
Package ‘gt’
January 18, 2024

Type Package

Version 0.10.1

Title Easily Create Presentation-Ready Display Tables

Description Build display tables from tabular data with an easy-to-use set of
functions. With its progressive approach, we can construct display tables
with a cohesive set of table parts. Table values can be formatted using any
of the included formatting functions. Footnotes and cell styles can be
precisely added through a location targeting system. The way in which 'gt'
handles things for you means that you don't often have to worry about the
fine details.

License MIT + file LICENSE

URL https://gt.rstudio.com, https://github.com/rstudio/gt

BugReports https://github.com/rstudio/gt/issues

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.2.3

Depends R (>= 3.2.0)

Imports base64enc (>= 0.1-3), bigD (>= 0.2), bitops (>= 1.0-7), cli
(>= 3.6.0), commonmark (>= 1.8.1), dplyr (>= 1.1.0), fs (>=
1.6.1), glue (>= 1.6.2), htmltools (>= 0.5.4), htmlwidgets (>=
1.6.1), juicyjuice (>= 0.1.0), magrittr (>= 2.0.2), markdown
(>= 1.5), reactable (>= 0.4.3), rlang (>= 1.0.2), sass (>=
0.4.5), scales (>= 1.2.1), tidyselect (>= 1.2.0), vctrs, xml2
(>= 1.3.3)

Suggests covr, digest (>= 0.6.31), fontawesome (>= 0.5.2), ggplot2,
knitr, lubridate, magick, paletteer, RColorBrewer, rmarkdown
(>= 2.20), rvest, shiny (>= 1.7.4), testthat (>= 3.1.9), tidyr,
webshot2 (>= 0.1.0)

1

https://gt.rstudio.com
https://github.com/rstudio/gt
https://github.com/rstudio/gt/issues

2 R topics documented:

Collate 'as_data_frame.R' 'build_data.R' 'compile_scss.R'
'data_color.R' 'datasets.R' 'dt__.R' 'dt_body.R' 'dt_boxhead.R'
'dt_cols_merge.R' 'dt_data.R' 'dt_footnotes.R' 'dt_formats.R'
'dt_groups_rows.R' 'dt_has_built.R' 'dt_heading.R'
'dt_locale.R' 'dt_options.R' 'dt_row_groups.R'
'dt_source_notes.R' 'dt_spanners.R' 'dt_stub_df.R'
'dt_stubhead.R' 'dt_styles.R' 'dt_substitutions.R'
'dt_summary.R' 'dt_transforms.R' 'export.R' 'format_data.R'
'format_vec.R' 'gt-package.R' 'gt.R' 'gt_group.R'
'gt_preview.R' 'gt_split.R' 'helpers.R' 'image.R'
'info_tables.R' 'knitr-utils.R' 'location_methods.R'
'modify_columns.R' 'modify_rows.R' 'tab_create_modify.R'
'opts.R' 'print.R' 'reexports.R' 'render_as_html.R'
'render_as_i_html.R' 'resolver.R' 'rows_add.R' 'shiny.R'
'substitution.R' 'summary_rows.R' 'tab_info.R' 'tab_remove.R'
'tab_style_body.R' 'text_transform.R' 'utils.R'
'utils_color_contrast.R' 'utils_environments.R'
'utils_examples.R' 'utils_formatters.R'
'utils_general_str_formatting.R' 'utils_pipe.R' 'utils_plots.R'
'utils_render_common.R' 'utils_render_html.R'
'utils_render_latex.R' 'utils_render_rtf.R'
'utils_render_xml.R' 'utils_units.R'
'z_utils_render_footnotes.R' 'zzz.R'

Config/testthat/edition 3

Config/testthat/parallel true

NeedsCompilation no

Author Richard Iannone [aut, cre] (<https://orcid.org/0000-0003-3925-190X>),
Joe Cheng [aut],
Barret Schloerke [aut] (<https://orcid.org/0000-0001-9986-114X>),
Ellis Hughes [aut] (<https://orcid.org/0000-0003-0637-4436>),
Alexandra Lauer [aut] (<https://orcid.org/0000-0002-4191-6301>),
JooYoung Seo [aut] (<https://orcid.org/0000-0002-4064-6012>),
Posit Software, PBC [cph, fnd]

Maintainer Richard Iannone <rich@posit.co>

Repository CRAN

Date/Publication 2024-01-17 23:50:05 UTC

R topics documented:
adjust_luminance . 6
as_latex . 8
as_raw_html . 10
as_rtf . 11
as_word . 12
cells_body . 14
cells_column_labels . 17

https://orcid.org/0000-0003-3925-190X
https://orcid.org/0000-0001-9986-114X
https://orcid.org/0000-0003-0637-4436
https://orcid.org/0000-0002-4191-6301
https://orcid.org/0000-0002-4064-6012

R topics documented: 3

cells_column_spanners . 19
cells_footnotes . 21
cells_grand_summary . 23
cells_row_groups . 26
cells_source_notes . 29
cells_stub . 31
cells_stubhead . 33
cells_stub_grand_summary . 35
cells_stub_summary . 37
cells_summary . 40
cells_title . 43
cell_borders . 45
cell_fill . 48
cell_text . 49
cols_add . 52
cols_align . 55
cols_align_decimal . 57
cols_hide . 59
cols_label . 61
cols_label_with . 66
cols_merge . 69
cols_merge_n_pct . 72
cols_merge_range . 75
cols_merge_uncert . 77
cols_move . 80
cols_move_to_end . 82
cols_move_to_start . 84
cols_nanoplot . 85
cols_unhide . 96
cols_units . 97
cols_width . 102
constants . 104
countrypops . 105
currency . 106
data_color . 108
default_fonts . 119
define_units . 120
escape_latex . 121
exibble . 122
extract_body . 124
extract_cells . 125
extract_summary . 127
fmt . 130
fmt_auto . 132
fmt_bins . 135
fmt_bytes . 139
fmt_currency . 144
fmt_date . 153

