, "currency"),
lg_num_pref = c("sci", "suf"),

fmt_auto

locale =

Arguments

data

columns

rows

scope

lg_num_pref

locale

Value

133

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

Columns to target
<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Scope of automatic formatting

mult-kw: [numbers|currency] // default: c("numbers”, "currency")

By default, the function will format both "numbers"-type values and "currency"”-
type values though the scope can be reduced to a single type of value to format.

Large-number preference

singl-kw: [sci|suf] // default: "sci”

When large numbers are present, there can be a fixed preference toward how
they are formatted. Choices are scientific notation for very small and very large
values ("sci"), or, the use of suffixed numbers ("suf”, for large values only).

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

134 fmt_auto

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Examples

Use the exibble dataset to create a gt table. Format all of the columns automatically with the
fmt_auto() function.

exibble |>

gt >
fmt_auto()

Let’s now use the countrypops dataset to create another gt table. We’ll again use fmt_auto()
to automatically format all columns but this time the choice will be made to opt for large-number
suffixing instead of scientific notation. This is done by using the 1g_num_pref = "suf" option.

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c(”"CHN", "IND", "USA", "PAK"”, "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == @) |>
tidyr: :spread(year, population) |>
dplyr::arrange(desc(*2020%)) |>

fmmt_bins 135

gt(rowname_col = "country_code_3") |>
fmt_auto(lg_num_pref = "suf")

Function ID

3-25

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_bins Format column data containing bin/interval information

Description

When using the cut () function (or other functions that use it in some way) you get bins that can
look like this: " (0,101", "(1@,15]", "(15,20]", "(20,40]1". This interval notation expresses the
lower and upper limits of each range. The square or round brackets define whether each of the
endpoints are included in the range ([/] for inclusion, (/) for exclusion). Should bins of this sort be
present in a table, the fmt_bins () function can be used to format that syntax to a form that presents
better in a display table. It’s possible to format the values of the intervals with the fmt argument,
and, the separator can be modified with the sep argument.

Usage

fmt_bins(
data,
columns = everything(),
rows = everything(),
sep = "--",
fmt = NULL

136 fmt_bins

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

sep Separator between values
scalar<character>// default: "--"
The separator text that indicates the values are ranged. The default value of "--"
indicates that an en dash will be used for the range separator. Using "---" will
be taken to mean that an em dash should be used. Should you want these special
symbols to be taken literally, they can be supplied within the base I() function.

fmt Formatting expressions
<single expression>// default: NULL (optional)
An optional formatting expression in formula form. If used, the RHS of ~ should
contain a formatting call (e.g., ~ fmt_number (., decimals = 3, use_seps = FALSE).

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_bins() formatting function is compatible with body cells that are of the "character” or
"factor” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This

fmmt_bins 137

can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Formatting expressions for fmt

We can supply a one-sided (RHS only) expression to fmt, and, several can be provided in a list.
The expression uses a formatting function (e.g., fmt_number (), fmt_currency(), etc.) and it must
contain an initial . that stands for the data object. If performing numeric formatting it might look
something like this:

fmt =~ fmt_number(., decimals =1, use_seps = FALSE)

Examples

Use the countrypops dataset to create a gt table. Before even getting to the gt () call, we use
the cut () function in conjunction with the scales: :breaks_log() function to create some highly
customized bins. Consequently each country’s population in the 2021 year is assigned to a bin.
These bins have a characteristic type of formatting that can be used as input to fmt_bins(), and
using that formatting function allows us to customize the presentation of those ranges. For instance,
here we are formatting the left and right values of the ranges with the fmt_integer () function
(using formula syntax).

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::select(country_code_2, population) |>
dplyr::mutate(population_class = cut(
population,
breaks = scales::breaks_log(n = 20)(population)

138 fmt_bins

)
) 1>
dplyr::group_by(population_class) |>
dplyr::summarize(

count = dplyr::nQ),

countries = paste@(country_code_2, collapse = ",")
e
dplyr::arrange(desc(population_class)) |>
gtO 1>
fmt_flag(columns = countries) |>
fmt_bins(

columns = population_class,

fmt = ~ fmt_integer(., suffixing = TRUE)
) 1>
cols_label(

population_class = "Population Range”,

count = "",

countries = "Countries”
E

cols_width(
population_class ~ px(150),
count ~ px(50)
e
tab_style(
style = cell_text(style = "italic"),
locations = cells_body(columns = count)

Function ID

3-17

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_bytes 139

fmt_bytes Format values as bytes

Description

With numeric values in a gt table, we can transform those to values of bytes with human readable
units. The fmt_bytes() function allows for the formatting of byte sizes to either of two common
representations: (1) with decimal units (powers of 1000, examples being "kB" and "MB"), and (2)
with binary units (powers of 1024, examples being "KiB" and "MiB").

It is assumed the input numeric values represent the number of bytes and automatic truncation of
values will occur. The numeric values will be scaled to be in the range of 1 to <1000 and then
decorated with the correct unit symbol according to the standard chosen. For more control over the
formatting of byte sizes, we can use the following options:

* decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

* digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

* pattern: option to use a text pattern for decoration of the formatted values

* locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_bytes(
data,
columns = everything(),
rows = everything(),
standard = c("decimal”, "binary"),
decimals 1,
n_sigfig = NULL,
drop_trailing_zeros = TRUE,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
incl_space = TRUE,
locale = NULL

Arguments

data The gt table data object
obj:<gt_tbl>// required

140

columns

rows

standard

decimals

n_sigfig

fmt_bytes

This is the gt table object that is commonly created through use of the gt ()
function.

Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Standard used to express byte sizes

singl-kw:[decimal |binary] // default: "decimal”

The form of expressing large byte sizes is divided between: (1) decimal units
(powers of 1000; e.g., "kB" and "MB"), and (2) binary units (powers of 1024;
e.g., "KiB” and "MiB").

Number of decimal places

scalar<numeric|integer>(val>=0) // default: 1

This corresponds to the exact number of decimal places to use. A value such as
2.34 can, for example, be formatted with @ decimal places and it would result
in "2". With 4 decimal places, the formatted value becomes "2.3400". The
trailing zeros can be removed with drop_trailing_zeros = TRUE.

Number of significant figures

scalar<numeric|integer>(val>=1) // default: NULL (optional)

A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical>// default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

fmt_bytes

use_seps

pattern

sep_mark

dec_mark

force_sign

incl_space

locale

Value

141

Use digit group separators

scalar<logical> // default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Specification of the formatting pattern

scalar<character> // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

scalar<character>// default: ","

The string to use as a separator between groups of digits. For example, us-

ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: "."

The string to be used as the decimal mark. For example, using dec_mark =
" " with the value 0.152 would result in a formatted value of "@,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive numbers (effectively showing a
sign for all numbers except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign.

Include a space between the value and the units

scalar<logical> // default: TRUE

An option for whether to include a space between the value and the units. The
default is to use a space character for separation.

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_bytes() formatting function is compatible with body cells that are of the "numeric” or
"integer" types. Any other types of body cells are ignored during formatting. This is to say that

142 fmt_bytes

cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_bytes() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* standard

* decimals

* n_sigfig

e drop_trailing_zeros

e drop_trailing_dec_mark

* use_seps

* pattern

e sep_mark

e dec_mark

fmt_bytes 143

e force_sign
* incl_space

e Jocale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use a single column from the exibble dataset and create a simple gt table. We’ll format the num
column to display as byte sizes in the decimal standard through use of the fmt_bytes() function.

exibble |>
dplyr::select(num) |>
gt |>

fmt_bytes()

Let’s create an analogous table again by using the fmt_bytes() function, this time showing byte
sizes as binary values by using standard = "binary"”.

exibble |>
dplyr::select(num) |>
gtO >

fmt_bytes(standard = "binary”)

Function ID
3-12

Function Introduced

v0.3.0 (May 12, 2021)

144 fmt_currency

See Also

The vector-formatting version of this function: vec_fmt_bytes().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_currency Format values as currencies

Description

With numeric values in a gt table, we can perform currency-based formatting with the fmt_currency ()
function. The function supports both automatic formatting with either a three-letter or a numeric
currency code. We can also specify a custom currency that is formatted according to one or more
output contexts with the currency() helper function. We have fine control over the conversion
from numeric values to currency values, where we could take advantage of the following options:

e the currency: providing a currency code or common currency name will procure the correct
currency symbol and number of currency subunits; we could also use the currency () helper
function to specify a custom currency

* currency symbol placement: the currency symbol can be placed before or after the values

* decimals/subunits: choice of the number of decimal places, and a choice of the decimal sym-
bol, and an option on whether to include or exclude the currency subunits (the decimal portion)

* negative values: choice of a negative sign or parentheses for values less than zero

* digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

* scaling: we can choose to scale targeted values by a multiplier value

* large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

* pattern: option to use a text pattern for decoration of the formatted currency values
* locale-based formatting: providing a locale ID will result in currency formatting specific to

the chosen locale; it will also retrieve the locale’s currency if none is explicitly given

We can use the info_currencies() function for a useful reference on all of the possible inputs to
the currency argument.

fmt_currency 145

Usage

fmt_currency(
data,
columns = everything(),
rows = everything(),
currency = NULL,
use_subunits = TRUE,
decimals = NULL,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
accounting = FALSE,
scale_by =1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ")",
dec_mark = ".",
force_sign = FALSE,
placement = "left",
incl_space = FALSE,
system = c("intl"”, "ind"),
locale = NULL

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

currency Currency to use
scalar<character>|obj:<gt_currency> // default: NULL (optional)

146 fmt_currency

The currency to use for the numeric value. This input can be supplied as a 3-
letter currency code (e.g., "USD"” for U.S. Dollars, "EUR" for the Euro currency).
Use info_currencies() to get an information table with all of the valid cur-
rency codes and examples of each. Alternatively, we can provide a common cur-
rency name (e.g., "dollar”, "pound”, "yen", etc.) to simplify the process. Use
info_currencies() with the type == "symbol” option to view an information
table with all of the supported currency symbol names along with examples.

We can also use the currency() helper function to specify a custom currency,
where the string could vary across output contexts. For example, using currency (html
= "ƒ", default = "f") would give us a suitable glyph for the Dutch guilder

in an HTML output table, and it would simply be the letter "f" in all other
output contexts). Please note that decimals will default to 2 when using the
currency () helper function.

If nothing is provided here but a 1ocale value has been set (either in this func-
tion call or as part of the initial gt () call), the currency will be obtained from
that locale. Virtually all locales are linked to a territory that is a country (use
info_locales() for details on all locales used in this package), so, the in-use
(or de facto) currency will be obtained. As the default locale is "en”, the "USD"
currency will be used if neither a 1ocale nor a currency value is given.

use_subunits Show or hide currency subunits
scalar<logical>// default: TRUE

An option for whether the subunits portion of a currency value should be dis-
played. For example, with an input value of 273.81, the default formatting will
produce "$273.81". Removing the subunits (with use_subunits = FALSE) will
give us "$273".

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: NULL (optional)
The decimals values corresponds to the exact number of decimal places to use.
This value is optional as a currency has an intrinsic number of decimal places
(i.e., the subunits). A value such as 2. 34 can, for example, be formatted with @
decimal places and if the currency used is "USD" it would result in "$2". With 4
decimal places, the formatted value becomes "$2.3400".
drop_trailing_dec_mark
Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting. For example,
when use_subunits = FALSE or decimals = @ a formatted value such as "$23"
can be fashioned as "$23." by setting drop_trailing_dec_mark = FALSE.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical>// default: FALSE

fmt_currency

scale_by

suffixing

pattern

sep_mark

dec_mark

147

An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

Scale values by a fixed multiplier
scalar<numeric|integer>// default: 1

All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE

The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.

We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k"”, "M1"”, "Bn", "Tr") replaces "K", "M",
"B",and "T").

Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B”, "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).

Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

If using system="ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping
scalar<character>// default: " ,"

The string to use as a separator between groups of digits. For example, us-

ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a Locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: "."
The string to be used as the decimal mark. For example, using dec_mark =
" " with the value @.152 would result in a formatted value of "@,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

148

force_sign

placement

incl_space

system

locale

Value

fmt_currency

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

Currency symbol placement

singl-kw:[left|right] // default: "left"

The placement of the currency symbol. This can be either be "left” (as in
"$450") or "right" (which yields "450$").

Include a space between the value and the currency symbol
scalar<logical>// default: FALSE

An option for whether to include a space between the value and the currency
symbol. The default is to not introduce a space character.

Numbering system for grouping separators

singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_currency() formatting function is compatible with body cells that are of the "numeric”
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This

fmt_currency 149

can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_currency() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

e currency

* use_subunits

* decimals

e drop_trailing_dec_mark

* use_seps

e accounting

e scale_by

e suffixing

* pattern

* sep_mark

* dec_mark

* force_sign

* placement

e incl_space

e system

150 fmt_currency

e locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a locale ID here means
separator and decimal marks will be correct for the given locale. Should any values be provided
in sep_mark or dec_mark, they will be overridden by the locale’s preferred values. In addition to
number formatting, providing a locale value and not providing a currency allows gt to obtain the
currency code from the locale’s territory.

Note that a 1locale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s make a simple gt table from the exibble dataset. We’ll keep only the num and currency,
columns, then, format those columns using fmt_currency() (with the "JPY" and "GBP" curren-

cies).

exibble |>
dplyr::select(num, currency) |>
gt |>

fmt_currency(
columns = num,
currency = "JPY"

) >

fmt_currency(
columns = currency,
currency = "GBP"

)

Let’s take a single column from exibble (currency) and format it with a currency name (this
differs from the 3-letter currency code). In this case, we’ll use the "euro” currency and set the
placement of the symbol to the right of any value. Additionally, the currency symbol will separated
from the value with a single space character (using incl_space = TRUE).

exibble |>
dplyr::select(currency) |>
gt >

fmt_currency(

fmt_currency 151

currency = "euro”,
placement = "right",
incl_space = TRUE

)

With the pizzaplace dataset, let’s make a summary table that gets the number of "hawaiian”
pizzas sold (and revenue generated) by month. In the gt table, we’ll format only the revenue
column. The currency value is automatically U.S. Dollars when don’t supply either a currency
code or a locale. We’ll also create a grand summary with the grand_summary_rows() function.
Within that summary row, the total revenue needs to be formatted with fmt_currency() and we
can do that within the fmt argument.

pizzaplace |>
dplyr::filter(name == "hawaiian”) |>
dplyr::mutate(month = lubridate::month(date, label = TRUE, abbr = TRUE)) |>
dplyr::select(month, price) |>
dplyr::group_by(month) |>
dplyr::summarize(
‘number sold: = dplyr::n(),
revenue = sum(price)
R
gt(rowname_col = "month”) |>
tab_header(title = "Summary of Hawaiian Pizzas Sold by Month") |>
fmt_currency(columns = revenue) |[>
grand_summary_rows(
fns = list(label = "Totals:"”, id = "totals", fn = "sum"),
fmt = ~ fmt_currency(., columns = revenue),
) 1>
opt_all_caps()

If supplying a locale value to fmt_currency(), we can opt use the locale’s assumed currency and
not have to supply a currency value (doing so would override the locale’s default currency). With
a column of locale values, we can format currency values on a row-by-row basis through the use of
the from_column() helper function. Here, we’ll reference the locale column in the argument of
the same name.

dplyr::tibble(
amount = rep(50.84, 5),
currency = c("JPY", "USD", "GHS", "KRW", "CNY"),
locale = c("ja", "en", "ee", "ko", "zh"),
) 1>
gt I>
fmt_currency(
columns = amount,
locale = from_column(column = "locale")
) 1>

cols_hide(columns = locale)

152 fmt_currency

We can similarly use from_column() to reference a column that has currency code values. Here’s
an example of how to create a simple currency conversion table. The curr column contains the 3-
letter currency codes, and that column is referenced via from_column() in the currency argument
of fmt_currency().

dplyr::tibble(
flag = c("EU", "GB", "CA", "AU", "JP", "IN"),
curr = c("EUR", "GBP", "CAD", "AUD", "JPY", "INR"),
conv = c(
0.912952, 0.787687, 1.34411,
1.53927, 144.751, 82.9551
)
) 1>
gtO 1>
fmt_currency(
columns = conv,
currency = from_column(column = "curr”)
) 1>
fmt_flag(columns = flag) |>
cols_merge(columns = c(flag, curr)) |>
cols_label(
flag = "Currency”,

conv = "Amount”
) 1>
tab_header(
title = "Conversion of 1 USD to Six Other Currencies”,
subtitle = md("Conversion rates obtained on xxAug 13, 2023%x")
)
Function ID
3-8

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_currency().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_datetime(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fimt_date 153

fmt_date Format values as dates

Description

Format input values to time values using one of 41 preset date styles. Input can be in the form of
POSIXt (i.e., datetimes), the Date type, or character (must be in the ISO 8601 form of YYYY-MM-DD HH:MM:SS
or YYYY-MM-DD).

Usage

fmt_date(
data,
columns = everything(),
rows = everything(),
date_style = "iso",
pattern = "{x}",
locale = NULL

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

date_style Predefined style for dates
scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso"

The date style to use. By default this is the short name "iso” which corresponds

to ISO 8601 date formatting. There are 41 date styles in total and their short

names can be viewed using info_date_style().