4 R topics documented:

fmt_datetime . 158
fmt_duration . 174
fmt_engineering . 179
fmt_flag . 184
fmt_fraction . 188
fmt_icon . 194
fmt_image . 200
fmt_index . 204
fmt_integer . 208
fmt_markdown . 214
fmt_number . 217
fmt_partsper . 224
fmt_passthrough . 230
fmt_percent . 233
fmt_roman . 238
fmt_scientific . 242
fmt_spelled_num . 247
fmt_time . 252
fmt_units . 257
fmt_url . 260
from_column . 266
ggplot_image . 269
google_font . 271
grand_summary_rows . 273
grp_add . 278
grp_clone . 279
grp_options . 280
grp_pull . 292
grp_replace . 293
grp_rm . 294
gt . 295
gtcars . 299
gtsave . 301
gt_group . 303
gt_latex_dependencies . 304
gt_output . 305
gt_preview . 307
gt_split . 308
html . 310
illness . 311
info_currencies . 314
info_date_style . 315
info_flags . 316
info_google_fonts . 317
info_icons . 318
info_locales . 319
info_paletteer . 320
info_time_style . 322

R topics documented: 5

local_image . 323
md . 324
metro . 325
nanoplot_options . 327
opt_align_table_header . 332
opt_all_caps . 334
opt_css . 335
opt_footnote_marks . 337
opt_footnote_spec . 340
opt_horizontal_padding . 342
opt_interactive . 344
opt_row_striping . 348
opt_stylize . 349
opt_table_font . 351
opt_table_lines . 354
opt_table_outline . 356
opt_vertical_padding . 357
pct . 359
pizzaplace . 361
px . 364
random_id . 365
render_gt . 366
rm_caption . 368
rm_footnotes . 369
rm_header . 371
rm_source_notes . 372
rm_spanners . 374
rm_stubhead . 376
rows_add . 378
row_group_order . 383
rx_addv . 384
rx_adsl . 386
sp500 . 388
stub . 389
sub_large_vals . 390
sub_missing . 393
sub_small_vals . 396
sub_values . 399
sub_zero . 403
summary_rows . 405
system_fonts . 411
sza . 415
tab_caption . 416
tab_footnote . 417
tab_header . 424
tab_info . 426
tab_options . 427
tab_row_group . 441

6 adjust_luminance

tab_source_note . 445
tab_spanner . 446
tab_spanner_delim . 453
tab_stubhead . 458
tab_stub_indent . 460
tab_style . 462
tab_style_body . 469
test_image . 474
text_case_match . 474
text_case_when . 477
text_replace . 479
text_transform . 480
towny . 483
vec_fmt_bytes . 485
vec_fmt_currency . 489
vec_fmt_date . 494
vec_fmt_datetime . 498
vec_fmt_duration . 513
vec_fmt_engineering . 518
vec_fmt_fraction . 522
vec_fmt_index . 525
vec_fmt_integer . 527
vec_fmt_markdown . 530
vec_fmt_number . 532
vec_fmt_partsper . 537
vec_fmt_percent . 541
vec_fmt_roman . 545
vec_fmt_scientific . 547
vec_fmt_spelled_num . 551
vec_fmt_time . 554
web_image . 557

Index 560

adjust_luminance Adjust the luminance for a palette of colors

Description

The adjust_luminance() function can brighten or darken a palette of colors by an arbitrary num-
ber of steps, which is defined by a real number between -2.0 and 2.0. The transformation of a palette
by a fixed step in this function will tend to apply greater darkening or lightening for those colors in
the midrange compared to any very dark or very light colors in the input palette.

Usage

adjust_luminance(colors, steps)

adjust_luminance 7

Arguments

colors Color vector
vector<character> // required
This is the vector of colors that will undergo an adjustment in luminance. Each
color value provided must either be a color name (in the set of colors provided
by grDevices::colors()) or a hexadecimal string in the form of "#RRGGBB"
or "#RRGGBBAA".

steps Adjustment level
scalar<numeric|integer>(-2>=val>=2) // required
A positive or negative factor by which the luminance of colors in the colors
vector will be adjusted. Must be a number between -2.0 and 2.0.

Details

This function can be useful when combined with the data_color() function’s palette argument,
which can use a vector of colors or any of the col_* functions from the scales package (all of which
have a palette argument).

Value

A vector of color values.

Examples

Get a palette of 8 pastel colors from the RColorBrewer package.

pal <- RColorBrewer::brewer.pal(8, "Pastel2")

Create lighter and darker variants of the base palette (one step lower, one step higher).

pal_darker <- pal |> adjust_luminance(-1.0)
pal_lighter <- pal |> adjust_luminance(+1.0)

Create a tibble and make a gt table from it. Color each column in order of increasingly darker
palettes (with data_color()).

dplyr::tibble(a = 1:8, b = 1:8, c = 1:8) |>
gt() |>
data_color(
columns = a,
colors = scales::col_numeric(
palette = pal_lighter,
domain = c(1, 8)

)
) |>
data_color(
columns = b,

8 as_latex

colors = scales::col_numeric(
palette = pal,
domain = c(1, 8)

)
) |>
data_color(
columns = c,
colors = scales::col_numeric(
palette = pal_darker,
domain = c(1, 8)

)
)

Function ID

8-8

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: cell_borders(), cell_fill(), cell_text(), cells_body(), cells_column_labels(),
cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

as_latex Output a gt object as LaTeX

Description

Get the LaTeX content from a gt_tbl object as a knit_asis object. This object contains the
LaTeX code and attributes that serve as LaTeX dependencies (i.e., the LaTeX packages required
for the table). Using as.character() on the created object will result in a single-element vector
containing the LaTeX code.

Usage

as_latex(data)

as_latex 9

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

Details

LaTeX packages required to generate tables are: booktabs, caption, longtable, colortbl, array.

In the event packages are not automatically added during the render phase of the document, please
create and include a style file to load them.

Inside the document’s YAML metadata, please include:

output:
pdf_document: # Change to appropriate LaTeX template
includes:
in_header: 'gt_packages.sty'

The gt_packages.sty file would then contain the listed dependencies above:

\usepackage{booktabs, caption, longtable, colortbl, array}

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header() and then
export the table as LaTeX code using the as_latex() function.

tab_latex <-
gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>
as_latex()

What’s returned is a knit_asis object, which makes it easy to include in R Markdown documents
that are knit to PDF. We can use as.character() to get just the LaTeX code as a single-element
vector.

Function ID

13-3

Function Introduced

v0.2.0.5 (March 31, 2020)

10 as_raw_html

See Also

Other table export functions: as_raw_html(), as_rtf(), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_raw_html Get the HTML content of a gt table

Description

Get the HTML content from a gt_tbl object as a single-element character vector. By default, the
generated HTML will have inlined styles, where CSS styles (that were previously contained in CSS
rule sets external to the <table> element) are included as style attributes in the HTML table’s
tags. This option is preferable when using the output HTML table in an emailing context.