154 fit_date

pattern Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_date () formatting function is compatible with body cells that are of the "Date”, "POSIXt"
or "character” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().

fimt_date 155

It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_date() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* date_style
e pattern

e locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the date_style argument

We need to supply a preset date style to the date_style argument. The date styles are numerous and
can handle localization to any supported locale. A large segment of date styles are termed flexible
date formats and this means that their output will adapt to any locale provided. That feature makes
the flexible date formats a better option for locales other than "en” (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes
1 "iso" "2000-02-29" ISO 8601
2 "wday_month_day_year"” "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year"” "Tuesday 29 February 2000"
5 "month_day_year"” "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month" "29 February"
10 "day_m" "29 Feb”
11 "year" "2000"
12 "month” "February"
13 "day" "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day" "00/02/29"

156

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

"year_week"
"year_quarter”
"yMd"
"yMEd"

" yMMM"

" yMMMM"
"yMMMd"
"yMMMEd"
"GyMd"
"GyMMMd "
"GyMMMEd"
NG

"Md"
"MEd"
"MMMd"
"MMMEd"
"MMMMd"
"GyMMM"
"yQQQ"
"yQQQQ”
"Gy"

non

y
ngn
"MMM"
n d n
nEg"

"2000-Wo9"
"2000-Q1"
"2/29/2000"

"Tue, 2/29/2000"
"Feb 2000"
"February 2000"
"Feb 29, 2000"
"Tue, Feb 29, 2000"
"2/29/2000 A"

"Feb 29, 2000 AD"

"Tue, Feb 29, 2000 AD"

"2/2000"
"2/29"

"Tue, 2/29"
"Feb 29"
"Tue, Feb 29"
"February 29"
"Feb 2000 AD"
"Q1 2000"
"1st quarter 2000"
2000 AD"
"2000"

0o

"Feb"”

nogn

"29 Tue”

flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible

fit_date

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en” for English (United States) and "fr" for French (France). Note that a 1ocale value provided
here will override any global locale setting performed in gt ()’s own locale argument (it is settable
there as a value received by all other functions that have a 1locale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the date and
time columns). With the fmt_date() function, we’ll format the date column to display dates
formatted with the "month_day_year" date style.

exibble |>
dplyr::select(date, time) |>
gt >

fmt_date(

fimt_date 157

columns = date,
date_style = "month_day_year"
)

Again using the exibble dataset, let’s format the date column to have mixed date formats, where
dates after April 1st will be different than the others because of the expressions used in the rows
argument. This will involve two calls of fmt_date() with different statements provided for rows.
In the first call (dates after the 1st of April) the date style "m_day_year" is used; for the second
call, "day_m_year" is the named date style supplied to date_style

exibble |>

dplyr::select(date, time) [>

gt >

fmt_date(
columns = date,
rows = as.Date(date) > as.Date("2015-04-01"),
date_style = "m_day_year”

) 1>

fmt_date(
columns = date,
rows = as.Date(date) <= as.Date("2015-04-01"),
date_style = "day_m_year"”

)

Use the exibble dataset to create a single-column gt table (with only the date column). Format
the date values using the "yMMMEd" date style (which is one of the ’flexible’ styles). Also, we’ll set
the locale to "n1" to get the dates in Dutch.

exibble |>
dplyr::select(date) |>
gtO) |>
fmt_date(
date_style = "yMMMEd",
locale = "nl"
)
Function ID
3-13

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_date().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),

158 fimt_datetime

fmt_image (), fmt_index (), fmt_integer(), fmt_markdown (), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_datetime Format values as datetimes

Description

Format input values to datetime values using either presets for the date and time components or a
formatting directive (this can either use a CLDR datetime pattern or strptime formatting). The
input values can be in the form of POSIXct (i.e., datetimes), the Date type, or character (must be
in the ISO 8601 form of YYYY-MM-DD HH:MM:SS or YYYY-MM-DD).

Usage

fmt_datetime(
data,
columns = everything(),
rows = everything(),

"z n

date_style = "iso",
time_style = "iso”,
sep = n n ,
format = NULL,
tz = NULL,
pattern = "{x}",
locale = NULL
)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().
rows Rows to target

<row-targeting expression>// default: everything()

fmmt_datetime

date_style

time_style

sep

format

tz

pattern

locale

159

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-

tions include starts_with(), ends_with(), contains(), matches(), one_of (),

num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Predefined style for dates

scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso

The date style to use. By default this is the short name "iso"” which corresponds
to ISO 8601 date formatting. There are 41 date styles in total and their short
names can be viewed using info_date_style().

Predefined style for times

scalar<character>|scalar<numeric|integer>(1<=val<=25) //default: "iso

The time style to use. By default this is the short name "iso” which corresponds
to how times are formatted within ISO 8601 datetime values. There are 25 time
styles in total and their short names can be viewed using info_time_style().

Separator between date and time components

scalar<character>// default: " "

The separator string to use between the date and time components. By default,
this is a single space character (" "). Only used when not specifying a format
code.

Date/time formatting string

scalar<character> // default: NULL (optional)

An optional formatting string used for generating custom dates/times. If used
then the arguments governing preset styles (date_style and time_style) will
be ignored in favor of formatting via the format string.

Time zone

scalar<character> // default: NULL (optional)

The time zone for printing dates/times (i.e., the output). The default of NULL will
preserve the time zone of the input data in the output. If providing a time zone,
it must be one that is recognized by the user’s operating system (a vector of all
valid tz values can be produced with 01sonNames()).

Specification of the formatting pattern

scalar<character>// default: "{x3}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a 1locale value provided here will override that global
locale.

n

n

160

fimt_datetime

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_datetime() formatting function is compatible with body cells that are of the "Date”,
"POSIXct" or "character” types. Any other types of body cells are ignored during formatting.
This is to say that cells of incompatible data types may be targeted, but there will be no attempt to
format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_datetime() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

* date_style

* time_style

fmmt_datetime 161

* sep

e format

* tz

* pattern

* locale
Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with

cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the date_style argument

We can supply a preset date style to the date_style argument to separately handle the date portion
of the output. The date styles are numerous and can handle localization to any supported locale.
A large segment of date styles are termed flexible date formats and this means that their output
will adapt to any locale provided. That feature makes the flexible date formats a better option for
locales other than "en” (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes
1 "iso" "2000-02-29" ISO 8601
2 "wday_month_day_year"” "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year” "Tuesday 29 February 2000"
5 "month_day_year"” "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month” "29 February”
10 "day_m" "29 Feb"
11 "year” "2000"
12 "month” "February”
13 "day” "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day” "00/02/29"
16 "year_week” "2000-W09"
17 "year_quarter” "2000-Q1"
18 "yMd” "2/29/2000" flexible
19 "yMEd" "Tue, 2/29/2000" flexible
20 "yMMM" "Feb 2000" flexible
21 "yMMMM" "February 2000" flexible
22 "yMMMd" "Feb 29, 2000" flexible
23 "yMMMEd" "Tue, Feb 29, 2000" flexible
24 "GyMd" "2/29/2000 A" flexible

162

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

" GyMMMd”
" GyMMMEd”
n yM n

n Md n
"MEd"
"MMMd”
"MMMEd”
"MMMMd”

n GyMMM n
"yQQQ"

"yQQQQ”
n Gy n

non

y
n M n
"MMM"
g
nEg"

"Feb 29, 2000 AD"
"Tue, Feb 29, 2000 AD"

"2/2000"
"2/29"

"Tue, 2/29"
"Feb 29"
"Tue, Feb 29"
"February 29"
"Feb 2000 AD"
"Q1 2000"

"1st quarter 2000"

2000 AD"
"2000"
IIZII

"Feb"

n 29 n

"29 Tue”

fimt_datetime

flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible
flexible

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

Formatting with the time_style argument

We can supply a preset time style to the time_style argument to separately handle the time portion
of the output. There are many time styles and all of them can handle localization to any supported
locale. Many of the time styles are termed flexible time formats and this means that their output
will adapt to any locale provided. That feature makes the flexible time formats a better option for
locales other than "en” (the default locale).

The following table provides a listing of all time styles and their output values (corresponding to
an input time of 14:35:00). It is noted which of these represent 12- or 24-hour time. Some of
the flexible formats (those that begin with "E") include the the day of the week. Keep this in mind
when pairing such time_style values with a date_style so as to avoid redundant or repeating
information.

[e BN e NNV, RSN S

— e \O
N - O

Time Style
"iso"
"iso-short”
"h_m_s_p"
"h_m_p"
"h_p”
"Hms"
"Hm"

nyo

"EHm"
"EHms"
"Hmsv"

nHmVn

Output

"14:35:00"
"14:35"

"2:35:00 PM"
"2:35PM"

"2 PM"

"14:35:00"
"14:35"

nqgn

"Thu 14:35"

"Thu 14:35:00"
"14:35:00 GMT+00:00"
"14:35 GMT+00:00"

Notes

ISO 8601, 24h
ISO 8601, 24h
12h

12h

12h

flexible, 24h
flexible, 24h
flexible, 24h
flexible, 24h
flexible, 24h
flexible, 24h
flexible, 24h

fmmt_datetime 163

13 "hms” "2:35:00 PM" flexible, 12h
14 "hm" "2:35PM" flexible, 12h
15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM”" flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms” "Thu 2:35:00 in the afternoon” flexible, 12h
19 "Bhms" "2:35:00 in the afternoon” flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon” flexible, 12h
21 "Bhm" "2:35 1in the afternoon” flexible, 12h
22 "Bh" "2 in the afternoon” flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35PM GMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Formatting with a CLDR datetime pattern

We can use a CLDR datetime pattern with the format argument to create a highly customized and
locale-aware output. This is a character string that consists of two types of elements:

* Pattern fields, which repeat a specific pattern character one or more times. These fields are
replaced with date and time data when formatting. The character sets of A-Z and a-z are
reserved for use as pattern characters.

« Literal text, which is output verbatim when formatting. This can include:

— Any characters outside the reserved character sets, including spaces and punctuation.
— Any text between single vertical quotes (e.g., 'text"').

— Two adjacent single vertical quotes (), which represent a literal single quote, either inside
or outside quoted text.

The number of pattern fields is quite sizable so let’s first look at how some CLDR datetime patterns
work. We’ll use the datetime string "2018-07-04T22:05:09.2358(America/Vancouver)" for all
of the examples that follow.

* "mm/dd/y" -> "05/04/2018"

 "EEEE, MMMMd, y” -> "Wednesday, July 4, 2018"

e "MMMdE" -> "Jul 4 Wed"

e "HH:mm" -> "22:05"

e "h:mma" ->"10:05PM"

e "EEEE, MMMMd, y 'at' h:mm a" -> "Wednesday, July 4, 2018 at 10:05 PM"

Here are the individual pattern fields:

Year:

164

fimt_datetime

Calendar Year:

This yields the calendar year, which is always numeric. In most cases the length of the "y" field
specifies the minimum number of digits to display, zero-padded as necessary. More digits will
be displayed if needed to show the full year. There is an exception: "yy" gives use just the two

low-order digits of the year, zero-padded as necessary. For most use cases, "y"” or "yy" should
be good enough.

Field Patterns Output
”yll ”2018H
n yy n n -I 8 n

"yyy" to "yyyyyyyyy" "2018" to "000002018"

Year in the Week in Year Calendar:

This is the year in *"Week of Year’ based calendars in which the year transition occurs on a week
boundary. This may differ from calendar year "y"” near a year transition. This numeric year
designation is used in conjunction with pattern character "w" in the ISO year-week calendar as

defined by ISO 8601.

Field Patterns Output
HY" HZ@'ISH
n YY n n ‘I 8 n

"YYY" to "YYYYYYYYY" "2018" to "000002018"

Quarter:

Quarter of the Year: formatting and standalone versions:

The quarter names are identified numerically, starting at 1 and ending at 4. Quarter names may
vary along two axes: the width and the context. The context is either *formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may
be used in any other date format that shares the same form of the name. Here, the formatting
form for quarters of the year consists of some run of "Q" values whereas the standalone form

n.n

uses "q".

Field Patterns Output Notes
"Q"/"q" "3 Numeric, one digit
"QQ"/"qq" "Q3" Numeric, two digits (zero padded)
"QQQ"/"qaq” "Q3" Abbreviated
"QQQQ"/"qqaq" "3rd quarter” Wide
"0QQQQ"/"gaqaq” "3" Narrow
Month:

Month: formatting and standalone versions:

The month names are identified numerically, starting at 1 and ending at 12. Month names may
vary along two axes: the width and the context. The context is either 'formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may

fmmt_datetime 165

be used in any other date format that shares the same form of the name. Here, the formatting
form for months consists of some run of "M" values whereas the standalone form uses "L".

Field Patterns Output Notes
MU/ "7 Numeric, minimum digits
"MM"/"LL" "o7" Numeric, two digits (zero padded)
"MMM"/"LLL" "Jul” Abbreviated
"MMMM"/"LLLL" "July” Wide
"MMMMM"/"LLLLL" "J" Narrow

Week:
Week of Year:

Values calculated for the week of year range from 1 to 53. Week 1 for a year is the first week
that contains at least the specified minimum number of days from that year. Weeks between
week 1 of one year and week 1 of the following year are numbered sequentially from 2 to 52 or
53 (if needed).

There are two available field lengths. Both will display the week of year value but the "ww"
width will always show two digits (where weeks 1 to 9 are zero padded).

Field Patterns Output Notes
"w" "27" Minimum digits
"ww" "27" Two digits (zero padded)

Week of Month:
The week of a month can range from 1 to 5. The first day of every month always begins at week
1 and with every transition into the beginning of a week, the week of month value is incremented

by 1.
Field Pattern ~ Output
IIW n n -l n
Day:
Day of Month:

The day of month value is always numeric and there are two available field length choices in its
formatting. Both will display the day of month value but the "dd" formatting will always show
two digits (where days 1 to 9 are zero padded).

Field Patterns Output Notes
"d" "4 Minimum digits
"dd" "04" Two digits, zero padded

Day of Year:

The day of year value ranges from 1 (January 1) to either 365 or 366 (December 31), where the
higher value of the range indicates that the year is a leap year (29 days in February, instead of
28). The field length specifies the minimum number of digits, with zero-padding as necessary.

166

fimt_datetime

Field Patterns Output Notes

n D n n ‘I 8 5 n

"DD" "185" Zero padded to minimum width of 2

"DDD" "185" Zero padded to minimum width of 3
Day of Week in Month:

The day of week in month returns a numerical value indicating the number of times a given
weekday had occurred in the month (e.g., *2nd Monday in March’). This conveniently resolves
to predicable case structure where ranges of day of the month values return predictable day of
week in month values:

e days1-7->1

e days 8-14->2
e days 15-21->3
e days 22-28->4
e days 29-31->5

Field Pattern Output
n F n n -l n

Modified Julian Date:

The modified version of the Julian date is obtained by subtracting 2,400,000.5 days from the
Julian date (the number of days since January 1, 4713 BC). This essentially results in the number
of days since midnight November 17, 1858. There is a half day offset (unlike the Julian date,
the modified Julian date is referenced to midnight instead of noon).

Field Patterns Output

nn

g" to "gggggegggeg” "58303" -> "000058303"

Weekday:

Day of Week Name:
The name of the day of week is offered in four different widths.

Field Patterns Output Notes
"E","EE", or "EEE" "Wed" Abbreviated
"EEEE" "Wednesday” Wide
"EEEEE" "W Narrow
"EEEEEE" "We" Short
Periods:
AM/PM Period of Day:

This denotes before noon and after noon time periods. May be upper or lowercase depending on
the locale and other options. The wide form may be the same as the short form if the 'real’ long

form (e.g. ’ante meridiem’) is not customarily used. The narrow form must be unique, unlike
some other fields.

fmmt_datetime 167

Field Patterns Output Notes
"a","aa", or "aaa" "PM" Abbreviated
"aaaa" "PM" Wide
"aaaaa" "p" Narrow

AM/PM Period of Day Plus Noon and Midnight:

Provide AM and PM as well as phrases for exactly noon and midnight. May be upper or low-
ercase depending on the locale and other options. If the locale doesn’t have the notion of a
unique 'noon’ (i.e., 12:00), then the PM form may be substituted. A similar behavior can occur
for *midnight’ (00:00) and the AM form. The narrow form must be unique, unlike some other
fields.

(a) input_midnight: "2020-05-05T00:00:00" (b) input_noon: "2020-05-05T12:00:00"

Field Patterns Output Notes

"b", "bb", or "bbb" (a) "midnight” Abbreviated
(b) "noon"

"bbbb" (a) "midnight” Wide
(b) "noon”

"bbbbb" (a) "mi"” Narrow
(b) "n"

Flexible Day Periods:

Flexible day periods denotes things like ’in the afternoon’, ’in the evening’, etc., and the flex-
ibility comes from a locale’s language and script. Each locale has an associated rule set that
specifies when the day periods start and end for that locale.

(a) input_morning: "2020-05-05T00:08:30" (b) input_afternoon: "2020-05-05T14:00:00"

Field Patterns Output Notes

"B", "BB", or "BBB” (a) "in the morning” Abbreviated
(b) "in the afternoon”

"BBBB" (a) "in the morning” Wide
(b) "in the afternoon”

"BBBBB" (a) "in the morning” Narrow

(b) "in the afternoon”

Hours, Minutes, and Seconds:

Hour 0-23:
Hours from @ to 23 are for a standard 24-hour clock cycle (midnight plus 1 minute is 00:01)

when using "HH" (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01708:35:09":

Field Patterns Output Notes
"H" "8" Numeric, minimum digits
"HH" "08" Numeric, 2 digits (zero padded)

168

fimt_datetime

Hour 1-12:

Hours from 1 to 12 are for a standard 12-hour clock cycle (midnight plus 1 minute is 12:01)
when using "hh"” (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01708:35:09":

Field Patterns Output Notes
"h" "8" Numeric, minimum digits
"hh" "08" Numeric, 2 digits (zero padded)

Hour 1-24:

Using hours from 1 to 24 is a less common way to express a 24-hour clock cycle (midnight
plus 1 minute is 24:01) when using "kk" (which is the more common width that indicates
zero-padding to 2 digits).

Using "2015-08-01T708:35:09":

Field Patterns Output Notes
"k" "g" Numeric, minimum digits
"kk" "Q9" Numeric, 2 digits (zero padded)

Hour 0-11:

Using hours from @ to 11 is a less common way to express a 12-hour clock cycle (midnight
plus 1 minute is 00:01) when using "KK" (which is the more common width that indicates
zero-padding to 2 digits).

Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"K" "7 Numeric, minimum digits
"KK" "Q7" Numeric, 2 digits (zero padded)

Minute:
The minute of the hour which can be any number from @ to 59. Use "m” to show the minimum
number of digits, or "mm” to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"m" " Numeric, minimum digits
"mm" "06" Numeric, 2 digits (zero padded)

Seconds:
The second of the minute which can be any number from @ to 59. Use "s" to show the minimum
number of digits, or "ss” to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"s" "g" Numeric, minimum digits
"ss" "09" Numeric, 2 digits (zero padded)

fmmt_datetime 169

Fractional Second:

The fractional second truncates (like other time fields) to the width requested (i.e., count of
letters). So using pattern "SSSS" will display four digits past the decimal (which, incidentally,
needs to be added manually to the pattern).