Usage

as_raw_html(data, inline_css = TRUE)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

inline_css Use inline CSS
scalar<logical> // default: TRUE
An option to supply styles to table elements as inlined CSS styles. This is useful
when including the table HTML as part of an HTML email message body, since
inlined styles are largely supported in email clients over using CSS in a <style>
block.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header() and then
export the table as HTML code with inlined CSS styles using the as_raw_html() function.

tab_html <-
gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>
as_raw_html()

What’s returned is a single-element vector containing the HTML for the table. It has only the
<table>...</table> part so it’s not a complete HTML document but rather an HTML fragment.

as_rtf 11

Function ID

13-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_rtf(), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_rtf Output a gt object as RTF

Description

Get the RTF content from a gt_tbl object as as a single-element character vector. This object can
be used with writeLines() to generate a valid .rtf file that can be opened by RTF readers.

Usage

as_rtf(
data,
incl_open = TRUE,
incl_header = TRUE,
incl_page_info = TRUE,
incl_body = TRUE,
incl_close = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

incl_open, incl_close

Include opening/closing braces
scalar<logical> // default: TRUE
Options that govern whether the opening or closing "{" and "}" should be in-
cluded. By default, both options are TRUE.

incl_header Include RTF header
scalar<logical> // default: TRUE
Should the RTF header be included in the output? By default, this is TRUE.

12 as_word

incl_page_info Include RTF page information
scalar<logical> // default: TRUE
Should the RTF output include directives for the document pages? This is TRUE
by default.

incl_body Include RTF body
scalar<logical> // default: TRUE
An option to include the body of RTF document. By default, this is TRUE.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header() and then
export the table as RTF code using the as_rtf() function.

tab_rtf <-
gtcars |>
dplyr::select(mfr, model) |>
dplyr::slice(1:2) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>
as_rtf()

Function ID

13-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_raw_html(), as_word(), extract_body(), extract_cells(),
extract_summary(), gtsave()

as_word Output a gt object as Word

Description

Get the Open Office XML table tag content from a gt_tbl object as a single-element character
vector.

as_word 13

Usage

as_word(
data,
align = "center",
caption_location = c("top", "bottom", "embed"),
caption_align = "left",
split = FALSE,
keep_with_next = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

align Table alignment
scalar<character> // default: "center"
An option for table alignment. Can either be "center", "left", or "right".

caption_location

Caption location
singl-kw:[top|bottom|embed] // default: "top"
Determines where the caption should be positioned. This can either be "top",
"bottom", or "embed".

caption_align Caption alignment
Determines the alignment of the caption. This is either "left" (the default),
"center", or "right". This option is only used when caption_location is
not set as "embed".

split Allow splitting of a table row across pages
scalar<logical> // default: FALSE
A logical value that indicates whether to activate the Word option Allow row to break across pages.

keep_with_next Keeping rows together
scalar<logical> // default: TRUE
A logical value that indicates whether a table should use Word option Keep rows together.

Examples

Use a subset of the gtcars dataset to create a gt table. Add a header with tab_header() and then
export the table as OOXML code for Word using the as_word() function.

tab_rtf <-
gtcars |>
dplyr::select(mfr, model) |>
dplyr::slice(1:2) |>
gt() |>
tab_header(

14 cells_body

title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>
as_word()

Function ID

13-5

Function Introduced

v0.7.0 (August 25, 2022)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf(), extract_body(), extract_cells(),
extract_summary(), gtsave()

cells_body Location helper for targeting data cells in the table body

Description

The cells_body() function is used to target the data cells in the table body. The function can be
used to apply a footnote with tab_footnote(), to add custom styling with tab_style(), or the
transform the targeted cells with text_transform(). The function is expressly used in each of
those functions’ locations argument. The ’body’ location is present by default in every gt table.

Usage

cells_body(columns = everything(), rows = everything())

Arguments

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

cells_body 15

Value

A list object with the classes cells_body and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

16 cells_body

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector.

Examples

Let’s use a subset of the gtcars dataset to create a gt table. Add a footnote (with tab_footnote())
that targets a single data cell via the use of cells_body() in locations (rows = hp == max(hp)
will target a single row in the hp column).

gtcars |>
dplyr::filter(ctry_origin == "United Kingdom") |>
dplyr::select(mfr, model, year, hp) |>
gt() |>
tab_footnote(
footnote = "Highest horsepower.",
locations = cells_body(
columns = hp,
rows = hp == max(hp)

)
) |>
opt_footnote_marks(marks = c("*", "+"))

Function ID

8-17

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_column_labels 17

cells_column_labels Location helper for targeting the column labels

Description

The cells_column_labels() function is used to target the table’s column labels when applying
a footnote with tab_footnote() or adding custom style with tab_style(). The function is ex-
pressly used in each of those functions’ locations argument. The ’column_labels’ location is
present by default in every gt table.

Usage

cells_column_labels(columns = everything())

Arguments

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

Value

A list object with the classes cells_column_labels and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

18 cells_column_labels

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Targeting columns with the columns argument

The columns argument allows us to target a subset of columns contained in the table. We can declare
column names in c() (with bare column names or names in quotes) or we can use tidyselect-style
expressions. This can be as basic as supplying a select helper like starts_with(), or, providing a
more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Examples

Let’s use a small portion of the sza dataset to create a gt table. Add footnotes to the column labels
with tab_footnote() and cells_column_labels() in locations.

sza |>
dplyr::filter(
latitude == 20 & month == "jan" &
!is.na(sza)

) |>
dplyr::select(-latitude, -month) |>
gt() |>
tab_footnote(
footnote = "True solar time.",
locations = cells_column_labels(
columns = tst

)
) |>
tab_footnote(
footnote = "Solar zenith angle.",
locations = cells_column_labels(
columns = sza

)
)

cells_column_spanners 19

Function ID

8-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_column_spanners Location helper for targeting the column spanners

Description

The cells_column_spanners() function is used to target the cells that contain the table column
spanners. This is useful when applying a footnote with tab_footnote() or adding custom style
with tab_style(). The function is expressly used in each of those functions’ locations argument.
The ’column_spanners’ location is generated by one or more uses of the tab_spanner() function
or the tab_spanner_delim() function.

Usage

cells_column_spanners(spanners = everything())

Arguments

spanners Specification of spanner IDs
<spanner-targeting expression> // default: everything()
The spanners to which targeting operations are constrained. Can either be a
series of spanner ID values provided in c() or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything().

Value

A list object with the classes cells_column_spanners and location_cells.

20 cells_column_spanners

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use the exibble dataset to create a gt table. We’ll add a spanner column label over three columns
(date, time, and datetime) with tab_spanner(). The spanner column label can be styled with
tab_style() by using the cells_column_spanners() function in locations. In this example,
we are making the text of the column spanner label appear as bold.

exibble |>
dplyr::select(-fctr, -currency, -group) |>
gt(rowname_col = "row") |>
tab_spanner(
label = "dates and times",
columns = c(date, time, datetime),

cells_footnotes 21

id = "dt"
) |>
tab_style(
style = cell_text(weight = "bold"),
locations = cells_column_spanners(spanners = "dt")

)

Function ID

8-13

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_footnotes Location helper for targeting the footnotes

Description

The cells_footnotes() function is used to target all footnotes in the footer section of the table.
This is useful for adding custom styles to the footnotes with tab_style() (using the locations
argument). The ’footnotes’ location is generated by one or more uses of the tab_footnote() func-
tion. This location helper function cannot be used for the locations argument of tab_footnote()
and doing so will result in a warning (with no change made to the table).

Usage

cells_footnotes()

Value

A list object with the classes cells_footnotes and location_cells.

22 cells_footnotes

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a subset of the sza dataset, let’s create a gt table. We’d like to color the sza column so
that’s done with the data_color() function. We can add a footnote through the tab_footnote()
function and we can also style the footnotes section. The styling is done through the use of the
tab_style() function and to target the footnotes we use locations = cells_footnotes().

sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
!is.na(sza)

) |>

cells_grand_summary 23

dplyr::select(-latitude, -month) |>
gt() |>
data_color(
columns = sza,
palette = c("white", "yellow", "navyblue"),
domain = c(0, 90)

) |>
tab_footnote(
footnote = "Color indicates height of sun.",
locations = cells_column_labels(columns = sza)

) |>
tab_options(table.width = px(320)) |>
tab_style(
style = list(
cell_text(size = "smaller"),
cell_fill(color = "gray90")
),

locations = cells_footnotes()
)

Function ID

8-22

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_grand_summary Location helper for targeting cells in a grand summary

Description

The cells_grand_summary() function is used to target the cells in a grand summary and it is useful
when applying a footnote with tab_footnote() or adding custom styles with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’grand_summary’
location is generated by the grand_summary_rows() function.

24 cells_grand_summary

Usage

cells_grand_summary(columns = everything(), rows = everything())

Arguments

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

A list object with the classes cells_grand_summary and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

cells_grand_summary 25

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Targeting cells with columns and rows

Targeting of grand summary cells is done through the columns and rows arguments. The columns
argument allows us to target a subset of grand summary cells contained in the resolved columns.
We say resolved because aside from declaring column names in c() (with bare column names or
names in quotes) we can use tidyselect-style expressions. This can be as basic as supplying a select
helper like starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows of the grand summary. Grand summary
cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g.,
c(3, 5, 6)) that correspond to the row number of a grand summary row.

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to a grand summary
cells with the tab_style() function and cells_grand_summary() in the locations argument.

countrypops |>
dplyr::filter(country_name == "Spain", year < 1970) |>
dplyr::select(-contains("country")) |>
gt(rowname_col = "year") |>
fmt_number(
columns = population,
decimals = 0

) |>
grand_summary_rows(
columns = population,
fns = change ~ max(.) - min(.),
fmt = ~ fmt_integer(.)

) |>
tab_style(

26 cells_row_groups

style = list(
cell_text(style = "italic"),
cell_fill(color = "lightblue")

),
locations = cells_grand_summary(
columns = population,
rows = 1

)
)

Function ID

8-19

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_row_groups Location helper for targeting row groups

Description

The cells_row_groups() function is used to target the table’s row groups when applying a foot-
note with tab_footnote() or adding custom style with tab_style(). The function is expressly
used in each of those functions’ locations argument. The ’row_groups’ location can be gener-
ated by the specifying a groupname_col in gt(), by introducing grouped data to gt() (by way of
dplyr::group_by()), or, by specifying groups with the tab_row_group() function.

Usage

cells_row_groups(groups = everything())

cells_row_groups 27

Arguments

groups Specification of row group IDs
<row-group-targeting expression> // default: everything()
The row groups to which targeting operations are constrained. Can either be
a series of row group ID values provided in c() or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything().

Value

A list object with the classes cells_row_groups and location_cells.

Targeting cells with groups

By default groups is set to everything(), which means that all available groups will be considered.
Providing the ID values (in quotes) of row groups in c() will serve to constrain the targeting to that
subset of groups.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

28 cells_row_groups

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Let’s use a summarized version of the pizzaplace dataset to create a gt table with grouped data.
Add a summary with the summary_rows() function and then add a footnote to the "peppr_salami"
row group label with tab_footnote(); the targeting is done with cells_row_groups() in the
locations argument.

pizzaplace |>
dplyr::filter(name %in% c("soppressata", "peppr_salami")) |>
dplyr::group_by(name, size) |>
dplyr::summarize(`Pizzas Sold` = dplyr::n(), .groups = "drop") |>
gt(rowname_col = "size", groupname_col = "name") |>
summary_rows(
columns = `Pizzas Sold`,
fns = list(label = "TOTAL", fn = "sum"),
fmt = ~ fmt_integer(.)

) |>
tab_footnote(
footnote = "The Pepper-Salami.",
cells_row_groups(groups = "peppr_salami")

)

Function ID

8-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_source_notes 29

cells_source_notes Location helper for targeting the source notes

Description

The cells_source_notes() function is used to target all source notes in the footer section of the
table. This is useful for adding custom styles to the source notes with tab_style() (using the
locations argument). The ’source_notes’ location is generated by the tab_source_note() func-
tion. This location helper function cannot be used for the locations argument of tab_footnote()
and doing so will result in a warning (with no change made to the table).

Usage

cells_source_notes()

Value

A list object with the classes cells_source_notes and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

30 cells_source_notes

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Let’s use a subset of the gtcars dataset to create a gt table. Add a source note (with tab_source_note())
and style the source notes section inside the tab_style() call by using the cells_source_notes()
helper function for the targeting via the locations argument.