Field Patterns Output
"S" to "SSSSSSSSS" "2" -> "235000000"

Milliseconds Elapsed in Day:

There are 86,400,000 milliseconds in a day and the "A" pattern will provide the whole number.
The width can go up to nine digits with "AAAAAAAAA" and these higher field widths will result
in zero padding if necessary.

Using "2011-07-27T00:07:19.7223":

Field Patterns Output
"A" to "AAAAAAAAA" "439722" -> "0Q00439722"

Era:

The Era Designator:

This provides the era name for the given date. The Gregorian calendar has two eras: AD and
BC. In the AD year numbering system, AD 1 is immediately preceded by 1 BC, with nothing in
between them (there was no year zero).

Field Patterns Output Notes

"G", "GG", or "GGG" "AD" Abbreviated
"GGGG" "Anno Domini” Wide
"GGGGG” "A" Narrow

Time Zones:

TZ // Short and Long Specific non-Location Format:

The short and long specific non-location formats for time zones are suggested for displaying
a time with a user friendly time zone name. Where the short specific format is unavailable,
it will fall back to the short localized GMT format ("0"”). Where the long specific format is
unavailable, it will fall back to the long localized GMT format (”0000").

Field Patterns Output Notes
"z","zz",or "zzz" "PDT" Short Specific
"zzzz" "Pacific Daylight Time” Long Specific

TZ // Common UTC Offset Formats:

The ISO8601 basic format with hours, minutes and optional seconds fields is represented by
"Z", "Z7", or "ZZ7". The format is equivalent to RFC 822 zone format (when the optional
seconds field is absent). This is equivalent to the "xxxx" specifier. The field pattern "Zz7zZ"
represents the long localized GMT format. This is equivalent to the "0000" specifier. Finally,
"77777" pattern yields the ISO8601 extended format with hours, minutes and optional seconds

170

fimt_datetime

fields. The ISO8601 UTC indicator Z is used when local time offset is @. This is equivalent to
the "XXXXX" specifier.

Field Patterns Output Notes
"Z","ZZ7",or "777" "-0700" ISO 8601 basic format
"7777" "GMT-7:00" Long localized GMT format
"77777" "-07:00" ISO 8601 extended format

TZ // Short and Long Localized GMT Formats:

The localized GMT formats come in two widths "0" (which removes the minutes field if it’s
@) and "0000" (which always contains the minutes field). The use of the GMT indicator changes
according to the locale.

Field Patterns Output Notes
"0" "GMT-7" Short localized GMT format
"0000" "GMT-07:00" Long localized GMT format

TZ // Short and Long Generic non-Location Formats:

The generic non-location formats are useful for displaying a recurring wall time (e.g., events,
meetings) or anywhere people do not want to be overly specific. Where either of these is un-
available, there is a fallback to the generic location format ("VVVV"), then the short localized
GMT format as the final fallback.

Field Patterns Output Notes
"y "PT" Short generic non-location format
"vvvv" "Pacific Time” Long generic non-location format

TZ // Short Time Zone IDs and Exemplar City Formats:

These formats provide variations of the time zone ID and often include the exemplar city. The
widest of these formats, "VVVV", is useful for populating a choice list for time zones, because it
supports 1-to-1 name/zone ID mapping and is more uniform than other text formats.

Field Patterns Output Notes
A "cavan” Short time zone ID
"y "America/Vancouver” Long time zone ID
"VVV" "Vancouver" The tz exemplar city
"VVVV "Vancouver Time" Generic location format

TZ /7 ISO 8601 Formats with Z for +0000:

The "X"-"XXX" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. The final two widths, "XXXX" and "XXXXX" allow for optional seconds fields. The sec-
onds field is not supported by the ISO 8601 specification. For all of these, the ISO 8601 UTC
indicator Z is used when the local time offset is @.

Field Patterns Output Notes
"X "-Q7" ISO 8601 basic format (h, optional m)

fmmt_datetime 171

"XX" "-0700" ISO 8601 basic format (h & m)

"XXX" "-07:00" ISO 8601 extended format (h & m)

"XXXX" "-0700" ISO 8601 basic format (h & m, optional s)
"XXXXX" "-07:00" ISO 8601 extended format (h & m, optional s)

TZ /7 ISO 8601 Formats (no use of Z for +0000):

The "x"-"xxxxx" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. They are similar to the "X"-"XXXXX" field patterns except that the ISO 8601 UTC indica-
tor Z will not be used when the local time offset is 0.

Field Patterns Output Notes
"x" "-Q7" ISO 8601 basic format (h, optional m)
"xx" "-0700" ISO 8601 basic format (h & m)
"xxx" "-07:00" IS0 8601 extended format (h & m)
"xxxx" "-0700" ISO 8601 basic format (h & m, optional s)
"XXXXX" "-07:00" ISO 8601 extended format (h & m, optional s)

Formatting with a strptime format code

Performing custom date/time formatting with the format argument can also occur with a strptime
format code. This works by constructing a string of individual format codes representing formatted
date and time elements. These are all indicated with a leading %, literal characters are interpreted as
any characters not starting with a % character.

First off, let’s look at a few format code combinations that work well together as a strptime format.
This will give us an intuition on how these generally work. We’ll use the datetime "2015-06-08
23:05:37.48" for all of the examples that follow.

"%m/%d/%Y" -> "06/08/2015"

"%A, %B %e, %Y" -> "Monday, June 8, 2015"

"%b %e %a" ->"Jun 8 Mon"

"%H:%M" -> "23:05"

"%I:%M %p” -> "11:05 pm”

"%A, %B %e, %Y at %L:%M %p" -> "Monday, June 8, 2015 at 11:05 pm"

Here are the individual format codes for the date components:

"%a" -> "Mon" (abbreviated day of week name)

"%A" -> "Monday" (full day of week name)

"%w" ->"1" (day of week number in @. . 6; Sunday is 0)

"%u" ->"1" (day of week number in 1..7; Monday is 1, Sunday 7)
"%y" ->"15" (abbreviated year, using the final two digits)

"%Y" > "2015" (full year)

"%b" -> "Jun" (abbreviated month name)

"%B" -> "June" (full month name)

172 fimt_datetime

e "%m" ->"06" (month number)

e "%d" -> "08" (day number, zero-padded)

e "%e" ->"8" (day number without zero padding)

e "%j" ->"159" (day of the year, always zero-padded)

o "IW" -> "23" (week number for the year, always zero-padded)

o "%V" ->"24" (week number for the year, following the ISO 8601 standard)

e "%C" ->"20@" (the century number)
Here are the individual format codes for the time components:

e "%H" -> "23" (24h hour)

e "%I" ->"11" (12h hour)

e "%M" -> "@5" (minute)

e "%S" -> "37" (second)

e "%0S3" -> "37.480" (seconds with decimals; 3 decimal places here)
e %p -> "pm" (AM or PM indicator)

Here are some extra formats that you may find useful:

e "%z" ->"+0000" (signed time zone offset, here using UTC)
e "%F" ->"2015-06-08" (the date in the ISO 8601 date format)

o "%%" ->"%" (the literal "%" character, in case you need it)

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). Note that a 1ocale value provided
here will override any global locale setting performed in gt ()’s own locale argument (it is settable
there as a value received by all other functions that have a locale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Use the exibble dataset to create a single-column gt table (with only the datetime column). With
fmt_datetime() we’ll format the datetime column to have dates formatted with the "month_day_year"
style and times with the "h_m_s_p" 12-hour time style.

exibble |>
dplyr::select(datetime) |>
gt >

fmt_datetime(
date_style = "month_day_year",
time_style = "h_m_s_p"

)

fmmt_datetime 173

Using the same input table, we can use fmt_datetime() with flexible date and time styles. Two
that work well together are "MMMEd"” and "Hms". These date and time styles will, being flexible,
create outputs that conform to the locale value given to the locale argument. Let’s use two calls
of fmt_datetime(): the first will format all rows in datetime to the Danish locale (with locale =
"da") and the second call will target the first three rows with the same formatting, but in the default
locale (which is "en").

exibble |>
dplyr::select(datetime) |>
gtO 1>

fmt_datetime(
date_style = "MMMEd",
time_style = "Hms",
locale = "da"

) 1>

fmt_datetime(
rows = 1:3,
date_style = "MMMEd",
time_style = "Hms”

)

It’s possible to use the format argument and write our own formatting specification. Using the
CLDR datetime pattern "EEEE, MMMM d, y "at' h:mma (zzzz)" gives us datetime outputs with
time zone formatting. Let’s provide a time zone ID ("America/Vancouver") to the tz argument.

exibble |>
dplyr::select(datetime) |>
gtO >

fmt_datetime(
format = "EEEE, MMMM d, y 'at' h:mm a (zzzz)",
tz = "America/Vancouver”

Function ID
3-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_datetime().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image (), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

174 fmt_duration

fmt_duration Format numeric or duration values as styled time duration strings

Description

Format input values to time duration values whether those input values are numbers or of the
difftime class. We can specify which time units any numeric input values have (as weeks, days,
hours, minutes, or seconds) and the output can be customized with a duration style (corresponding
to narrow, wide, colon-separated, and ISO forms) and a choice of output units ranging from weeks
to seconds.

Usage

fmt_duration(
data,
columns = everything(),
rows = everything(),
input_units = NULL,
output_units = NULL,
duration_style = c("narrow”, "wide"”, "colon-sep”, "iso"),
trim_zero_units = TRUE,
max_output_units = NULL,
pattern = "{x}",
use_seps = TRUE,
sep_mark = " "
force_sign = FALSE,
system = c("intl"”, "ind"),
locale = NULL

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target

<row-targeting expression>// default: everything()

fmmt_duration 175

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

input_units Declaration of duration units for numerical values
scalar<character> // default: NULL (optional)
If one or more selected columns contains numeric values (not difftime values,
which contain the duration units), a keyword must be provided for input_units
for gt to determine how those values are to be interpreted in terms of dura-
tion. The accepted units are: "seconds”, "minutes”, "hours”, "days", and
"weeks".

output_units Choice of output units
mult-kw: [weeks|days|hours|minutes|seconds] // default: NULL (optional)
Controls the output time units. The default, NULL, means that gt will automati-
cally choose time units based on the input duration value. To control which time
units are to be considered for output (before trimming with trim_zero_units)
we can specify a vector of one or more of the following keywords: "weeks”,

non

"days", "hours"”, "minutes”, or "seconds”.

duration_style Style for representing duration values
singl-kw: [narrow|wide|colon-sep|iso] // default: "narrow”
A choice of four formatting styles for the output duration values. With "narrow”
(the default style), duration values will be formatted with single letter time-
part units (e.g., 1.35 days will be styled as "1d 8h 24m"). With "wide"”, this
example value will be expanded to "1 day 8 hours 24 minutes” after format-
ting. The "colon-sep” style will put days, hours, minutes, and seconds in the
"([D1/)[HH]:[MM]:[SS]" format. The "iso" style will produce a value that
conforms to the ISO 8601 rules for duration values (e.g., 1.35 days will become
"P1DT8H24M").

trim_zero_units
Trimming of zero values
scalar<logical>|mult-kw:[leading|trailing|internall// default: TRUE
Provides methods to remove output time units that have zero values. By default
this is TRUE and duration values that might otherwise be formatted as "@w 1d @h
4m 19s"” with trim_zero_units = FALSE are instead displayed as "1d 4m 19s".
Aside from using TRUE/FALSE we could provide a vector of keywords for more
precise control. These keywords are: (1) "leading”, to omit all leading zero-
value time units (e.g., "0w 1d"” -> "1d"), (2) "trailing”, to omit all trailing
zero-value time units (e.g., "3d 5h @s” -> "3d 5h"), and "internal”, which
removes all internal zero-value time units (e.g., "5d ©h 33m" -> "5d 33m").

max_output_units
Maximum number of time units to display
scalar<numeric|integer>(val>=1) // default: NULL (optional)
If output_units is NULL, where the output time units are unspecified and left to
gt to handle, a numeric value provided for max_output_units will be taken as

176

pattern

use_seps

sep_mark

force_sign

system

locale

Value

fmt_duration

the maximum number of time units to display in all output time duration values.
By default, this is NULL and all possible time units will be displayed. This option
has no effect when duration_style = "colon-sep” (only output_units can
be used to customize that type of duration output).

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Use digit group separators
scalar<logical>// default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Separator mark for digit grouping

scalar<character>// default: " ,"

The string to use as a separator between groups of digits. For example, us-
ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. By default only
negative values will display a minus sign.

Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

fmmt_duration 177

Output units for the colon-separated duration style

The colon-separated duration style (enabled when duration_style = "colon-sep”) is essentially
a clock-based output format which uses the display logic of chronograph watch functionality. It
will, by default, display duration values in the (D/)HH:MM:SS format. Any duration values greater
than or equal to 24 hours will have the number of days prepended with an adjoining slash mark.
While this output format is versatile, it can be changed somewhat with the output_units option.
The following combinations of output units are permitted:

e c("minutes”, "seconds”") ->MM:SS

e c("hours”, "minutes"”) ->HH:MM

e c("hours”, "minutes”, "seconds") ->HH:MM:SS
e c("days", "hours”, "minutes”) -> (D/)HH:MM

Any other specialized combinations will result in the default set being used, which is c("days”,
"hours”, "minutes”, "seconds")

Compatibility of formatting function with data values

The fmt_duration() formatting function is compatible with body cells that are of the "numeric”,
"integer”, or "difftime"” types. Any other types of body cells are ignored during formatting.
This is to say that cells of incompatible data types may be targeted, but there will be no attempt to
format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if

178 fmt_duration

row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en” for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator and decimal marks will be correct for the given locale. Should any value be
provided in sep_mark, it will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use part of the sp500 table to create a gt table. Create a difftime-based column and format the
duration values to be displayed as the number of days since March 30, 2020.

sp500 |>
dplyr::slice_head(n = 10) |>
dplyr: :mutate(
time_point = lubridate::ymd("2020-03-30"),
time_passed = difftime(time_point, date)

) 1>
dplyr::select(time_passed, open, close) |>
gt(rowname_col = "month”) |>

fmt_duration(
columns = time_passed,

output_units = "days",
duration_style = "wide”
) 1>

fmt_currency(columns = c(open, close))

Function ID

3-16

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The vector-formatting version of this function: vec_fmt_duration().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),

fmt_engineering 179

fmt_image (), fmt_index (), fmt_integer(), fmt_markdown (), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_engineering Format values to engineering notation

Description

With numeric values in a gt table, we can perform formatting so that the targeted values are rendered
in engineering notation, where numbers are written in the form of a mantissa (m) and an exponent
(n). When combined the construction is either of the form m x 10”n or mEn. The mantissa is
a number between 1 and 1000 and the exponent is a multiple of 3. For example, the number
0.0000345 can be written in engineering notation as 34.50 x 10*-6. This notation helps to simplify
calculations and make it easier to compare numbers that are on very different scales.

We have fine control over the formatting task, with the following options:

* decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

* scaling: we can choose to scale targeted values by a multiplier value
* pattern: option to use a text pattern for decoration of the formatted values

* locale-based formatting: providing a locale ID will result in formatting specific to the chosen
locale

Usage

fmt_engineering(
data,
columns = everything(),
rows = everything(),
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_by =1,
exp_style = "x1on",
pattern = "{x}",
sep_mark = " ",
dec_mark = ".",
force_sign_m = FALSE,
force_sign_n = FALSE,
locale = NULL

n o n

180

Arguments

data

columns

rows

decimals

fmt_engineering

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with @ decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = @, the fmt_integer () function should be considered.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical>// default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

scale_by

exp_style

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

Scale values by a fixed multiplier

scalar<numeric|integer>// default: 1

All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

Style declaration for exponent formatting
scalar<character> // default: "x10n"

fmt_engineering

pattern

sep_mark

dec_mark

181

Style of formatting to use for the scientific notation formatting. By default this
is "x1@n" but other options include using a single letter (e.g., "e"”, "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten”
for using a stylized "10" marker.

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

n on

scalar<character> // default: ",
The string to use as a separator between groups of digits. For example, us-

n o n

ing sep_mark ="," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: "."

The string to be used as the decimal mark. For example, using dec_mark =
" " with the value @.152 would result in a formatted value of "@,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign_m, force_sign_n

locale

Value

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en"” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_engineering() formatting function is compatible with body cells that are of the "numeric”
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

182 fmt_engineering

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_engineering() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

e decimals

e drop_trailing_zeros

e drop_trailing_dec_mark

* scale_by

* exp_style

* pattern

* sep_mark

e dec_mark

e force_sign_m

* force_sign_n

fmt_engineering 183

e locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add () function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en"” for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1locale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use the exibble dataset to create a gt table. Format the num column to display values in engineering
notation using the fmt_engineering() function.

exibble |>

gt 1>
fmt_engineering(columns = num)

Function ID

3-4

Function Introduced

v0.3.1 (August 9, 2021)

See Also

The vector-formatting version of this function: vec_fmt_engineering().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

184 fmt_flag

fmt_flag Generate flag icons for countries from their country codes

Description

While it is fairly straightforward to insert images into body cells (using fmt_image () is one way to
it), there is often the need to incorporate specialized types of graphics within a table. One such group
of graphics involves iconography representing different countries, and the fmt_flag() function
helps with inserting a flag icon (or multiple) in body cells. To make this work seamlessly, the input
cells need to contain some reference to a country, and this is in the form of a 2-letter ISO 3166-1
country code (e.g., Egypt has the "EG"” country code). This function will parse the targeted body
cells for those codes (and the countrypops dataset contains all of them) and insert the appropriate
flag graphics. Multiple flags can be included per cell by separating country codes with commas
(e.g., "GB,TT"). The sep argument allows for a common separator to be applied between flag
icons.

Usage

fmt_flag(
data,
columns = everything(),
rows = everything(),
height = "Tem",

n o n

sep =)
use_title = TRUE
)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().
rows Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),

fmt_flag 185

num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

height Height of flag
scalar<character>// default: "1em"
The absolute height of the flag icon in the table cell. By default, this is set to
"lem”.

sep Separator between flags
scalar<character> // default:

non

In the output of flag icons within a body cell, sep provides the separator between
each icon. By default, this is a single space character (" ").

use_title Display country name on hover
scalar<logical>// default: TRUE

An option to display a tooltip for the country name (in English) when hovering
over the flag icon.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_flag() formatting function is compatible with body cells that are of the "character” or
"factor” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

186 fmt_flag

expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_flag() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* height
* sep

e use_title

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Flag icons that can be used

You can view the entire set of supported flag icons as an informative table by using the info_flags()
function. In the information table that is provided, you’ll see every flag icon and the associated iden-
tifier that can be used with fmt_flag().

Examples

Use the countrypops dataset to create a gt table. We will only include a few columns and rows
from that table. The country_code_2 column has 2-letter country codes in the format required for
fmt_flag() and using that function transforms the codes in circular flag icons.

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::filter(grepl("*S", country_name)) |>
dplyr::arrange(country_name) |>
dplyr::select(-country_code_3, -year) |>
dplyr::slice_head(n = 10) |>
gtO 1>
cols_move_to_start(columns = country_code_2) |>
fmt_integer() [|>
fmt_flag(columns = country_code_2) |>
cols_label(

country_code_2 = "",

fmt_flag 187

country_name = "Country”,
population = "Population (2021)"
)

Using countrypops we can generate a table that provides populations every five years for the
Benelux countries ("BE", "NL", and "LU"). This requires some manipulation with dplyr and tidyr
before introducing the table to gt. With fmt_flag() we can obtain flag icons in the country_code_2
column. After that, we can merge the flag icons into the stub column, generating row labels that
have a combination of icon and text.

countrypops |>
dplyr::filter(country_code_2 %in% c("BE", "NL", "LU")) |>
dplyr::filter(year %% 10 == @) |>
dplyr::select(country_name, country_code_2, year, population) [>
tidyr::pivot_wider(names_from = year, values_from = population) |>
dplyr::slice(1, 3, 2) |>

gt(rowname_col = "country_name") |>
tab_header(title = "Populations of the Benelux Countries”) |>
tab_spanner(columns = everything(), label = "Year") |>

fmt_integer() [|>
fmt_flag(columns = country_code_2) |>
cols_merge(
columns = c(country_name, country_code_2),
pattern = "{2} {1}"
)

The fmt_flag() function works well even when there are multiple country codes within the same
cell. It can operate on comma-separated codes without issue. When rendered to HTML, hovering
over each of the flag icons results in tooltip text showing the name of the country.

countrypops |>
dplyr::filter(year == 2021, population < 100000) |>
dplyr::select(country_code_2, population) |>
dplyr::mutate(population_class = cut(

population,

breaks = scales::breaks_pretty(n = 5)(population)
)

) 1>

dplyr::group_by(population_class) |>
dplyr: :summarize(

countries = paste@(country_code_2, collapse = ",")
) 1>
dplyr::arrange(desc(population_class)) |>
gt I>

tab_header(title = "Countries with Small Populations”) [>
fmt_flag(columns = countries) |>
fmt_bins(

columns = population_class,

188 fit_fraction

fmt = ~ fmt_integer(., suffixing = TRUE)

) 1>

cols_label(
population_class = "Population Range”,
countries = "Countries”

) 1>

cols_width(population_class ~ px(150))

Function ID
3-21

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_fraction Format values as mixed fractions

Description

With numeric values in a gt table, we can perform mixed-fraction-based formatting. There are
several options for setting the accuracy of the fractions. Furthermore, there is an option for choosing
a layout (i.e., typesetting style) for the mixed-fraction output.

The following options are available for controlling this type of formatting:
* accuracy: how to express the fractional part of the mixed fractions; there are three keyword
options for this and an allowance for arbitrary denominator settings
* simplification: an option to simplify fractions whenever possible
* layout: We can choose to output values with diagonal or inline fractions

* digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol for the whole number portion

* pattern: option to use a text pattern for decoration of the formatted mixed fractions

* locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

fmt_fraction

Usage

fmt_fraction(

data,

columns
rows =

189

everything(),
everything(),

accuracy = NULL,
simplify = TRUE,
layout = c("inline"”, "diagonal),
use_seps = TRUE,
pattern = "{x}",

sep_mark =
system
locale = NULL

Arguments

data

columns

rows

accuracy

simplify

n on

’

C(”intl”, ”ind”),

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt ()
function.

Columns to target
<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Accuracy of fractions
singl-kw:[low|med|high]|scalar<numeric|integer>(val>=1) // default:
"low"

The type of fractions to generate. This can either be one of the keywords "low",
"med”, or "high" (to generate fractions with denominators of up to 1, 2, or 3
digits, respectively) or an integer value greater than zero to obtain fractions with
a fixed denominator (2 yields halves, 3 is for thirds, 4 is quarters, etc.). For
the latter option, using simplify = TRUE will simplify fractions where possible
(e.g., 2/4 will be simplified as 1/2). By default, the "low" option is used.

Simplify the fraction

190

layout

use_seps

pattern

sep_mark

system

locale

Value

fit_fraction

scalar<logical> // default: TRUE

If choosing to provide a numeric value for accuracy, the option to simplify the
fraction (where possible) can be taken with TRUE (the default). With FALSE,
denominators in fractions will be fixed to the value provided in accuracy.

Layout of fractions in HTML output

singl-kw:[inline|diagonall] // default: "inline"

For HTML output, the "inline” layout is the default. This layout places the
numerals of the fraction on the baseline and uses a standard slash character. The
"diagonal” layout will generate fractions that are typeset with raised/lowered
numerals and a virgule.

Use digit group separators
scalar<logical>// default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x3} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping
scalar<character>// default: ","

The string to use as a separator between groups of digits. For example, us-

ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Numbering system for grouping separators

singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

fmt_fraction 191

Compatibility of formatting function with data values

The fmt_fraction() formatting function is compatible with body cells that are of the "numeric”
or "integer"” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_fraction() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

* accuracy

e simplify

e layout

* use_seps

* pattern

* sep_mark

192 fmt_fraction

e system

e Jocale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en” for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator and decimal marks will be correct for the given locale. Should any value be
provided in sep_mark, it will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table. With the fmt_fraction()
function we can format the f_sold and f_income columns to display fractions. As for how the frac-
tions are represented, we are electing to use accuracy = 10. This gives all fractions as tenths. We
won’t simplify the fractions (by using simplify = FALSE) and this means that a fraction like 5/10
won’t become 1/2. With layout = "diagonal”, we get a diagonal display of all fractions.

pizzaplace |>
dplyr::group_by(type, size) |>
dplyr::summarize(
sold = dplyr::n(),
income = sum(price),
.groups = "drop_last”
E
dplyr::group_by(type) |>
dplyr: :mutate(
f_sold = sold / sum(sold),
f_income = income / sum(income),

) 1>
dplyr::arrange(type, dplyr::desc(income)) |>
gt(rowname_col = "size") |>

tab_header(
title = "Pizzas Sold in 2015",
subtitle = "Fraction of Sell Count and Revenue by Size per Type”
E
fmt_integer(columns = sold) |>
fmt_currency(columns = income) |>

fmt_fraction 193

fmt_fraction(
columns = starts_with("f_"),
accuracy = 10,
simplify = FALSE,
layout = "diagonal”

) 1>
sub_missing(missing_text = "") [>
tab_spanner (
label = "Sold",
columns = contains("sold")
) 1>
tab_spanner(
label = "Revenue”,
columns = contains("income"”)
) 1>

text_transform(
locations = cells_body(),
fn = function(x) {
dplyr::case_when(

X == 0 ~ "nil",
X 1= 0 ~ x
)
3
) 1>
cols_label(
sold = "Amount”,
income = "Amount",

f_sold = md("_f_"),

f_income = md("_f_")
) 1>
cols_align(align = "center"”, columns = starts_with("f")) |>
tab_options(

table.width = px(400),

row_group.as_column = TRUE

)
Function ID

3-7

Function Introduced

v@.4.0 (February 15, 2022)

See Also

The vector-formatting version of this function: vec_fmt_fraction().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_icon(),

194 fmt_icon

fmt_image (), fmt_index (), fmt_integer(), fmt_markdown (), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_icon Use icons within a table’s body cells

Description

We can draw from a library of thousands of icons and selectively insert them into a gt table. The
fmt_icon() function makes this possible and it operates a lot like fmt_flag() in that input cells
need to contain some reference to an icon name. We are exclusively using Font Awesome icons
here (and we do need to have the fontawesome package installed) so the reference is the short
icon name. Multiple icons can be included per cell by separating icon names with commas (e.g.,
"hard-drive, clock”). The sep argument allows for a common separator to be applied between
flag icons.

Usage

fmt_icon(
data,
columns = everything(),
rows = everything(),
height = "1em"”,
sep =" ",
stroke_color = NULL,
stroke_width = NULL,
stroke_alpha = NULL,
fill_color = NULL,
fill_alpha = NULL,
vertical_adj = NULL,
margin_left = NULL,
margin_right = NULL,

ally = c("semantic”, "decorative”, "none")
)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include

fimt_icon 195

starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

height Height of icon
scalar<character>// default: "1em"

The absolute height of the icon in the table cell. By default, this is set to "T1em".

sep Separator between icons
scalar<character>// default: " "

In the output of icons within a body cell, sep provides the separator between
each icon. By default, this is a single space character (" ").

stroke_color Color of the icon stroke/outline
scalar<character> // default: NULL (optional)

The icon stroke is essentially the outline of the icon. The color of the stroke can
be modified by applying a single color here. If not provided then the default
value of "currentColor” is applied so that the stroke color matches that of the
parent HTML element’s color attribute.

stroke_width Width of the icon stroke/outline
scalar<character|numeric|integer> // default: NULL (optional)

The stroke_width option allows for setting the color of the icon outline stroke.
By default, the stroke width is very small at "1px" so a size adjustment here can
sometimes be useful.

stroke_alpha Transparency value for icon stroke/outline
scalar<numeric> // default: NULL (optional)

The level of transparency for the icon stroke can be controlled with a decimal
value between @ and 1.

fill_color Color of the icon fill
scalar<character> // default: NULL (optional)

The fill color of the icon can be set with fill_color; providing a single color
here will change the color of the fill but not of the icon’s ’stroke’ or outline
(use stroke_color to modify that). If not provided then the default value of
"currentColor” is applied so that the fill matches the color of the parent HTML
element’s color attribute.

fill_alpha Transparency value for icon fill
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)

The level of transparency for the icon fill can be controlled with a decimal value
between @ and 1.

196 fmt_icon

vertical_adj Vertical adjustment of icon from baseline
scalar<character|numeric|integer> // default: NULL (optional)

The vertical alignment of the icon. By default, a length of "-0.125em" is used.

margin_left Margin width left of icon
scalar<character|numeric|integer> // default: NULL (optional)
The length value for the margin that’s to the left of the icon can be set with
margin_left. By default, "auto” is used for this but if space is needed on the
left-hand side then a length of "@.2em" is recommended as a starting point.

margin_right Margin width right of icon
scalar<character|numeric|integer> // default: NULL (optional)
The length value for the margin that’s to the right of the icon can be set with
margin_right. By default, "auto” is used for this but if space is needed on the
right-hand side then a length of "@.2em" is recommended as a starting point.

ally Accessibility mode for icon
singl-kw:[semantic|decorative|nonel // default: "semantic”
The accessibility mode for the icon display can be set with the a11y argument.
Icons can either be "semantic” or "decorative”. Using "none” will result in
no accessibility features for the icons.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_icon() formatting function is compatible with body cells that are of the "character” or
"factor” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_#() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

fimt_icon 197

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_icon() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* height

* sep

* stroke_color

* stroke_width

* stroke_alpha

e fill_color

e fill_alpha

e vertical_adj

* margin_left

* margin_right

* ally
Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with

cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Icons that can be used

The fmt_icon() function relies on an installation of the fontawesome package to operate and every
icon within that package can be accessed here with either an icon name or a full name. For example,
the Arrow Down icon has an icon name of "arrow-down” and its corresponding full name is "fas
fa-arrow-down”. In most cases you’ll want to use the shorter name, but some icons have both a
Solid ("fas") and a Regular ("far") variant so only the full name can disambiguate the pairing.
In the latest release of fontawesome (v0.5.2), there are 2,025 icons and you can view the entire
icon listing by using the info_icons() function. What you’ll get from that is an information table
showing every icon and associated set of identifiers.

198 fmt_icon

Examples

For this first example of generating icons with fmt_icon(), let’s make a simple tibble that has
two columns of Font Awesome icon names. We separate multiple icons per cell with commas. By
default, the icons are 1 em in height; we’re going to make the icons slightly larger here (so we can
see the fine details of them) by setting height = "4em".

dplyr::tibble(
animals = c¢(
"hippo"”, "fish,spider”, "mosquito,locust,frog”,
"dog,cat”, "kiwi-bird”

),

foods = c¢(
"bowl-rice"”, "egg,pizza-slice"”, "burger,lemon,cheese”,
"carrot,hotdog”, "bacon"

)

) 1>

gt >

fmt_icon(height = "4em") |>

cols_align(align = "center"”, columns = everything())

Let’s take a few rows from the towny dataset and make it so the csd_type column contains Font
Awesome icon names (we want only the “city” and "house-chimney” icons here). After using
fmt_icon() to format the csd_type column, we get icons that are representative of the two cate-
gories of municipality for this subset of data.

towny |>
dplyr::select(name, csd_type, population_2021) |>
dplyr::filter(csd_type %in% c("city"”, "town")) |>
dplyr::group_by(csd_type) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 5) [>
dplyr::ungroup() |>
dplyr: :mutate(

csd_type = ifelse(csd_type == "town"”, "house-chimney"”, "city")
) 1>
gt |>

fmt_integer() [>
fmt_icon(columns = csd_type) [>
cols_move_to_start(columns = csd_type) |>
cols_label(

csd_type = "",

name = "City/Town",

population_2021 = "Population”
)

Let’s use a portion of the metro dataset to create a gt table. Depending on which train services are
offered at the subset of stations, Font Awesome icon names will be applied to cells where the dif-
ferent services exist (the specific names are "train-subway”, "train"”, and "train-tram”). With

fmt_icon 199

tidyr’s unite() function, those icon names can be converged into a single column (services)
with the NA values removed. Since the names correspond to icons and they are in the correct for-
mat (separated by commas), they can be formatted as Font Awesome icons with the fmt_icon()
function.

metro |>
dplyr::select(name, lines, connect_rer, connect_tramway, location) |>
dplyr::slice_tail(n = 10) |>
dplyr::mutate(lines = "train-subway”) |>
dplyr::mutate(connect_rer = ifelse(!is.na(connect_rer), "train", NA)) |>
dplyr::mutate(
connect_tramway = ifelse(!is.na(connect_tramway), "train-tram”, NA)
) 1>
tidyr::unite(
col = services,
lines:connect_tramway,
sep = ",",
na.rm = TRUE
e
gt |>
fmt_icon(
columns = services,
ally = "decorative”
) 1>
cols_merge(
columns = c(name, services),

pattern = "{1} ({2})"

E
cols_label(
name = "Station”,
location = "Location”
)

Taking a handful of starred reviews from a popular film review website, we will attempt to format
a numerical score (0 to 4) to use the "star” and "star-half" icons. In this case, it is useful to
generate the repeating sequence of icon names (separated by commas) in the rating column before
introducing the table to gt(). We can make use of the numerical rating values in stars within
the fmt_icon() function with a little help from the from_column() helper. Using that, we can
dynamically adjust the icon’s fill_alpha (i.e., opacity) value and accentuate the films with higher
scores.

dplyr::tibble(

film = c(
"The Passengers of the Night", "Serena”, "The Father”,
"Roma"”, "The Handmaiden"”, "Violet"”, "Vice”

),

stars = ¢c(3, 1, 3.5, 4, 4, 2.5, 1.5)
) 1>

200 fmt_image

dplyr::mutate(rating = dplyr::case_when(

stars %% 1 == @ ~ strrep("star,"”, stars),
stars %% 1 != @ ~ paste@(strrep(”star,”, floor(stars)), "star-half")
» 1>
gt 1>
fmt_icon(
columns = rating,
fill_color = "red",
fill_alpha = from_column("stars"”, fn = function(x) x / 4)
) 1>

cols_hide(columns = stars) |>
tab_source_note(
source_note = md(
"Data obtained from <https://www.rogerebert.com/reviews>."
)
)

Function ID

3-22

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_image Format image paths to generate images in cells

Description

To more easily insert graphics into body cells, we can use the fmt_image() function. This allows
for one or more images to be placed in the targeted cells. The cells need to contain some reference
to an image file, either: (1) complete http/https or local paths to the files; (2) the file names, where a
common path can be provided via path; or (3) a fragment of the file name, where the file_pattern
helps to compose the entire file name and path provides the path information. This should be
expressly used on columns that contain only references to image files (i.e., no image references
as part of a larger block of text). Multiple images can be included per cell by separating image
references by commas. The sep argument allows for a common separator to be applied between
images.

fmt_image

Usage

fmt_image(

201

data,

columns = everything(),
rows = everything(),
height = NULL,

width = NULL,
Sep = n H,
path = NULL,

file_pattern = "{x}",
encode = TRUE

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target

height, width

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with (), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Height and width of images

scalar<character> // default: NULL (optional)

The absolute height of the image in the table cell. If you set the width and
height remains NULL (or vice versa), the width-to-height ratio will be preserved
when gt calculates the length of the missing dimension. If width and height
are both NULL, height is set as "2em” and width will be calculated.

sep Separator between images
scalar<character>// default: " "
In the output of images within a body cell, sep provides the separator between
each image.

path Path to image files

scalar<character> // default: NULL (optional)

202 fmt_image
An optional path to local image files (this is combined with all filenames).
file_pattern File pattern specification
scalar<character>// default: "{x}"
The pattern to use for mapping input values in the body cells to the names of
the graphics files. The string supplied should use "{x}" in the pattern to map
filename fragments to input strings.
encode Use Base64 encoding
scalar<logical> // default: TRUE
The option to always use Base64 encoding for image paths that are determined
to be local. By default, this is TRUE.
Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

fmt_image 203

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_image () to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* height

e width

* sep

* path

e file_pattern

e encode

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Using a small portion of metro dataset, let’s create a gt table. We will only include a few columns
and rows from that table. The 1lines and connect_rer columns have comma-separated listings of
numbers/letters (corresponding to lines served at each station). We have a directory SVG graph-
ics for all of these lines in the package (the path for the image directory can be accessed via
system.file("metro_svg", package = "gt")), and the filenames roughly correspond to the data
in those two columns. The fmt_image() function can be used with these inputs since the path
and file_pattern arguments allow us to compose complete and valid file locations. What you get
from this are sequences of images in the table cells, taken from the referenced graphics files on disk.

metro |>
dplyr::select(name, caption, lines, connect_rer) |[>
dplyr::slice_head(n = 10) |>
gt |>
cols_merge(
columns = c(name, caption),
pattern = "{1}<< ({2})>>"
) 1>
text_replace(
locations = cells_body(columns = name),
pattern = "\\((.*\\)",

replacement = "
(\\1)"
) 1>
sub_missing(columns = connect_rer, missing_text = "") |>
fmt_image(

columns = lines,
path = system.file("metro_svg"”, package = "gt"),

204 fmt_index

file_pattern = "metro_{x}.svg"
) 1>
fmt_image(
columns = connect_rer,
path = system.file("metro_svg", package = "gt"),
file_pattern = "rer_{x}.svg"
e
cols_label(
name = "Station”,
lines = "Lines",
connect_rer = "RER"
e
cols_align(align = "left") |>
tab_style(
style = cell_borders(
sides = c("left”, "right"),
weight = px(1),
color = "gray85"
),
locations = cells_body(columns = lines)
) 1>
opt_stylize(style = 6, color = "blue”) |>
opt_all_caps() |>
opt_horizontal_padding(scale

1.75)

Function ID

3-20

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_index (), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_index Format values to indexed characters

fmmt_index

Description

205

With numeric values in a gt table we can transform those to index values, usually based on letters.
These characters can be derived from a specified locale and they are intended for ordering (often
leaving out characters with diacritical marks).