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_source_note(source_note = "From edmunds.com") |>
tab_style(
style = cell_text(
color = "#A9A9A9",
size = "small"

),
locations = cells_source_notes()

)

Function ID

8-23

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stub 31

cells_stub Location helper for targeting cells in the table stub

Description

The cells_stub() function is used to target the table’s stub cells and it is useful when applying
a footnote with tab_footnote() or adding a custom style with tab_style(). The function is
expressly used in each of those functions’ locations argument. Here are several ways that a stub
location might be available in a gt table: (1) through specification of a rowname_col in gt(), (2) by
introducing a data frame with row names to gt() with rownames_to_stub = TRUE, or (3) by using
summary_rows() or grand_summary_rows() with neither of the previous two conditions being
true.

Usage

cells_stub(rows = everything())

Arguments

rows Rows to target
<row-targeting expression> // default: everything()
The rows to which targeting operations are constrained. The default everything()
results in all rows in columns being formatted. Alternatively, we can supply a
vector of row IDs within c(), a vector of row indices, or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). We
can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

A list object with the classes cells_stub and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

32 cells_stub

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a transformed version of the sza dataset, let’s create a gt table. Color all of the month values
in the table stub with tab_style(), using cells_stub() in locations.

sza |>
dplyr::filter(latitude == 20 & tst <= "1000") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>
tidyr::spread(key = "tst", value = sza) |>
gt(rowname_col = "month") |>
sub_missing(missing_text = "") |>
tab_style(
style = list(
cell_fill(color = "darkblue"),
cell_text(color = "white")
),

locations = cells_stub()
)

Function ID

8-16

Function Introduced

v0.2.0.5 (March 31, 2020)

cells_stubhead 33

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stubhead Location helper for targeting the table stubhead cell

Description

The cells_stubhead() function is used to target the table stubhead location when applying a foot-
note with tab_footnote() or adding custom style with tab_style(). The function is expressly
used in each of those functions’ locations argument. The ’stubhead’ location is always present
alongside the ’stub’ location.

Usage

cells_stubhead()

Value

A list object with the classes cells_stubhead and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

34 cells_stubhead

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table. Add a stubhead
label with tab_stubhead() and then style it with tab_style() in conjunction with the use of
cells_stubhead() in the locations argument.

pizzaplace |>
dplyr::mutate(month = as.numeric(substr(date, 6, 7))) |>
dplyr::group_by(month, type) |>
dplyr::summarize(sold = dplyr::n(), .groups = "drop") |>
dplyr::filter(month %in% 1:2) |>
gt(rowname_col = "type") |>
tab_stubhead(label = "type") |>
tab_style(
style = cell_fill(color = "lightblue"),
locations = cells_stubhead()

)

Function ID

8-12

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_stub_grand_summary 35

cells_stub_grand_summary

Location helper for targeting the stub cells in a grand summary

Description

The cells_stub_grand_summary() function is used to target the stub cells of a grand summary
and it is useful when applying a footnote with tab_footnote() or adding custom styles with
tab_style(). The function is expressly used in each of those functions’ locations argument.
The ’stub_grand_summary’ location is generated by the grand_summary_rows() function.

Usage

cells_stub_grand_summary(rows = everything())

Arguments

rows Rows to target
<row-targeting expression> // default: everything()
We can specify which rows should be targeted. The default everything() re-
sults in all rows in columns being formatted. Alternatively, we can supply a
vector of row IDs within c(), a vector of row indices, or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). We
can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

A list object with the classes cells_stub_grand_summary and location_cells.

Targeting grand summary stub cells with rows

Targeting the stub cells of a grand summary row is done through the rows argument. Grand sum-
mary cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g.,
c(3, 5, 6)) that correspond to the row number of a grand summary row.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

36 cells_stub_grand_summary

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to a grand sum-
mary stub cell with the tab_style() function and using cells_stub_grand_summary() in the
locations argument.

countrypops |>
dplyr::filter(country_name == "Spain", year < 1970) |>
dplyr::select(-contains("country")) |>
gt(rowname_col = "year") |>
fmt_number(
columns = population,
decimals = 0

) |>
grand_summary_rows(
columns = population,
fns = list(change = ~max(.) - min(.)),
fmt = ~ fmt_integer(.)

) |>
tab_style(
style = cell_text(weight = "bold", transform = "uppercase"),
locations = cells_stub_grand_summary(rows = "change")

)

cells_stub_summary 37

Function ID

8-21

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_summary(), cells_stubhead(), cells_stub(),
cells_summary(), cells_title(), currency(), default_fonts(), define_units(), escape_latex(),
from_column(), google_font(), gt_latex_dependencies(), html(), md(), nanoplot_options(),
pct(), px(), random_id(), stub(), system_fonts()

cells_stub_summary Location helper for targeting the stub cells in a summary

Description

The cells_stub_summary() function is used to target the stub cells of summary and it is useful
when applying a footnote with tab_footnote() or adding custom styles with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’stub_summary’
location is generated by the summary_rows() function.

Usage

cells_stub_summary(groups = everything(), rows = everything())

Arguments

groups Specification of row group IDs
<row-group-targeting expression> // default: everything()
The row groups to which targeting operations are constrained. Can either be
a series of row group ID values provided in c() or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with groups, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

38 cells_stub_summary

Value

A list object with the classes cells_stub_summary and location_cells.

Overview of location helper Functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Targeting summary stub cells with groups and rows

Targeting the stub cells of group summary rows is done through the groups and rows arguments. By
default groups is set to everything(), which means that all available groups will be considered.
Providing the ID values (in quotes) of row groups in c() will serve to constrain the targeting to that
subset of groups.

Once the groups are targeted, we may also target the rows of the summary. Summary cells in
the stub will have ID values that can be used much like column names in the columns-targeting
scenario. We can use simpler tidyselect-style expressions (the select helpers should work well

cells_stub_summary 39

here) and we can use quoted row identifiers in c(). It’s also possible to use row indices (e.g., c(3,
5, 6)) that correspond to the row number of a summary row in a row group (numbering restarts
with every row group).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to the summary
data stub cells with tab_style() and cells_stub_summary() in the locations argument.

countrypops |>
dplyr::filter(country_name == "Japan", year < 1970) |>
dplyr::select(-contains("country")) |>
dplyr::mutate(decade = paste0(substr(year, 1, 3), "0s")) |>
gt(
rowname_col = "year",
groupname_col = "decade"

) |>
fmt_integer(columns = population) |>
summary_rows(
groups = "1960s",
columns = population,
fns = list("min", "max"),
fmt = ~ fmt_integer(.)

) |>
tab_style(
style = list(
cell_text(
weight = "bold",
transform = "capitalize"

),
cell_fill(
color = "lightblue",
alpha = 0.5

)
),
locations = cells_stub_summary(
groups = "1960s"

)
)

Function ID

8-20

Function Introduced

v0.3.0 (May 12, 2021)

40 cells_summary

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_summary Location helper for targeting group summary cells

Description

The cells_summary() function is used to target the cells in a group summary and it is useful
when applying a footnote with tab_footnote() or adding a custom style with tab_style(). The
function is expressly used in each of those functions’ locations argument. The ’summary’ location
is generated by the summary_rows() function.

Usage

cells_summary(
groups = everything(),
columns = everything(),
rows = everything()

)

Arguments

groups Specification of row group IDs
<row-group-targeting expression> // default: everything()
The row groups to which targeting operations are constrained. This aids in tar-
geting the summary rows that reside in certain row groups. Can either be a series
of row group ID values provided in c() or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything().

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which targeting operations are constrained. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all

cells_summary 41

rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

A list object with the classes cells_summary and location_cells.

Targeting cells with columns, rows, and groups

Targeting of summary cells is done through the groups, columns, and rows arguments. By default
groups is set to everything(), which means that all available groups will be considered. Providing
the ID values (in quotes) of row groups in c() will serve to constrain the targeting to that subset of
groups.

The columns argument allows us to target a subset of summary cells contained in the resolved
columns. We say resolved because aside from declaring column names in c() (with bare column
names or names in quotes) we can use tidyselect-style expressions. This can be as basic as supply-
ing a select helper like starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the groups and columns are targeted, we may also target the rows of the summary. Summary
cells in the stub will have ID values that can be used much like column names in the columns-
targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work
well here) and we can use quoted row identifiers in c(). It’s also possible to use row indices
(e.g., c(3, 5, 6)) that correspond to the row number of a summary row in a row group (numbering
restarts with every row group).

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

42 cells_summary

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

Examples

Use a portion of the countrypops dataset to create a gt table. Add some styling to the summary
data cells with with tab_style(), using cells_summary() in the locations argument.

countrypops |>
dplyr::filter(country_name == "Japan", year < 1970) |>
dplyr::select(-contains("country")) |>
dplyr::mutate(decade = paste0(substr(year, 1, 3), "0s")) |>
gt(
rowname_col = "year",
groupname_col = "decade"

) |>
fmt_number(
columns = population,
decimals = 0

) |>
summary_rows(
groups = "1960s",
columns = population,
fns = list("min", "max"),
fmt = ~ fmt_integer(.)

) |>
tab_style(
style = list(
cell_text(style = "italic"),
cell_fill(color = "lightblue")

),
locations = cells_summary(
groups = "1960s",

cells_title 43

columns = population,
rows = 1

)
) |>
tab_style(
style = list(
cell_text(style = "italic"),
cell_fill(color = "lightgreen")

),
locations = cells_summary(
groups = "1960s",
columns = population,
rows = 2

)
)

Function ID

8-18

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cells_title Location helper for targeting the table title and subtitle

Description

The cells_title() function is used to target the table title or subtitle when applying a footnote
with tab_footnote() or adding custom style with tab_style(). The function is expressly used
in each of those functions’ locations argument. The header location where the title and optionally
the subtitle reside is generated by the tab_header() function.

Usage

cells_title(groups = c("title", "subtitle"))

44 cells_title

Arguments

groups Specification of groups
mult-kw:[title|subtitle] // default: c("title", "subtitle")

We can either specify "title", "subtitle", or both (the default) in a vector to
target the title element, the subtitle element, or both elements.

Value

A list object of classes cells_title and location_cells.

Overview of location helper functions

Location helper functions can be used to target cells with virtually any function that has a locations
argument. Here is a listing of all of the location helper functions, with locations corresponding
roughly from top to bottom of a table:

• cells_title(): targets the table title or the table subtitle depending on the value given to the
groups argument ("title" or "subtitle").

• cells_stubhead(): targets the stubhead location, a cell of which is only available when there
is a stub; a label in that location can be created by using the tab_stubhead() function.

• cells_column_spanners(): targets the spanner column labels with the spanners argument;
spanner column labels appear above the column labels.

• cells_column_labels(): targets the column labels with its columns argument.

• cells_row_groups(): targets the row group labels in any available row groups using the
groups argument.

• cells_stub(): targets row labels in the table stub using the rows argument.

• cells_body(): targets data cells in the table body using intersections of columns and rows.

• cells_summary(): targets summary cells in the table body using the groups argument and
intersections of columns and rows.

• cells_grand_summary(): targets cells of the table’s grand summary using intersections of
columns and rows

• cells_stub_summary(): targets summary row labels in the table stub using the groups and
rows arguments.

• cells_stub_grand_summary(): targets grand summary row labels in the table stub using the
rows argument.

• cells_footnotes(): targets all footnotes in the table footer (cannot be used with tab_footnote()).

• cells_source_notes(): targets all source notes in the table footer (cannot be used with
tab_footnote()).

When using any of the location helper functions with an appropriate function that has a locations
argument (e.g., tab_style()), multiple locations can be targeted by enclosing several cells_*()
helper functions in a list() (e.g., list(cells_body(), cells_grand_summary())).

cell_borders 45

Examples

Use a subset of the sp500 dataset to create a small gt table. Add a header with a title, and then add
a footnote to the title with tab_footnote() and cells_title() (in locations).

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <="2015-01-10") |>
dplyr::select(-c(adj_close, volume, high, low)) |>
gt() |>
tab_header(title = "S&P 500") |>
tab_footnote(
footnote = "All values in USD.",
locations = cells_title(groups = "title")

)

Function ID

8-11

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cell_borders Helper for defining custom borders for table cells

Description

The cell_borders() helper function is to be used with the tab_style() function, which itself
allows for the setting of custom styles to one or more cells. Specifically, the call to cell_borders()
should be bound to the styles argument of tab_style(). The sides argument is where we define
which borders should be modified (e.g., "left", "right", etc.). With that selection, the color,
style, and weight of the selected borders can then be modified.