Usage

fmt_index(
data,

columns = everything(),

rows = everything(),

case = c("upper”, "lower"),
index_algo = c("repeat”, "excel"),
pattern = "{x}",

locale = NULL

Arguments

data

columns

rows

case

index_algo

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt ()
function.

Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Use uppercase or lowercase letters

singl-kw: [upper|lower] // default: "upper"”

Should the resulting index characters be rendered as uppercase ("upper”) or
lowercase ("lower") letters? By default, this is set to "upper”.

Indexing algorithm

singl-kw: [repeat|excel] // default: "repeat”

The indexing algorithm handles the recycling of the index character set. By
default, the "repeat” option is used where characters are doubled, tripled,

206

fmt_index

and so on, when moving past the character set limit. The alternative is the
"excel” option, where Excel-based column naming is adapted and used here
(e.g.[..., Y, Z, A\, AB, ...D).

pattern Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_index() formatting function is compatible with body cells that are of the "numeric” or
"integer” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_#() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

fmmt_index 207

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_index() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

e case
e index_algo
* pattern

e locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Examples

Using a summarized version of the towny dataset, let’s create a gt table. Here, the fmt_index()
function is used to transform incremental integer values into capitalized letters (in the ranking
column). With cols_merge() that formatted column of "A" to "E" values is merged with the
census_div column to create an indexed listing of census subdivisions, here ordered by increasing
total municipal population.

towny |>

dplyr::select(name, csd_type, census_div, population_2021) |>
dplyr::group_by(census_div) |>
dplyr::summarize(

population = sum(population_2021),

.groups = "drop_last"
E
dplyr::arrange(population) |>
dplyr::slice_head(n = 5) |>
dplyr::mutate(ranking = dplyr::row_number()) [>
dplyr::select(ranking, dplyr::everything()) |>
gtO 1>

208 fmt_integer

fmt_integer() |>

fmt_index(columns = ranking, pattern = "{x3}.") |>
cols_merge(columns = c(ranking, census_div)) |[>
cols_align(align = "left"”, columns = ranking) |>

cols_label(
ranking = md("Census \nSubdivision"),
population = md("Population \nin 2021")
) 1>

tab_header(title = md("The smallest \ncensus subdivisions")) |>
tab_options(table.width = px(325))

Function ID

3-10

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The vector-formatting version of this function: vec_fmt_index().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_integer Format values as integers

Description

With numeric values in a gt table, we can perform number-based formatting so that the targeted
values are always rendered as integer values. We can have fine control over integer formatting with
the following options:

* digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol
* scaling: we can choose to scale targeted values by a multiplier value

* large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

* pattern: option to use a text pattern for decoration of the formatted values

* locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

fmt_integer 209

Usage

fmt_integer(
data,
columns = everything(),
rows = everything(),
use_seps = TRUE,
accounting = FALSE,
scale_by =1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = " "
force_sign = FALSE,
system = c("intl"”, "ind"),
locale = NULL

)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

use_seps Use digit group separators
scalar<logical>// default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style

scalar<logical>// default: FALSE

An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

210

scale_by

suffixing

pattern

sep_mark

force_sign

system

fmt_integer

Scale values by a fixed multiplier
scalar<numeric|integer>// default: 1

All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE

The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 2M). This option can accept a logical value,
where FALSE (the default) will not perform this transformation and TRUE will
apply thousands (K), millions (M), billions (B), and trillions (T) suffixes after au-
tomatic value scaling.

We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "M1", "Bn", "Tr") replaces "K", "M",
"B",and "T").

Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K"”, "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).

Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

If using system="ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

non

scalar<character> // default: ",

The string to use as a separator between groups of digits. For example, us-
ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"

fmt_integer 211

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_integer () formatting function is compatible with body cells that are of the "numeric”
or "integer” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to

212 fmt_integer

the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_integer() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

* use_seps

* accounting

e scale_by

e suffixing

* pattern

* sep_mark

* force_sign

* system

* locale
Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there

is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en” for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator marks will be correct for the given locale. Should any value be provided in
sep_mark, it will be overridden by the locale’s preferred value.

Note that a 1locale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

For this example, we’ll use two columns from the exibble dataset and create a simple gt table.
With the fmt_integer () function, we’ll format the num column as integer values having no digit
separators (with the use_seps = FALSE option).

fmt_integer

exibble |
dplyr::

gt() [|>

fmt_int

Let’s use a

213

>
select(num, char) [|>

eger (use_seps = FALSE)

modified version of the countrypops dataset to create a gt table with row labels. We

will format all numeric columns with fmt_integer() and scale all values by 1/ 1E6, giving us
integer values representing millions of people. We can make clear what the values represent with
an informative spanner label via tab_spanner ().

countrypo
dplyr:
dplyr:
dplyr:
tidyr:
dplyr:
gt(rown
fmt_int
tab_spa

ps |>

:select(country_code_3, year, population) |>

:filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
:filter(year > 1975 & year %% 5 == 0) |>

:spread(year, population) |>

:arrange(desc(*2015%)) |>

ame_col = "country_code_3") |>
eger(scale_by = 1 / 1E6) |>
nner(label = "Millions of People”, columns = everything())

Using a subset of the towny dataset, we can do interesting things with integer values. Through

cols_add(
2001 popul

) we’ll add the difference column (which calculates the difference between 2021 and
ations). All numeric values will be formatted with a first pass of fmt_integer(); a sec-

ond pass of fmt_integer() focuses on the difference column and here we use the force_sign
= TRUE option to draw attention to positive and negative difference values.

towny |>

dplyr::select(name, population_2001, population_2021) |>
dplyr::slice_tail(n = 10) |>

gt() [|>

cols_add(difference = population_2021 - population_2001) |>
fmt_integer() |>
fmt_integer(columns = difference, force_sign = TRUE) |>

cols_label_with(fn = function(x) gsub("population_", "", x)) |>
tab_style(
style = cell_fill(color = "gray9e"),

locat

Function ID

3-2

ions = cells_body(columns = difference)

Function Introduced

v@.3.1 (August 9, 2021)

214 fmt_markdown

See Also

The fmt_number () function might be more of what you need if you’d like decimal values in your
outputs. Need to do integer-based formatting on a vector? Take a look at the vector-formatting
version of this function: vec_fmt_integer().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_markdown Format Markdown text

Description

Any Markdown-formatted text in the incoming cells will be transformed to the appropriate output
type during render when using fmt_markdown ().

Usage

fmt_markdown (
data,
columns = everything(),
rows = everything(),

md_engine = c("markdown", "commonmark")
)
Arguments
data The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),

fmt_markdown 215

num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

md_engine Choice of Markdown engine
singl-kw: [markdown|commonmark] // default: "markdown”

The engine preference for Markdown rendering. By default, this is set to "markdown”
where gt will use the markdown package for Markdown conversion to HTML

and LaTeX. The other option is "commonmark” and with that the commonmark
package will be used.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with the md_engine argument of fmt_markdown ()
to obtain varying parameter values from a specified column within the table. This means that each
row could be formatted a little bit differently.

216 fmt_markdown

Please note that for this argument (nd_engine), a from_column() call needs to reference a column
that has data of the character type. Additional columns for parameter values can be generated
with the cols_add() function (if not already present). Columns that contain parameter data can
also be hidden from final display with cols_hide().

Examples
Create a few Markdown-based text snippets.

text_l1a <= "
This is Markdown.

Markdown’s syntax is comprised entirely of
punctuation characters, which punctuation
characters have been carefully chosen so as
to look like what they mean... assuming
you’ve ever used email.

n

text_1b <- "
Info on Markdown syntax can be found
[herel(https://daringfireball.net/projects/markdown/).

text_2a <- "
The *xgtxx package has these datasets:

- ‘countrypops®
- ‘sza
- ‘gtcars®

- ‘sp500*

- ‘pizzaplace®
- ‘exibble®

\

text_2b <- "
There's a quick reference [here](https://commonmark.org/help/).

n

Arrange the text snippets as a tibble using the dplyr::tribble() function. then, create a gt table
and format all columns with fmt_markdown().

dplyr::tribble(
~Markdown, ~md,
text_1a, text_2a,
text_1b, text_2b,
) 1>
gt |>
fmt_markdown(columns = everything()) |>
tab_options(table.width = px(400))

fmt_number 217

Function ID
3-23

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_markdown().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index (), fmt_integer (), fmt_number (), fmt_partsper(), fmt_passthrough(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),

fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_number Format numeric values

Description

With numeric values in a gt table, we can perform number-based formatting so that the targeted
values are rendered with a higher consideration for tabular presentation. Furthermore, there is finer
control over numeric formatting with the following options:

* decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

» digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

* scaling: we can choose to scale targeted values by a multiplier value

* large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

* pattern: option to use a text pattern for decoration of the formatted values

* locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_number (
data,
columns = everything(),
rows = everything(),
decimals = 2,
n_sigfig = NULL,
drop_trailing_zeros = FALSE,

218

drop_trailing

fmt_number

_dec_mark = TRUE,

use_seps = TRUE,

accounting =
scale_by =1,

FALSE,

suffixing = FALSE,

pattern = "{x

sep_mark =",
n

dec_mark .
force_sign =

} n
’
n

’
n

FALSE,

system = c("intl"”, "ind"),

locale = NULL

Arguments

data

columns

rows

decimals

n_sigfig

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt ()
function.

Columns to target
<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with @ decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer () function should be considered.

Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)

A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,

fmt_number

219

n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical>// default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

use_seps

accounting

scale_by

suffixing

Drop the trailing decimal mark
scalar<logical>// default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

Use digit group separators
scalar<logical> // default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Use accounting style
scalar<logical>// default: FALSE

An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

Scale values by a fixed multiplier
scalar<numeric|integer>// default: 1

All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

Specification for large-number suffixing
scalar<logical>|vector<character>// default: FALSE

The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.

We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k"”, "M1"”, "Bn", "Tr") replaces "K", "M",
"B",and "T").

Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).

220

pattern

sep_mark

dec_mark

force_sign

system

locale

Value

fmt_number

Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

If using system = "ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

non

scalar<character> // default: ",

The string to use as a separator between groups of digits. For example, us-
ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: "."

The string to be used as the decimal mark. For example, using dec_mark =
" " with the value @.152 would result in a formatted value of "@,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

Numbering system for grouping separators

singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

fmt_number 221

Compatibility of formatting function with data values

The fmt_number () formatting function is compatible with body cells that are of the "numeric” or
"integer” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_number () to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* decimals

* n_sigfig

e drop_trailing_zeros

e drop_trailing_dec_mark

* use_seps

* accounting

222 fmt_number

* scale_by

e suffixing
* pattern

e sep_mark

e dec_mark

* force_sign
* system

e Jocale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s use the exibble dataset to create a gt table. With the fmt_number () function, we’ll format the
num column to have three decimal places (with decimals = 3) and omit the use of digit separators
(with use_seps = FALSE).

exibble |>
gt >
fmt_number (
columns = num,
decimals = 3,
use_seps = FALSE
)

Use a modified version of the countrypops dataset to create a gt table with row labels. Format
all columns to use large-number suffixing (e.g., where "10,000,000" becomes "10M") with the
suffixing = TRUE option.

fmt_number 223

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c(”"CHN"”, "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == @) |>
tidyr: :spread(year, population) |>
dplyr::arrange(desc(*2015%)) |>
gt(rowname_col = "country_code_3") [>
fmt_number (suffixing = TRUE)

In a variation of the previous table, we can combine large-number suffixing with a declaration of
the number of significant digits to use. With things like population figures, n_sigfig = 3 is a very
good option.

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == @) |>
tidyr: :spread(year, population) [>
dplyr::arrange(desc(*2015%)) |>
gt(rowname_col = "country_code_3") |>
fmt_number (suffixing = TRUE, n_sigfig = 3)

There can be cases where you want to show numbers to a large number of decimal places but also
drop the unnecessary trailing zeros for low-precision values. Let’s take a portion of the towny
dataset and format the latitude and longitude columns with fmt_number (). We’ll have up to 5
digits displayed as decimal values, but we’ll also unconditionally drop any runs of trailing zeros in
the decimal part with drop_trailing_zeros = TRUE.

towny |>

dplyr::select(name, latitude, longitude) |>
dplyr::slice_head(n = 10) |>
gt 1>
fmt_number (decimals = 5, drop_trailing_zeros = TRUE) |>
cols_merge(columns = -name, pattern = "{13}, {2}") |>
cols_label(

name ~ "Municipality”,

latitude = "Location”

Another strategy for dealing with precision of decimals is to have a separate column of values that
specify how many decimal digits to retain. Such a column can be added via cols_add() or it can
be part of the input table for gt (). With that column available, it can be referenced in the decimals
argument with the from_column() helper function. This approach yields a display of coordinate
values that reflects the measurement precision of each value.

towny |>
dplyr::select(name, latitude, longitude) |>
dplyr::slice_head(n = 10) |>

224 fmt_partsper

gt I>
cols_add(dec_digits = ¢c(1, 2, 2, 5, 5, 2, 3, 2, 3, 3)) |>
fmt_number (decimals = from_column(column = "dec_digits")) |>
cols_merge(columns = -name, pattern = "{1}, {2}") |>
cols_label(

name ~ "Municipality”,

latitude = "Location”
) 1>

cols_hide(columns = dec_digits)

Function ID

3-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The fmt_integer () function might be more useful if you really need to format numeric values to
appear as integers (i.e., no decimals will be shown and input values are rounded as necessary). Need
to do numeric formatting on a vector? Take a look at the vector-formatting version of this function:
vec_fmt_number ().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_partsper Format values as parts-per quantities

Description

With numeric values in a gt table we can format the values so that they are rendered as per mille,
ppm, ppb, etc., quantities. The following list of keywords (with associated naming and scaling
factors) is available to use within fmt_partsper():

e "per-mille”: Per mille, (1 partin 1,000)

e "per-myriad”: Per myriad, (1 partin 10,000)

e "pcm": Per cent mille (1 part in 100, 000)

e "ppm": Parts per million, (1 partin 1,000, 000)

* "ppb": Parts per billion, (1 partin 1,000,000,000)

e "ppt": Parts per trillion, (1 partin 1,000,000,000,000)

fmt_partsper 225

"ppq": Parts per quadrillion, (1 partin 1,000,000,000,000,000)

The function provides a lot of formatting control and we can use the following options:

Usage

custom symbol/units: we can override the automatic symbol or units display with our own
choice as the situation warrants

decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

value scaling toggle: choose to disable automatic value scaling in the situation that values are
already scaled coming in (and just require the appropriate symbol or unit display)

pattern: option to use a text pattern for decoration of the formatted values

locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

fmt_partsper(
data,
columns = everything(),
rows = everything(),
to_units = c("per-mille”, "per-myriad”, "pcm”, "ppm”, "ppb”, "ppt"”, "ppq"),
symbol = "auto”,
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
pattern = "{x}",

n o n

sep_mark = ",",

dec_mark =

non

force_sign = FALSE,
incl_space = "auto”,
system = c("intl"”, "ind"),
locale = NULL

)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include

226

rows

to_units

symbol

decimals

fmt_partsper

starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Output Quantity
singl-kw:[per-mille|per-myriad|pcm|ppm|ppb|ppt|ppql// default: "per-mille”
A keyword that signifies the desired output quantity. This can be any from the

n on n on n on

following set: "per-mille"”, "per-myriad”, "pcm”, "ppm”, "ppb”, "ppt”, or

ppg-.

Symbol or units to use in output display

scalar<character> // default: "auto"

The symbol/units to use for the quantity. By default, this is set to "auto” and
gt will choose the appropriate symbol based on the to_units keyword and the
output context. However, this can be changed by supplying a string (e.g, using
symbol = "ppbV" when to_units = "ppb").

Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with @ decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer () function should be considered.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical>// default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

scale_values

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

Scale input values accordingly

scalar<logical> // default: TRUE

Should the values be scaled through multiplication according to the keyword
set in to_units? By default this is TRUE since the expectation is that normally
values are proportions. Setting to FALSE signifies that the values are already
scaled and require only the appropriate symbol/units when formatted.

fmt_partsper

use_seps

pattern

sep_mark

dec_mark

force_sign

incl_space

system

locale

227

Use digit group separators

scalar<logical> // default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Specification of the formatting pattern

scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

scalar<character>// default: " ,"

The string to use as a separator between groups of digits. For example, us-

ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: "."
The string to be used as the decimal mark. For example, using dec_mark =
", " with the value @.152 would result in a formatted value of "@,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

Include a space between the value and the symbol/units
scalar<character>|scalar<logical> // default: "auto”

An option for whether to include a space between the value and the symbol/units.
The default is "auto” which provides spacing dependent on the mark itself. This
can be directly controlled by using either TRUE or FALSE.

Numbering system for grouping separators

singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a 1locale value provided here will override that global
locale.

228

fmt_partsper

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_partsper () formatting function is compatible with body cells that are of the "numeric”
or "integer"” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_partsper() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

e to_units

e symbol

e decimals

fmt_partsper 229

e drop_trailing_zeros

e drop_trailing_dec_mark

* scale_values

* use_seps

* pattern

e sep_mark

* dec_mark

e force_sign

* incl_space

* system

* locale
Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add () function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there

is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Create a tibble of small numeric values and generate a gt table. Format the a column to appear
in scientific notation with fmt_scientific() and format the b column as per mille values with
fmt_partsper().

dplyr::tibble(x = 0:-5, a = 10*(0:-5), b = a) |>
gt(rowname_col = "x") |>
fmt_scientific(a, decimals = @) |>
fmt_partsper(
columns = b,
to_units = "per-mille”

)

Function ID

3-6

230 fmt_passthrough

Function Introduced

v0.6.0 (May 24, 2022)

See Also

The vector-formatting version of this function: vec_fmt_partsper().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index (), fmt_integer (), fmt_markdown(), fmt_number (), fmt_passthrough(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),

fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_passthrough Format by simply passing data through

Description

We can format values with the fmt_passthrough() function, which does little more than: (1)
coercing to character (as all the fmt_x() functions do), and (2) applying decorator text via the
pattern argument (the default is to apply nothing). This foramtting function is useful when don’t
want to modify the input data other than to decorate it within a pattern.

Usage

fmt_passthrough(
data,
columns = everything(),
rows = everything(),
escape = TRUE,
pattern = "{x}"

)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

fmt_passthrough 231

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

escape Text escaping
scalar<logical>// default: TRUE
An option to escape text according to the final output format of the table. For
example, if a LaTeX table is to be generated then LaTeX escaping would be
performed during rendering. By default this is set to TRUE but setting as FALSE
would be useful in the case where text is crafted for a specific output format in
mind.

pattern Specification of the formatting pattern
scalar<character>// default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

232 fmt_passthrough

expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_passthrough() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

¢ escape

e pattern

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Let’s use the exibble dataset to create a single-column gt table (with only the char column). Now
we can pass the data in that column through the *non-formatter’ that is fmt_passthrough(). While
the the function doesn’t do any explicit formatting it has a feature common to all other formatting
functions: the pattern argument. So that’s what we’ll use in this example, applying a simple
pattern to the non-NA values that adds an "s" character.

exibble |>
dplyr::select(char) [|>
gtO I>
fmt_passthrough(
rows = !is.na(char),
pattern = "{x}s"
)
Function ID
3-24

Function Introduced

v0.2.0.5 (March 31, 2020)

fmt_percent 233

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index (), fmt_integer(), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_percent Format values as a percentage

Description

With numeric values in a gt table, we can perform percentage-based formatting. It is assumed
the input numeric values are proportional values and, in this case, the values will be automatically
multiplied by 100 before decorating with a percent sign (the other case is accommodated though
setting the scale_values to FALSE). For more control over percentage formatting, we can use the
following options:

* percent sign placement: the percent sign can be placed after or before the values and a space
can be inserted between the symbol and the value.

* decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

* digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

* value scaling toggle: choose to disable automatic value scaling in the situation that values are
already scaled coming in (and just require the percent symbol)

* pattern: option to use a text pattern for decoration of the formatted values

* locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_percent(
data,
columns = everything(),
rows = everything(),
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
accounting = FALSE,
pattern = "{x}",

non

sep_mark = ",",

non

dec_mark = ".",

234 fmt_percent
force_sign = FALSE,
placement = "right”,
incl_space = FALSE,
system = c("intl"”, "ind"),
locale = NULL
)
Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.
columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().
rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).
decimals Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with @ decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = @, the fmt_integer () function should be considered.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical> // default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

fmt_percent

scale_values

use_seps

accounting

pattern

sep_mark

dec_mark

force_sign

placement

incl_space

235

Multiply input values by 100

scalar<logical> // default: TRUE

Should the values be scaled through multiplication by 100? By default this
scaling is performed since the expectation is that incoming values are usually
proportional. Setting to FALSE signifies that the values are already scaled and
require only the percent sign when formatted.

Use digit group separators

scalar<logical>// default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

Use accounting style

scalar<logical>// default: FALSE

An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

Specification of the formatting pattern

scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

n on

scalar<character> // default: ",
The string to use as a separator between groups of digits. For example, us-

n o n

ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

Decimal mark
scalar<character>// default: " ."
The string to be used as the decimal mark. For example, using dec_mark =
" " with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

Forcing the display of a positive sign

scalar<logical>// default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

Percent sign placement

singl-kw:[right|left] // default: "right”

This option governs the placement of the percent sign. This can be either be
"right"” (the default) or "left".

Include a space between the value and the % sign

scalar<logical>// default: FALSE

An option for whether to include a space between the value and the percent sign.
The default is to not introduce a space character.

236

fmt_percent

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a 1locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_percent() formatting function is compatible with body cells that are of the "numeric”
or "integer” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

fmt_percent 237

expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_percent() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

* decimals

e drop_trailing_zeros

e drop_trailing_dec_mark

* scale_values

* use_seps

* accounting

* pattern

e sep_mark

e dec_mark

e force_sign

e incl_space

* placement

e system

* locale
Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add () function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there

is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

238 fimt_roman

Examples

Use a summarized version of the pizzaplace dataset to create a gt table. With the fmt_percent ()
function, we can format the frac_of_quota column to display values as percentages (to one deci-
mal place).

pizzaplace |>
dplyr::mutate(month = as.numeric(substr(date, 6, 7))) |>
dplyr::group_by(month) |>
dplyr::summarize(pizzas_sold = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(frac_of_quota = pizzas_sold / 4000) |>
gt(rowname_col = "month”) [>
fmt_percent(
columns = frac_of_quota,
decimals = 1

Function ID

3-5

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_percent().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_roman Format values as Roman numerals

Description

With numeric values in a gt table we can transform those to Roman numerals, rounding values as
necessary.

fmt_roman 239

Usage

fmt_roman(
data,
columns = everything(),
rows = everything(),

case = c("upper”, "lower"),
pattern = "{x}"
)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains (), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

case Use uppercase or lowercase letters
singl-kw: [upper |lower] // default: "upper”
Should Roman numerals should be rendered as uppercase ("upper”) or lower-
case ("lower") letters? By default, this is set to "upper”.

pattern Specification of the formatting pattern
scalar<character>// default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Value

An object of class gt_tbl.

240 fimt_roman

Compatibility of formatting function with data values

The fmt_roman() formatting function is compatible with body cells that are of the "numeric” or
"integer"” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_roman() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

e case
* pattern

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-

erence a column that has data of the correct type (this is different for each argument). Addi-

tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with

fmt_roman 241

cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Create a tibble of small numeric values and generate a gt table. Format the roman column to appear
as Roman numerals with fmt_roman().

dplyr::tibble(arabic = c(1, 8, 24, 85), roman = arabic) |>
gt(rowname_col = "arabic") |>
fmt_roman(columns = roman)

Formatting values to Roman numerals can be very useful when combining such output with row
labels (usually through cols_merge()). Here’s an example where we take a portion of the illness
dataset and generate some row labels that combine (1) a row number (in lowercase Roman numer-
als), (2) the name of the test, and (3) the measurement units for the test (nicely formatted by way of
fmt_units()):

illness [|>
dplyr::slice_head(n = 6) |>
gt(rowname_col = "test"”) |>

fmt_units(columns = units) |>

cols_hide(columns = starts_with("day")) |>
sub_missing(missing_text = "") |>
cols_merge_range(col_begin = norm_1, col_end = norm_u) |>
cols_add(i = 1:6) |>

fmt_roman(columns = i, case = "lower"”, pattern = "{x}.") |>
cols_merge(columns = c(test, i, units), pattern = "{2} {1} ({3}1)") |>
cols_label(norm_1 = "Normal Range") |>

tab_stubhead(label = "Test")

Function ID
3-9

Function Introduced

v0.8.0 (November 16, 2022)

See Also

The vector-formatting version of this function: vec_fmt_roman().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_scientific(), fmt_spelled_num(), fmt_time(),
fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

242

fimt_scientific

fmt_scientific

Format values to scientific notation

Description

With numeric values in a gt table, we can perform formatting so that the targeted values are rendered
in scientific notation, where extremely large or very small numbers can be expressed in a more
practical fashion. Here, numbers are written in the form of a mantissa (m) and an exponent (n) with
the construction m x 10”7 or mEn. The mantissa component is a number between 1 and 10. For
instance, 2.5 x 10%9 can be used to represent the value 2,500,000,000 in scientific notation. In a
similar way, 0.00000012 can be expressed as 1.2 x 10*-7. Due to its ability to describe numbers
more succinctly and its ease of calculation, scientific notation is widely employed in scientific and

technical domains.

We have fine control over the formatting task, with the following options:

* decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice

of the decimal

* scaling: we can choose to scale targeted values by a multiplier value

* pattern: option to use a text pattern for decoration of the formatted values

symbol

* locale-based formatting: providing a locale ID will result in formatting specific to the chosen

locale

Usage

fmt_scientific(
data,

columns = everything(),
rows = everything(),

decimals = 2,

n_sigfig = NULL,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,

scale_by =1,

exp_style = "x1on",
pattern = "{x}",

n on

sep_mark =",
dec_mark = ".
force_sign_m =
force_sign_n =
locale = NULL

n

Arguments

)

FALSE,
FALSE,

data The gt table data object
obj:<gt_tbl>// required

fmt_scientific

columns

rows

decimals

n_sigfig

243

This is the gt table object that is commonly created through use of the gt ()
function.

Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target

<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).
Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with @ decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = @, the fmt_integer () function should be considered.

Number of significant figures

scalar<numeric|integer>(val>=1) // default: NULL (optional)

A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros

scalar<logical>// default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

scale_by

Drop the trailing decimal mark

scalar<logical> // default: TRUE

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

Scale values by a fixed multiplier

scalar<numeric|integer>// default: 1

All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

244

exp_style

pattern

sep_mark

dec_mark

fimt_scientific

Style declaration for exponent formatting

scalar<character>// default: "x1@n"

Style of formatting to use for the scientific notation formatting. By default this
is "x1@n" but other options include using a single letter (e.g., "e”, "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten”
for using a stylized "10" marker.

Specification of the formatting pattern

scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Separator mark for digit grouping

scalar<character>// default: " ,"

The string to use as a separator between groups of digits. For example, us-

ing sep_mark =", " with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).
Decimal mark

scalar<character>// default: "."
The string to be used as the decimal mark. For example, using dec_mark =
" " with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign_m, force_sign_n

locale

Value

Forcing the display of a positive sign

scalar<logical> // default: FALSE

Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_scientific() formatting function is compatible with body cells that are of the "numeric”
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

fmt_scientific 245

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_scientific() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

e decimals

e drop_trailing_zeros

e drop_trailing_dec_mark

* scale_by

* exp_style

* pattern

* sep_mark

e dec_mark

e force_sign_m

* force_sign_n

246 fimt_scientific

e locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a 1ocale value provided here will override any global locale setting performed in gt ()’s

own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s use the exibble dataset to create a simple gt table. We’ll elect to the num column as partially
numeric and partially in scientific notation. This is done with two separate calls of fmt_number ()
and fmt_scientific(). We’ll use the expressions num > 500 and num <= 500 in the functions’
respective rows arguments to target formatting to specific cells.

exibble |>

gt I>

fmt_number (
columns = num,
rows = num > 500,
decimals = 1,
scale_by = 1/1000,
pattern = "{x}K"

) 1>

fmt_scientific(
columns = num,
rows = num <= 500,
decimals = 1

The constants table contains a plethora of data on the fundamental physical constant and most
values (in the units used) are either very small or very large, so scientific formatting is suitable.
The values differ in the degree of measurement precision and separate columns (sf_value and
sf_uncert) contain the exact number of significant figures for each measurement value and the
associated uncertainty value. We can use the n_sigfig argument of fmt_scientific() in con-
junction with the from_column() helper to get the correct number of significant digits for each
value.

fmt_spelled_num 247

constants |>

dplyr::filter(grepl("Planck”, name)) |>
gt |>
fmt_scientific(

columns = value,

n_sigfig = from_column(column = "sf_value”)
e
fmt_scientific(

columns = uncert,

n_sigfig = from_column(column = "sf_uncert")
) 1>
cols_hide(columns = starts_with("sf")) |>
fmt_units(columns = units) |>
sub_missing(missing_text = "")

Function ID

3-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_scientific().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_spelled_num Format values to spelled-out numbers

Description

With numeric values in a gt table we can transform those to numbers that are spelled out with
the fmt_spelled_num() function. Any values from @ to 100 can be spelled out so, for example,
the value 23 will be formatted as "twenty-three”. Providing a locale ID will result in the number
spelled out in the locale’s language rules. For example, should a Swedish locale ("sv") be provided,
the input value 23 will yield "tjugotre”. In addition to this, we can optionally use the pattern
argument for decoration of the formatted values.

248

Usage

fmt_spelled_num

fmt_spelled_num(
data,
columns = everything(),
rows = everything(),
pattern = "{x}",

locale
)
Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a 1locale value provided here will override that global
locale.

fmt_spelled_num 249

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_spelled_num() formatting function is compatible with body cells that are of the "numeric”
or "integer” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_spelled_num() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

* pattern

e locale

250 fmt_spelled_num

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Supported locales

The following 80 locales are supported in the locale argument of fmt_spelled_num(): "af”
(Afrikaans), "ak" (Akan), "am” (Amharic), "ar" (Arabic), "az" (Azerbaijani), "be" (Belarusian),
"bg" (Bulgarian), "bs" (Bosnian), "ca” (Catalan), "ccp” (Chakma), "chr"” (Cherokee), "cs"
(Czech), "cy" (Welsh), "da" (Danish), "de" (German), "de-CH" (German (Switzerland)), "ee"”
(Ewe), "el” (Greek), "en" (English), "eo” (Esperanto), "es” (Spanish), "et” (Estonian), "fa"
(Persian), "ff" (Fulah), "fi" (Finnish), "fil" (Filipino), "fo" (Faroese), "fr" (French), "fr-BE"
(French (Belgium)), "fr-CH" (French (Switzerland)), "ga" (Irish), "he" (Hebrew), "hi"” (Hindi),
"hr" (Croatian), "hu" (Hungarian), "hy" (Armenian), "id" (Indonesian), "is" (Icelandic), "it"
(Italian), "ja" (Japanese), "ka" (Georgian), "kk" (Kazakh), "k1" (Kalaallisut), "km" (Khmer),
"ko" (Korean), "ky" (Kyrgyz), "1b" (Luxembourgish), "10" (Lao), "1rc"” (Northern Luri), "1t"
(Lithuanian), "1v" (Latvian), "mk"” (Macedonian), "ms" (Malay), "mt" (Maltese), "my"” (Burmese),
"ne"” (Nepali), "n1” (Dutch), "nn" (Norwegian Nynorsk), "no” (Norwegian), "pl"” (Polish), "pt"
(Portuguese), "qu” (Quechua), "ro"” (Romanian), "ru” (Russian), "se” (Northern Sami), "sk"
(Slovak), "s1" (Slovenian), "sq" (Albanian), "sr" (Serbian), "sr-Latn" (Serbian (Latin)), "su"”
(Sundanese), "sv" (Swedish), "sw"” (Swahili), "ta"” (Tamil), "th"” (Thai), "tr" (Turkish), "uk”
(Ukrainian), "vi" (Vietnamese), "yue" (Cantonese), and "zh" (Chinese).

Examples

Let’s use a summarized version of the gtcars dataset to create a gt table. The fmt_spelled_num()
function is used to transform integer values into spelled-out numbering (in the n column). That
formatted column of numbers-as-words is given cell background colors via data_color() (the
underlying numerical values are always available).

gtcars |>
dplyr::select(mfr, ctry_origin) |>
dplyr::group_by(mfr, ctry_origin) |>
dplyr::count() |>
dplyr: :ungroup() |>
dplyr::arrange(ctry_origin) |>
gt(rowname_col = "mfr"”, groupname_col = "ctry_origin”) |>
cols_label(n = "No. of Entries”) |>
fmt_spelled_num() |>
tab_stub_indent(rows = everything(), indent = 2) |>
data_color(
columns = n,

method = "numeric”,
palette = "viridis”,
alpha = 0.8

) 1>

fmt_spelled_num 251

opt_all_caps() |>
opt_vertical_padding(scale = 0.5) |>
cols_align(align = "center”, columns = n)

With a considerable amount of dplyr and tidyr work done to the pizzaplace dataset, we can create
a new gt table. The fmt_spelled_num() function will be used here to transform the integer values
in the rank column. We’ll do so with a special pattern that puts the word "Number’ in front of
every spelled-out number.

pizzaplace |>
dplyr::mutate(month = lubridate::month(date, label = TRUE)) |>
dplyr::filter(month %in% month.abb[1:6]) |>
dplyr::group_by(name, month) |>
dplyr::summarize(sum = sum(price), .groups = "drop"”) |>
dplyr::arrange(month, desc(sum)) |>
dplyr::group_by(month) |>
dplyr::slice_head(n = 5) |>
dplyr::mutate(rank = dplyr::row_number()) |>
dplyr::ungroup() |>
dplyr::select(-sum) |>
tidyr::pivot_wider(names_from = month, values_from = c(name)) |>

gt >

fmt_spelled_num(columns = rank, pattern = "Number {x3}") |>
opt_all_caps() |>

cols_align(columns = -rank, align = "center"”) |>

cols_width(
rank ~ px(120),
everything() ~ px(100)
) 1>

opt_table_font(stack = "rounded-sans”) |>
tab_options(table.font.size = px(14))

Function ID

3-11

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The vector-formatting version of this function: vec_fmt_spelled_num().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent (), fmt_roman(), fmt_scientific(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

252 fmt_time

fmt_time Format values as times

Description

Format input values to time values using one of 25 preset time styles. Input can be in the form of
POSIXt (i.e., datetimes), character (must be in the ISO 8601 forms of HH:MM: SS or YYYY-MM-DD HH:MM:SS),
or Date (which always results in the formatting of 00:00:00).