Usage

cell_borders(sides = "all", color = "#000000", style = "solid", weight = px(1))

46 cell_borders

Arguments

sides Border sides
vector<character> // default: "all"
The border sides to be modified. Options include "left", "right", "top", and
"bottom". For all borders surrounding the selected cells, we can use the "all"
option.

color Border color
scalar<character>|NULL // default: "#000000"
The border color can be defined with a color name or with a hexadecimal color
code. The default color value is "#000000" (black). Borders for any defined
sides can be removed by supplying NULL here.

style Border line style
scalar<character>|NULL // default: "solid"
The border style can be one of either "solid" (the default), "dashed", "dotted",
"hidden", or "double". Borders for any defined sides can be removed by sup-
plying NULL here.

weight Border weight
scalar<character>|NULL // default: px(1)
The default value for weight is "1px" and higher values will become more
visually prominent. Borders for any defined sides can be removed by supplying
NULL to any of color, style, or weight.

Value

A list object of class cell_styles.

Examples

We can add horizontal border lines for all table body rows in a gt table based on the exibble dataset.
For this, we need to use tab_style() (targeting all cells in the table body with cells_body()) in
conjunction with cell_borders() in the style argument. Both top and bottom borders will be
added as "solid" and "red" lines with a line width of 1.5 px.

exibble |>
gt() |>
tab_style(
style = cell_borders(
sides = c("top", "bottom"),
color = "red",
weight = px(1.5),
style = "solid"

),
locations = cells_body()

)

It’s possible to incorporate different horizontal and vertical ("left" and "right") borders at several
different locations. This uses multiple cell_borders() and cells_body() calls within their own
respective lists.

cell_borders 47

exibble |>
gt() |>
tab_style(
style = list(
cell_borders(
sides = c("top", "bottom"),
color = "#FF0000",
weight = px(2)

),
cell_borders(
sides = c("left", "right"),
color = "#0000FF",
weight = px(2)

)
),
locations = list(
cells_body(
columns = num,
rows = is.na(num)

),
cells_body(
columns = currency,
rows = is.na(currency)

)
)

)

Function ID

8-26

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_fill(), cell_text(), cells_body(), cells_column_labels(),
cells_column_spanners(), cells_footnotes(), cells_grand_summary(), cells_row_groups(),
cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(), cells_stubhead(),
cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

48 cell_fill

cell_fill Helper for defining custom fills for table cells

Description

The cell_fill() helper function is to be used with the tab_style() function, which itself allows
for the setting of custom styles to one or more cells. Specifically, the call to cell_fill() should
be bound to the styles argument of tab_style().

Usage

cell_fill(color = "#D3D3D3", alpha = NULL)

Arguments

color Cell fill color
scalar<character> // default: "#D3D3D3"
If nothing is provided for color then "#D3D3D3" (light gray) will be used as a
default.

alpha Transparency value
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)
An optional alpha transparency value for the color as single value in the range
of 0 (fully transparent) to 1 (fully opaque). If not provided the fill color will
either be fully opaque or use alpha information from the color value if it is
supplied in the #RRGGBBAA format.

Value

A list object of class cell_styles.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). Styles are added with tab_style() in two separate calls (targeting different
body cells with the cells_body() helper function). With the cell_fill() helper funciton we
define cells with a "lightblue" background in one instance, and "gray85" in the other.

exibble |>
dplyr::select(num, currency) |>
gt() |>
fmt_number(decimals = 1) |>
tab_style(
style = cell_fill(color = "lightblue"),
locations = cells_body(
columns = num,
rows = num >= 5000

)

cell_text 49

) |>
tab_style(
style = cell_fill(color = "gray85"),
locations = cells_body(
columns = currency,
rows = currency < 100

)
)

Function ID

8-25

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_text(), cells_body(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cell_text Helper for defining custom text styles for table cells

Description

This helper function is to be used with the tab_style() function, which itself allows for the setting
of custom styles to one or more cells. We can also define several styles within a single call of
cell_text() and tab_style() will reliably apply those styles to the targeted element.

Usage

cell_text(
color = NULL,
font = NULL,
size = NULL,
align = NULL,
v_align = NULL,
style = NULL,
weight = NULL,
stretch = NULL,
decorate = NULL,
transform = NULL,

50 cell_text

whitespace = NULL,
indent = NULL

)

Arguments

color Text color
scalar<character> // default: NULL (optional)
The text color can be modified through the color argument.

font Font (or collection of fonts) used for text
vector<character> // default: NULL (optional)
The font or collection of fonts (subsequent font names are) used as fallbacks.

size Text size
scalar<numeric|integer|character> // default: NULL (optional)
The size of the font. Can be provided as a number that is assumed to represent px
values (or could be wrapped in the px() helper function). We can also use one
of the following absolute size keywords: "xx-small", "x-small", "small",
"medium", "large", "x-large", or "xx-large".

align Text alignment
scalar<character> // default: NULL (optional)
The text in a cell can be horizontally aligned though one of the following op-
tions: "center", "left", "right", or "justify".

v_align Vertical alignment
scalar<character> // default: NULL (optional)
The vertical alignment of the text in the cell can be modified through the options
"middle", "top", or "bottom".

style Text style
scalar<character> // default: NULL (optional)
Can be one of either "normal", "italic", or "oblique".

weight Font weight
scalar<character|numeric|integer> // default: NULL (optional)
The weight of the font can be modified thorough a text-based option such as
"normal", "bold", "lighter", "bolder", or, a numeric value between 1 and
1000, inclusive. Note that only variable fonts may support the numeric mapping
of weight.

stretch Stretch text
scalar<character> // default: NULL (optional)
Allows for text to either be condensed or expanded. We can use one of the fol-
lowing text-based keywords to describe the degree of condensation/expansion:
"ultra-condensed", "extra-condensed", "condensed", "semi-condensed",
"normal", "semi-expanded", "expanded", "extra-expanded", or "ultra-expanded".
Alternatively, we can supply percentage values from 0\% to 200\%, inclusive.
Negative percentage values are not allowed.

decorate Decorate text
scalar<character> // default: NULL (optional)

cell_text 51

Allows for text decoration effect to be applied. Here, we can use "overline",
"line-through", or "underline".

transform Transform text
scalar<character> // default: NULL (optional)
Allows for the transformation of text. Options are "uppercase", "lowercase",
or "capitalize".

whitespace White-space options
scalar<character> // default: NULL (optional)
A white-space preservation option. By default, runs of white-space will be col-
lapsed into single spaces but several options exist to govern how white-space is
collapsed and how lines might wrap at soft-wrap opportunities. The options are
"normal", "nowrap", "pre", "pre-wrap", "pre-line", and "break-spaces".

indent Text indentation
scalar<numeric|integer|character> // default: NULL (optional)
The indentation of the text. Can be provided as a number that is assumed to
represent px values (or could be wrapped in the px() helper function). Alterna-
tively, this can be given as a percentage (easily constructed with pct()).