Usage

fmt_time(
data,
columns = everything(),
rows = everything(),
time_style = "iso",
pattern = "{x}",
locale = NULL

Arguments

data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range (), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

time_style Predefined style for times
scalar<character>|scalar<numeric|integer>(1<=val<=25) // default: "iso"

The time style to use. By default this is the short name "iso” which corresponds

to how times are formatted within ISO 8601 datetime values. There are 25 time

styles in total and their short names can be viewed using info_time_style().

fmt_time 253

pattern Specification of the formatting pattern
scalar<character>// default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier

scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en” for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt () function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_time () formatting function is compatible with body cells that are of the "Date”, "POSIXt"
or "character” types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_x () functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().

254 fmt_time

It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_time() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* time_style
e pattern

e locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the time_style argument

We need to supply a preset time style to the time_style argument. There are many time styles
and all of them can handle localization to any supported locale. Many of the time styles are termed
flexible time formats and this means that their output will adapt to any locale provided. That
feature makes the flexible time formats a better option for locales other than "en” (the default
locale).

The following table provides a listing of all time styles and their output values (corresponding to an
input time of 14:35:00). It is noted which of these represent 12- or 24-hour time.

Time Style Output Notes

1 "iso" "14:35:00" 1ISO 8601, 24h
2 "iso-short” "14:35" ISO 8601, 24h
3 "h_m_s_p" "2:35:00 PM" 12h

4 "h_m_p" "2:35PM" 12h

5 "h_p" "2 PM" 12h

6 "Hms" "14:35:00" flexible, 24h

7 "Hm" "14:35" flexible, 24h

8 "H" "14" flexible, 24h

9 "EHm" "Thu 14:35" flexible, 24h
10 "EHms" "Thu 14:35:00" flexible, 24h
11 "Hmsv" "14:35:00 GMT+00:00" flexible, 24h
12 "Hmv" "14:35 GMT+00:00" flexible, 24h
13 "hms” "2:35:00 PM" flexible, 12h
14 "hm” "2:35PM" flexible, 12h

fmt_time 255

15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM” flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms” "Thu 2:35:00 in the afternoon” flexible, 12h
19 "Bhms” "2:35:00 in the afternoon” flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon” flexible, 12h
21 "Bhm" "2:351in the afternoon” flexible, 12h
22 "Bh" "2 in the afternoon” flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35 PMGMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). Note that a 1ocale value provided
here will override any global locale setting performed in gt ()’s own locale argument (it is settable
there as a value received by all other functions that have a 1ocale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the date and
time columns). Format the time column with the fmt_time () function to display times formatted
with the "h_m_s_p" time style.

exibble |>
dplyr::select(date, time) [|>
gt |>
fmt_time(
columns = time,
time_style = "h_m_s_p"

)

Again using the exibble dataset, let’s format the time column to have mixed time formats, where
times after 16:00 will be different than the others because of the expressions used in the rows
argument. This will involve two calls of fmt_time() with different statements provided for rows.
In the first call (times after 16:00) the time style "h_m_s_p" is used; for the second call, "h_m_p" is
the named time style supplied to time_style.

exibble |>
dplyr::select(date, time) |>
gt >

fmt_time(

256 fmt_time

columns = time,
rows = time > "16:00",
time_style = "h_m_s_p"
) 1>
fmt_time(
columns = time,
rows = time <= "16:00",
time_style = "h_m_p"
)

Use the exibble dataset to create a single-column gt table (with only the time column). Format
the time values using the "EBhms" time style (which is one of the ’flexible’ styles). Also, we’ll set
the locale to "sv" to get the times in Swedish.

exibble |>
dplyr::select(time) |>
gtO 1>
fmt_time(
columns = time,
time_style = "EBhms”,

n n

locale = "sv

Function ID

3-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_time().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index (), fmt_integer(), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

fmt_units 257

fmt_units Format measurement units

Description

The fmt_units() function lets you better format measurement units in the table body. These
must conform to gt’s specialized units notation (e.g., "J Hz*-1 mol*-1" can be used to generate
units for the molar Planck constant) for the best conversion. The notation here provides several
conveniences for defining units, so as long as the values to be formatted conform to this syntax,
you’ll obtain nicely-formatted units no matter what the table output format might be (i.e., HTML,
LaTeX, RTF, etc.). Details pertaining to the units notation can be found in the section entitled How
to use gt’s units notation.

Usage

fmt_units(data, columns = everything(), rows = everything())

Arguments

data The gt table data object
obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

rows Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

An object of class gt_tbl.

258 fmt_units

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

* "m/s" and "m / s" both render as "m/s"

* "ms*-1" will appear with the "-1" exponent intact

* "m/s" gives the the same result, as "/<unit>" is equivalent to "<unit>*-1"

e "E_h" will render an "E" with the "h" subscript

e "t_i72.5" provides a t with an "i" subscript and a "2.5" exponent

e "m[_0"2]" will use overstriking to set both scripts vertically

e "g/L %C6H1206%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

» Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u” in "ug"”, "um”, "uL"”, and "umol” will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

fmt_units 259

n,n non n

¢ We can transform shorthand symbol/unit names enclosed in ": " (e.g., " :angstrom: ", " :ohm: ",
etc.) into proper symbols

n,on,

* Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters

n o n

(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., " :Alpha:", ":Zeta:", etc.)

* The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "*x"

Examples

Let’s use the illness dataset and create a new gt table. The units column contains character
values in gt’s specialized units notation (e.g., "x1049 / L") so the fmt_units() function was used
to better format those units.

illness |>
gtO 1>
fmt_units(columns = units) [>
sub_missing(columns = -starts_with("norm”)) [>
sub_missing(columns = c(starts_with("norm"), units), missing_text = "") |>
sub_large_vals(rows = test == "MY0", threshold = 1200) |>

fmt_number (

decimals = 2,

drop_trailing_zeros = TRUE
) 1>
tab_header(title = "Laboratory Findings for the YF Patient”) [>
tab_spanner(label = "Day"”, columns = starts_with("day")) |>
cols_label_with(fn = ~ gsub("day_", "", .)) [|>
cols_merge_range(col_begin = norm_l, col_end = norm_u) |>
cols_label(

starts_with("norm”) ~ "Normal Range”,
test ~ "Test”,
units ~ "Units”

) 1>

cols_width(
starts_with("day") ~ px(80),
everything() ~ px(120)
) 1>
tab_style(
style = cell_text(align = "center"),
locations = cells_column_labels(columns = starts_with("day"))
) 1>
tab_style(
style = cell_fill(color = "aliceblue"),
locations = cells_body(columns = c(test, units))
) 1>
opt_vertical_padding(scale = 0.4) |>
opt_align_table_header(align = "left") |>
tab_options(heading.padding = px(10))

260 fmt_url

The constants dataset contains values for hundreds of fundamental physical constants. We’ll take
a subset of values that have some molar basis and generate a gt table from that. Like the illness
dataset, this one has a units column so, again, the fmt_units() function will be used to format
those units. Here, the preference for typesetting measurement units is to have positive and negative
exponents (e.g., not "<unit_1>/ <unit_2>" but rather "<unit_1><unit_2>*-1").

constants |>
dplyr::filter(grepl("molar”, name)) |>
gt >
cols_hide(columns = c(uncert, starts_with("sf"))) [|>
fmt_units(columns = units) |>
fmt_scientific(columns = value, decimals = 3) |>
tab_header(title = "Physical Constants Having a Molar Basis") |>
tab_options(column_labels.hidden = TRUE)

Function ID

3-18

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

fmt_url Format URLs to generate links

Description

Should cells contain URLS, the fmt_url() function can be used to make them navigable links. This
should be expressly used on columns that contain only URL text (i.e., no URLs as part of a larger
block of text). Should you have such a column of data, there are options for how the links should
be styled. They can be of the conventional style (with underlines and text coloring that sets it apart
from other text), or, they can appear to be button-like (with a surrounding box that can be filled with
a color of your choosing).

URLs in data cells are detected in two ways. The first is using the simple Markdown notation for
URLs of the form: [1abel](URL). The second assumes that the text is the URL. In the latter case
the URL is also used as the label but there is the option to use the label argument to modify that
text.

fmt_url

261

Usage
fmt_url(
data,
columns = everything(),
rows = everything(),
label = NULL,
as_button = FALSE,
color = "auto”,
show_underline = "auto”,

button_fill = "auto",
button_width = "auto”,
button_outline = "auto",
target = NULL,

rel = NULL,

referrerpolicy = NULL,
hreflang = NULL

Arguments

data

columns

rows

label

as_button

The gt table data object

obj:<gt_tbl>// required

This is the gt table object that is commonly created through use of the gt()
function.

Columns to target

<column-targeting expression>// default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of (), num_range(),
and everything().

Rows to target
<row-targeting expression>// default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of (),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Link label
scalar<character> // default: NULL (optional)

The visible ’label’ to use for the link. If NULL (the default) the URL will serve
as the label. There are two non-NULL options: (1) a static text can be used for
the label by providing a string, and (2) a function can be provided to fashion a
label from every URL.

Style link as a button

262

fmt_url
scalar<logical> // default: FALSE
An option to style the link as a button. By default, this is FALSE. If this option is
chosen then the button_fill argument becomes usable.
color Link color

scalar<character> // default: "auto”

The color used for the resulting link and its underline. This is "auto” by default;
this allows gt to choose an appropriate color based on various factors (such as
the background button_fill when as_button is TRUE).

show_underline Show the link underline
scalar<character>|scalar<logical>// default: "auto"
Should the link be decorated with an underline? By default this is "auto” which
means that gt will choose TRUE when as_button = FALSE and FALSE in the other
case. The link underline will be the same color as that set in the color option.
button_fill, button_width, button_outline
Button options
scalar<character> // default: "auto"
Options for styling a link-as-button (and only applies if as_button = TRUE). All
of these options are by default set to "auto”, allowing gt to choose appropriate
fill, width, and outline values.
target, rel, referrerpolicy, hreflang
Anchor element attributes
scalar<character> // default: NULL
Additional anchor element attributes. For descriptions of each attribute and the
allowed values, refer to the MDN Web Docs reference on the anchor HTML
element.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_url() formatting function is compatible with body cells that are of the "character” or
"factor” types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attributes

fmt_url 263

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c ().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_url() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

* label

* as_button

* color

* show_underline

* button_fill

* button_width

* button_outline
Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with

cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Using a portion of the towny dataset, let’s create a gt table. We can use the fmt_url() function
on the website column to generate navigable links to websites. By default the links are underlined
and the color will be chosen for you (it’s dark cyan).

towny |>
dplyr::filter(csd_type == "city") |>

264

fimt_url

dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
gtO 1>
tab_header(
title = md("The 10 Largest Municipalities in “towny‘"),
subtitle = "Population values taken from the 2021 census."”
E
fmt_integer() [|>
fmt_url(columns = website) |>
cols_label(
name = "Name”,
website = "Site",
population_2021 = "Population”
)

Let’s try something else. We can set a static text label for the link with the label argument (and
we’ll use the word "site"” for this). The link underline is removable with show_underline =
FALSE. With this change, it seems sensible to merge the link to the "name” column and enclose the
link text in parentheses (the cols_merge () function handles all that).

towny |>
dplyr::filter(csd_type == "city"”) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
gtQ) |>
tab_header(

title = md("The 10 Largest Municipalities in “towny‘"),

subtitle = "Population values taken from the 2021 census."”
) 1>
fmt_integer() |>
fmt_url(

columns = website,
label = "site",
show_underline = FALSE
) 1>
cols_merge(
columns = c(name, website),
pattern = "{1} ({2})"
) 1>
cols_label(
name = "Name”,
population_2021 = "Population”
)

The fmt_url() function allows for the styling of links as ’buttons’. This is as easy as setting
as_button = TRUE. Doing that unlocks the ability to set a button_fill color. This color can auto-
matically selected by gt (this is the default) but here we’re using "steelblue”. The 1abel argument

fmt_url 265

also accepts a function! We can choose to adapt the label text from the URLs by eliminating any
leading "https://" or "www." parts.

towny |>
dplyr::filter(csd_type == "city"”) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
dplyr::mutate(ranking = dplyr::row_number()) |>
gt(rowname_col = "ranking") |>
tab_header(

title = md("The 10 Largest Municipalities in “towny‘"),

subtitle = "Population values taken from the 2021 census."”
) 1>
fmt_integer() |>
fmt_url(

columns = website,

label = function(x) gsub("https://|www."”, "", x),

as_button = TRUE,
button_fill = "steelblue”,
button_width = px(150)

) 1>
cols_move_to_end(columns = website) |>
cols_align(align = "center"”, columns = website) |>

cols_width(
ranking ~ px(490),
website ~ px(200)

) 1>
tab_options(column_labels.hidden = TRUE) |>
tab_style(
style = cell_text(weight = "bold"),
locations = cells_stub()
) %%
opt_vertical_padding(scale = 0.75)

It’s perhaps inevitable that you’ll come across missing values in your column of URLs. The
fmt_url() function will preserve input NA values, allowing you to handle them with sub_missing().
Here’s an example of that.

towny |>

dplyr::arrange(population_2021) |>

dplyr::select(name, website, population_2021) |>

dplyr::slice_head(n = 10) |>

gtO) |>

tab_header(
title = md("The 10 Smallest Municipalities in ‘towny‘"),
subtitle = "Population values taken from the 2021 census."”

) 1>

266 from_column

fmt_integer() |>
fmt_url(columns = website) |>
cols_label(
name = "Name",
website = "Site"”,
population_2021 = "Population”
) 1>

sub_missing()

Function ID

3-19

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image (), fmt_index(), fmt_integer (), fmt_markdown(), fmt_number (), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),

fmt_time(), fmt_units(), fmt (), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

from_column Reference a column of values for certain parameters

Description

It can be useful to obtain parameter values from a column in a gt for functions that operate on the
table body and stub cells. For example, you might want to indent row labels in the stub. You could
call tab_stub_indent() and indent different rows to various indentation levels. However, each
level of indentation applied necessitates a new call of that function. To make this better, we can
use indentation values available in a table column via the from_column() helper function. For the
tab_stub_indent() case, you’d invoke this helper at the indent argument and specify the column
that has the values.

Usage

from_column(column, na_value = NULL, fn = NULL)

from_column 267

Arguments

column Column name
scalar<character>// required

A single column name in quotation marks. Values will be extracted from this
column and provided to compatible arguments.

na_value Default replacement for NA values
scalar<character|numeric|logical> // default: NULL (optional)

A single value to replace any NA values in the column. Take care to provide
a value that is of the same type as the column values to avoid any undesirable
coercion.

fn Function to apply
function|formula // default: NULL (optional)

If a function is provided here, any values extracted from the table column (except
NA values) can be mutated.

Value

A list object of class gt_column.

Functions that allow the use of the from_column() helper

Only certain functions (and furthermore a subset of arguments within each) support the use of
from_column() for accessing varying parameter values. These functions are:

e tab_stub_indent()

e fmt_number ()

e fmt_integer()

e fmt_scientific()

e fmt_engineering()

e fmt_percent()

e fmt_partsper()

e fmt_fraction()

e fmt_currency()

e fmt_roman()

e fmt_index()

e fmt_spelled_num()

e fmt_bytes()

e fmt_date()

e fmt_time()

e fmt_datetime()

e fmt_url()

e fmt_image()

268 from_column

e fmt_flag()
e fmt_markdown()
e fmt_passthrough()

Within help documents for each of these functions you’ll find the Compatibility of arguments with
the from_column() helper function section and sections like these describe which arguments sup-
port the use of from_column().

Examples

The from_column() function can be used in a variety of formatting functions so that values for
common options don’t have to be static, they can change in every row (so long as you have a
column of compatible option values). Here’s an example where we have a table of repeating numeric
values along with a column of currency codes. We can format the numbers to currencies with
fmt_currency() and use from_column() to reference the column of currency codes, giving us
values that are each formatted as having a different currency.

dplyr::tibble(
amount = rep(30.75, 6),
Curr = C(”USD”’ HEUR”’ ”GBP”, HCADH’ HAUDH’ HJ’PYH)’

) 1>
gt >
fmt_currency(currency = from_column(column = "curr"))

Let’s summarize the gtcars dataset to get a set of rankings of car manufacturer by country of ori-
gin. The n column represents the number of cars a manufacturer has within this dataset and we can
use that column as a way to size the text. We do that in the tab_style() call; the from_column()
function is used within the cell_text() statement to fashion different font sizes from that n col-
umn. This is done in conjunction with the fn argument of from_column(), which helps to tweak
the values in n to get a useful range of font sizes.

gtcars |>
dplyr::select(mfr, ctry_origin) |>
dplyr::group_by(mfr, ctry_origin) |>
dplyr::count() |>
dplyr::ungroup() |>
dplyr::arrange(ctry_origin) |>
gt(groupname_col = "ctry_origin”) |>
tab_style(
style = cell_text(
size = from_column(
column = "n",
fn = function(x) paste@(5 + (x * 3), "px")
)
),
locations = cells_body()
) 1>
tab_style(

ggplot_image 269

style = cell_text(align = "center"),
locations = cells_row_groups()
E
cols_hide(columns = n) |>
tab_options(column_labels.hidden = TRUE) |>
opt_all_caps() |>
opt_vertical_padding(scale = 0.25) [>
cols_align(align = "center"”, columns = mfr)

Function ID

8-5

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), google_font(), gt_latex_dependencies(), html (), md(),

nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

ggplot_image Helper function for adding a ggplot

Description

We can add a ggplot2 plot inside of a table with the help of the ggplot_image() function. The
function provides a convenient way to generate an HTML fragment with a ggplot object. Because
this function is currently HTML-based, it is only useful for HTML table output. To use this function
inside of data cells, it is recommended that the text_transform() function is used. With that
function, we can specify which data cells to target and then include a call to ggplot_image()
within the required user-defined function (for the fn argument). If we want to include a plot in
other places (e.g., in the header, within footnote text, etc.) we need to use ggplot_image() within
the htm1 () helper function.

By itself, the function creates an HTML image tag with an image URI embedded within (a 100 dpi

PNG). We can easily experiment with any ggplot2 plot object, and using it within ggplot_image(plot_object = <plot ob
evaluates to:

<img src=<data URI> style=\"height:100px;\">

where a height of 100px is a default height chosen to work well within the heights of most table
rows. There is the option to modify the aspect ratio of the plot (the default aspect_ratio is 1.0)
and this is useful for elongating any given plot to fit better within the table construct.

270

Usage

ggplot_image

ggplot_image(plot_object, height = 100, aspect_ratio = 1)

Arguments

plot_object A ggplot plot object

obj:<ggplot>// required
A ggplot plot object.

height Height of image

scalar<numeric|integer>// default: 100

The absolute height of the output image in the table cell (in "px” units). By
default, this is set to "100px".

aspect_ratio The final aspect ratio of plot

Value

scalar<numeric|integer>// default: 1.0

This is the plot’s final aspect ratio. Where the height of the plot is fixed using
the height argument, the aspect_ratio will either compress (aspect_ratio
< 1.0) or expand (aspect_ratio > 1.0) the plot horizontally. The default value
of 1.0 will neither compress nor expand the plot.

A character object with an HTML fragment that can be placed inside of a cell.

Examples

Create a ggplot plot.

library(ggplot2)

plot_object <-

ggplot(
data = gtcars,

aes(x = hp, y = trq, size = msrp)

)+
geom_point(color = "blue") +
theme(legend.position = "none")

Create a tibble that contains two cells (where one is a placeholder for an image), then, create a gt
table. Use the text_transform() function to insert the plot using by calling ggplot_object()
within the user- defined function.

dplyr::tibble(

)

text = "Here is a ggplot:”,
ggplot = NA

[>

gt |>

text_transform(

google_font 271

locations = cells_body(columns = ggplot),
fn = function(x) {
plot_object |>
ggplot_image(height = px(200))

Function ID

9-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other image addition functions: local_image(), test_image(), web_image ()

google_font Helper function for specifying a font from the Google Fonts service

Description

The google_font () helper function can be used wherever a font name should be specified. There
are two instances where this helper can be used: the name argument in opt_table_font() (for
setting a table font) and in that of cell_text() (used with tab_style()). To get a helpful listing
of fonts that work well in tables, use the info_google_fonts() function.

Usage

google_font(name)

Arguments
name Google Font name
scalar<character> // required
The complete name of a font available in Google Fonts.
Value

An object of class font_css.

272 google_font

Examples

Use the exibble dataset to create a gt table of two columns and eight rows. We’ll replace miss-
ing values with em dashes using the sub_missing() function. For text in the time column, we
will use the font called "IBMPlex Mono"” which is available in Google Fonts. This is defined
in the google_font() function call, itself part of a vector that includes fonts returned by the
default_fonts() function (those fonts will serve as fallbacks just in case the font supplied by
Google Fonts is not accessible). In terms of placement, all of this is given to the font argument of
the cell_text () helper function which is itself given to the style argument of tab_style().

exibble |>
dplyr::select(char, time) |>
gt |>
sub_missing() |>
tab_style(
style = cell_text(
font = c(

google_font(name = "IBM Plex Mono"),
default_fonts()
)
),
locations = cells_body(columns = time)

)

We can use a subset of the sp50@ dataset to create a small gt table. With fmt_currency(),
we can display a dollar sign for the first row of the monetary values. Then, we’ll set a larger
font size for the table and opt to use the "Merriweather"” font by calling google_font () within
opt_table_font(). In cases where that font may not materialize, we include two font fallbacks:
"Cochin” and the catchall "Serif” group.

sp500 |>
dplyr::slice(1:10) |>
dplyr::select(-volume, -adj_close) |>

gt >
fmt_currency(
rows = 1,
currency = "USD",
use_seps = FALSE
) 1>

tab_options(table.font.size = px(20)) [|>
opt_table_font(
font = list(
google_font(name = "Merriweather”),
"Cochin"”, "Serif"”
)
)

Function ID

8-30

grand_summary_rows 273

Function Introduced

v@.2.2 (August 5, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),

cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(),cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), gt_latex_dependencies(), html (), md(),

nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

grand_summary_rows Add grand summary rows using aggregation functions

Description

Add grand summary rows by using the table data and any suitable aggregation functions. With grand
summary rows, all of the available data in the gt table is incorporated (regardless of whether some
of the data are part of row groups). Multiple grand summary rows can be added via expressions
given to fns. You can selectively format the values in the resulting grand summary cells by use of
formatting expressions in fmt.

Usage

grand_summary_rows (
data,
columns = everything(),
fns = NULL,
fmt = NULL,
side = c("bottom”, "top"),
missing_text = "---",
formatter = NULL,

Arguments
data The gt table data object
obj:<gt_tbl>// required
This is the gt table object that is commonly created through use of the gt ()
function.
columns Columns to target

<column-targeting expression>// default: everything()

The columns for which the summaries should be calculated. Can either be a
series of column names provided in c(), a vector of column indices, or a select

274 grand_summary_rows

helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of (), num_range(), and everything().

fns Aggregation Expressions

<expression|list of expressions>

Functions used for aggregations. This can include base functions like mean,
min, max, median, sd, or sum or any other user-defined aggregation function.
Multiple functions, each of which would generate a different row, are to be
supplied within a 1ist (). We can specify the functions by use of function names
in quotes (e.g., "sum”), as bare functions (e.g., sum), or in formula form (e.g.,
minimum ~min(.)) where the LHS could be used to supply the summary row
label and ID values. More information on this can be found in the Aggregation
expressions for fns section.

fmt Formatting expressions
<expression|list of expressions>
Formatting expressions in formula form. The RHS of ~ should contain a format-
ting call (e.g., ~ fmt_number(., decimals = 3, use_seps = FALSE). Op-
tionally, the LHS could contain a group-targeting expression (e.g., "group_a”
~ fmt_number(.)). More information on this can be found in the Formatting
expressions for fmt section.

side Side used for placement of grand summary rows
singl-kw: [bottom|top] // default: "bottom”
Should the grand summary rows be placed at the "bottom” (the default) or the

"top” of the table?
missing_text Replacement text for NA values
scalar<character>// default: "---

n

The text to be used in place of NA values in summary cells with no data outputs.
formatter Deprecated Formatting function

<expression>

Deprecated, please use fmt instead. This was previously used as a way to input

a formatting function name, which could be any of the fmt_x () functions avail-

able in the package (e.g., fmt_number (), fmt_percent(), etc.), or a custom

function using fmt (). The options of a formatter can be accessed through

Deprecated Formatting arguments

<Named arguments>

Deprecated (along with formatter) but otherwise used for argument values for

a formatting function supplied in formatter. For example, if using formatter

= fmt_number, options such as decimals = 1, use_seps = FALSE, and the like

can be used here.

Value

An object of class gt_tbl.

Using columns to target column data for aggregation

Targeting of column data for which aggregates should be generated is done through the columns
argument. We can declare column names in c() (with bare column names or names in quotes)

grand_summary_rows 275

or we can use tidyselect-style expressions. This can be as basic as supplying a select helper like
starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) & max(.x, na.rm=TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns are selected (with the everything() default). This default may be not
what’s needed unless all columns can undergo useful aggregation by expressions supplied in fns.

Aggregation expressions for fns

There are a number of ways to express how an aggregation should work for each summary row.
In addition to that, we have the ability to pass important information such as the summary row ID
value and its label (the former necessary for targeting within tab_style() or tab_footnote() and
the latter used for display in the rendered table). Here are a number of instructive examples for how
to supply such expressions.

Double-sided formula with everything supplied:

We can be explicit and provide a double-sided formula (in the form <LHS> ~ <RHS>) that expresses
everything about a summary row. That is, it has an aggregation expression (where . represents
the data in the focused column). Here’s an example:

list(id = "minimum”, label = "min") ~min(., na.rm=TRUE)

The left side (the list) contains named elements that identify the id and label for the summary

row. The right side has an expression for obtaining a minimum value (dropping NA values in the
calculation).

The 1ist() can be replaced with c() but the advantage of a list is allowing the use of the md()
and html () helper functions. The above example can be written as:

list(id = "minimum”, label =md("**Minimumx*")) ~min(., na.rm= TRUE)
and we can have that label value interpreted as Markdown text.

Function names in quotes:

With fns = "min” we get the equivalent of the fuller expression:

list(id = "min", label = "min”) ~min(., na.rm=TRUE)

For sake of convenience, common aggregation functions with the na. rm argument will be rewrit-

ten with the na.rm = TRUE option. These functions are: "min”, "max"”, "mean”, "median”, "sd",

and "sum”.

Should you need to specify multiple aggregation functions in this way (giving you multiple sum-
mary rows), use c() or list().

RHS formula expressions:

With fns=~min(.) or fns=1list(~min(.)), gt will use the function name as the id and
label. The expansion of this shorthand to full form looks like this:

list(id = "min", label = "min") ~min(.)

The RHS expression is kept as written and the name portion is both the id and the label.

Named vector or list with RHS formula expression:
Using fns = c(minimum = ~min(.)) or fns = list(minimum = ~min(.)) expands to this:
list(id ="minimum"”, label = "minimum”) ~min(.)

276 grand_summary_rows

Unnamed vector or list with RHS formula expression:

With fns = c("minimum”, "min"”) ~min(.) or fns = list("minimum”, "min") ~min(.) the LHS
contains the label and id values and, importantly, the order is label first and id second. This
can be rewritten as:

list(id="min", label = "minimum”) ~min(.)
If the vector or list is partially named, gt has enough to go on to disambiguate the unnamed

element. So with fns =c("minimum”, label = "min”) ~min(.), "min" is indeed the label
and "minimum” is taken as the id value.

A fully named list with three specific elements:

We can avoid using a formula if we are satisfied with the default options of a function (except some
of those functions with the na. rm options, see above). Instead, a list with the named elements id,
label, and fn could be used. It can look like this:

fns=1list(id = "mean_id", label = "average”, fn="mean")

which translates to

list(id = "mean_id", label = "average”) ~mean(., na.rm=TRUE)

Formatting expressions for fmt

Given that we are generating new data in a table, we might also want to take the opportunity to
format those new values right away. We can do this in the fmt argument, either with a single
expression or a number of them in a list.

We can supply a one-sided (RHS only) expression to fmt, and, several can be provided in a list.
The expression uses a formatting function (e.g., fmt_number (), fmt_currency(), etc.) and it must
contain an initial . that stands for the data object. If performing numeric formatting on all columns
in the new grand summary rows, it might look something like this:

fmt =~ fmt_number(., decimals =1, use_seps = FALSE)

We can use the columns and rows arguments that are available in every formatting function. This
allows us to format only a subset of columns or rows. Summary rows can be targeted by using their
ID values and these are settable within expressions given to fns (see the Aggregation expressions
for fns section for details on this). Here’s an example with hypothetical column and row names:

fmt =~ fmt_number (., columns = num, rows = "mean”, decimals = 3)

Extraction of summary rows

Should we need to obtain the summary data for external purposes, the extract_summary () function
can be used with a gt_tb1 object where summary rows were added via grand_summary_rows () or
summary_rows ().

Examples

Use a modified version of the sp500 dataset to create a gt table with row groups and row labels.
Create the grand summary rows min, max, and avg for the table with the grand_summary_rows ()
function.

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <= "2015-01-16") |>

grand_summary_rows 277

dplyr::arrange(date) |>
dplyr::mutate(week = paste@("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>

gt(
rowname_col = "date",
groupname_col = "week”
) 1>

grand_summary_rows (
columns = c(open, high, low, close),
fns = list(
min ~ min(.),
max ~ max(.),
avg ~ mean(.)
),
fmt = ~ fmt_number(., use_seps = FALSE)
)

Let’s take the countrypops dataset and process that a bit before handing it off to gt. We can
create a single grand summary row with totals that appears at the top of the table body (with side
= "top"). We can define the aggregation with a list that contains parameters for the grand summary
row label ("TOTALS"), the ID value of that row ("totals"), and the aggregation function (expressed
as "sum”, which gt recognizes as the sum() function). Finally, we’ll add a background fill to the
grand summary row with tab_style().

countrypops |>
dplyr::filter(country_code_2 %in% c("BE", "NL", "LU")) |>
dplyr::filter(year %% 10 == @) |>
dplyr::select(country_name, year, population) |>
tidyr::pivot_wider(names_from = year, values_from = population) |>

gt(rowname_col = "country_name") |>
tab_header(title = "Populations of the Benelux Countries”) |>
tab_spanner(columns = everything(), label = "Year"”) |>

fmt_integer() |>
grand_summary_rows (
fns = 1list(label = "TOTALS", id = "totals", fn = "sum"),

fmt = ~ fmt_integer(.),
side = "top"

) 1>

tab_style(

locations = cells_grand_summary(),
style = cell_fill(color = "lightblue" |> adjust_luminance(steps = +1))
)

Function ID

6-2

Function Introduced

v0.2.0.5 (March 31, 2020)

278

See Also

grp_add

Other row addition/modification functions: row_group_order(), rows_add(), summary_rows ()

grp_add

Add one or more gt tables to a gt_group container object

Description

Should you have a gt_group object, created through use of the gt_group() function, you might
want to add more gt tables to that container. While it’s common to generate a gt_group object with

a collection of gt_

tbl objects, one can also create an ‘empty’ gt_group object. Whatever your

workflow might be, the grp_add() function makes it possible to flexibly add one or more new gt
tables, returning a refreshed gt_group object.

Usage

grp_add(.data,

Arguments

.data

.list

.before, .after

Value

., .list = 1list2(...), .before = NULL, .after = NULL)

The gt table group object

obj:<gt_group> // required

This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

One or more gt table objects

obj:<gt_tbl>// required (or, use ...)

One or more gt table (gt_tb1) objects, typically generated via the gt () function.
Alternative to . . .

<list of multiple expressions>// (or,use ...)

Allows for the use of a list as an input alternative to

Table used as anchor

scalar<numeric|integer>// default: NULL (optional)

A single index for either .before or .after, specifying where the supplied
gt_tbl objects should be placed amongst the existing collection of gt tables.
If nothing is provided for either argument the incoming gt_tbl objects will be
appended.

An object of class gt_group.

Function ID

14-4

grp_clone 279

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_clone(), grp_options(), grp_pull(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_clone Clone one or more gt tables in a gt_group container object

Description

Should you have a gt_group object, created through use of the gt_group() function, you may in
certain circumstances want to create replicas of gt_tbl objects in that collection. This can be done
with the grp_clone() function and the placement of the cloned gt tables can be controlled with
either the before or after arguments.

Usage
grp_clone(data, which = NULL, before = NULL, after = NULL)

Arguments
data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().
which The tables to clone

vector<numeric|integer>// default: NULL (optional)
A vector of index values denoting which gt tables should be cloned inside of the
gt_group object.

before, after Table used as anchor
scalar<numeric|integer>// default: NULL (optional)

A single index for either before or after, specifies where the cloned gt_tbl
objects should be placed amongst the existing collection of gt tables. If nothing
is provided for either argument, the incoming gt_tb1 objects will be appended.

Value

An object of class gt_group.

Function ID
14-5

280 grp_options

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_options(), grp_pull(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_options Modify table options for all tables within a gt_group object

Description

Modify the options for a collection of gt tables in a gt_group object. These options are named by
the components, the subcomponents, and the element that can adjusted.

Usage

grp_options(
data,
table.width = NULL,
table.layout = NULL,
table.align = NULL,
table.margin.left = NULL,
table.margin.right = NULL,
table.background.color = NULL,
table.additional_css = NULL,
table.font.names = NULL,
table.font.size = NULL,
table.font.weight = NULL,
table.font.style = NULL,
table.font.color = NULL,
table.font.color.light = NULL,
table.border.top.style = NULL,
table.border.top.width = NULL,
table.border.top.color = NULL,
table.border.right.style = NULL,
table.border.right.width = NULL,
table.border.right.color = NULL,
table.border.bottom.style = NULL,
table.border.bottom.width = NULL,
table.border.bottom.color = NULL,
table.border.left.style = NULL,
table.border.left.width = NULL,
table.border.left.color = NULL,
heading.background.color = NULL,
heading.align = NULL,

grp_options

heading.title.
heading.title.
heading.subtit
heading.subtit
heading.paddin
heading.paddin
heading.border
heading.border
heading.border
heading.border
heading.border
heading.border
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
column_labels.
row_group.back
row_group.font
row_group.font
row_group.text
row_group.padd
row_group.padd
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord
row_group.bord

font.size = NULL,
font.weight = NULL,
le.font.size = NULL,
le.font.weight = NULL,

g = NULL,

g.horizontal = NULL,
.bottom.style = NULL,
.bottom.width = NULL,
.bottom.color = NULL,
.1r.style = NULL,
.1r.width = NULL,
.1r.color = NULL,
background.color = NULL,
font.size = NULL,
font.weight = NULL,
text_transform = NULL,
padding = NULL,
padding.horizontal = NULL,
vlines.style = NULL,
vlines.width = NULL,
vlines.color = NULL,
border.top.style = NULL,
border.top.width = NULL,
border.top.color = NULL,
border.bottom.style = NULL,
bord