Value

A list object of class cell_styles.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). With the tab_style() function (called twice), we’ll selectively add style to
the values formatted by fmt_number(). We do this by using the cell_text() helper function in
the style argument of tab_style().

exibble |>
dplyr::select(num, currency) |>
gt() |>
fmt_number(decimals = 1) |>
tab_style(
style = cell_text(weight = "bold"),
locations = cells_body(
columns = num,
rows = num >= 5000

)
) |>
tab_style(
style = cell_text(style = "italic"),
locations = cells_body(
columns = currency,
rows = currency < 100

)
)

52 cols_add

Function ID

8-24

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cells_body(),
cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

cols_add Add one or more columns to a gt table

Description

We can add new columns to a table with the cols_add() function and it works quite a bit like the
dplyr mutate() function. The idea is that you supply name-value pairs where the name is the new
column name and the value part describes the data that will go into the column. The latter can: (1)
be a vector where the length of the number of rows in the data table, (2) be a single value (which will
be repeated all the way down), or (3) involve other columns in the table (as they represent vectors
of the correct length). The new columns are added to the end of the column series by default but
can instead be added internally by using either the .before or .after arguments. If entirely empty
(i.e., all NA) columns need to be added, you can use any of the NA types (e.g., NA, NA_character_,
NA_real_, etc.) for such columns.

Usage

cols_add(.data, ..., .before = NULL, .after = NULL)

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Cell data assignments
<multiple expressions> // (or, use .list)
Expressions for the assignment of cell values to the new columns. Name-value
pairs, in the form of <column> = <value vector> will work, so long as any
<column> value does not already exist in the table. The <value vector> may

cols_add 53

be an expression that uses one or more column names in the table to generate a
vector of values. Single values in <value vector> will be repeated down the
new column. A vector where the length is exactly the number of rows in the
table can also be used.

.before, .after

Column used as anchor
<column-targeting expression> // default: NULL (optional)
A single column-resolving expression or column index can be given to either
.before or .after. The column specifies where the new columns should be
positioned among the existing columns in the input data table. While select
helper functions such as starts_with() and ends_with() can be used for col-
umn targeting, it’s recommended that a single column name or index be used.
This is to ensure that exactly one column is provided to either of these argu-
ments (otherwise, the function will be stopped). If nothing is provided for either
argument then any new column will be placed at the end of the column series.

Value

An object of class gt_tbl.

Targeting the column for insertion with .before or .after

The targeting of a column for insertion is done through the .before or .after arguments (only
one of these options should be be used). While tidyselect-style expressions or indices can used to
target a column, it’s advised that a single column name be used. This is to avoid the possibility of
inadvertently resolving multiple columns (since the requirement is for a single column).

Examples

Let’s take a subset of the exibble dataset and make a simple gt table with it (using the row column
for labels in the stub). We’ll add a single column to the right of all the existing columns and call it
country. This new column needs eight values and these will be supplied when using cols_add().

exibble |>
dplyr::select(num, char, datetime, currency, group) |>
gt(rowname_col = "row") |>
cols_add(
country = c("TL", "PY", "GL", "PA", "MO", "EE", "CO", "AU")

)

We can add multiple columns with a single use of cols_add(). The columns generated can be
formatted and otherwise manipulated just as any column could be in a gt table. The following
example extends the first one by adding more columns and immediately using them in various
function calls like fmt_flag() and fmt_units().

exibble |>
dplyr::select(num, char, datetime, currency, group) |>
gt(rowname_col = "row") |>
cols_add(

54 cols_add

country = c("TL", "PY", "GL", "PA", "MO", "EE", "CO", "AU"),
empty = NA_character_,
units = c(
"k m s^-2", "N m^-2", "degC", "m^2 kg s^-2",
"m^2 kg s^-3", "/s", "A s", "m^2 kg s^-3 A^-1"

),
big_num = num ^ 3

) |>
fmt_flag(columns = country) |>
sub_missing(columns = empty, missing_text = "") |>
fmt_units(columns = units) |>
fmt_scientific(columns = big_num)

In this table generated from a portion of the towny dataset, we add two new columns (land_area
and density) through a single use of cols_add(). The new land_area column is a conversion
of land area from square kilometers to square miles and the density column is calculated by
through division of population_2021 by that new land_area column. We hide the now unneeded
land_area_km2 with cols_hide() and also perform some column labeling and adjustments to
column widths with cols_label() and cols_width().

towny |>
dplyr::select(name, population_2021, land_area_km2) |>
dplyr::filter(population_2021 > 100000) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) |>
gt() |>
cols_add(
land_area = land_area_km2 / 2.58998811,
density = population_2021 / land_area

) |>
fmt_integer() |>
cols_hide(columns = land_area_km2) |>
cols_label(
population_2021 = "Population",
density = "Density, {{*persons* / sq mi}}",
land_area ~ "Area, {{mi^2}}"

) |>
cols_width(everything() ~ px(120))

It’s possible to start with an empty table (i.e., no columns and no rows) and add one or more columns
to that. You can, for example, use dplyr::tibble() or data.frame() to create a completely
empty table. The first cols_add() call for an empty table can have columns of arbitrary length but
subsequent uses of cols_add() must adhere to the rule of new columns being the same length as
existing.

dplyr::tibble() |>
gt() |>
cols_add(

cols_align 55

num = 1:5,
chr = vec_fmt_spelled_num(1:5)

)

Tables can contain no rows, yet have columns. In the following example, we’ll create a zero-row
table with three columns (num, chr, and ext) and perform the same cols_add()-based addition of
two columns of data. This is another case where the function allows for arbitrary-length columns
(since always adding zero-length columns is impractical). Furthermore, here we can reference
columns that already exist (num and chr) and add values to them.

dplyr::tibble(
num = numeric(0),
chr = character(0),
ext = character(0)

) |>
gt() |>
cols_add(
num = 1:5,
chr = vec_fmt_spelled_num(1:5)

)

We should note that the ext column did not receive any values from cols_add() but the table was
expanded to having five rows nonetheless. So, each cell of ext was by necessity filled with an NA
value.

Function ID

5-7

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_units(), cols_width()

cols_align Set the alignment of columns

Description

The individual alignments of columns (which includes the column labels and all of their data cells)
can be modified. We have the option to align text to the left, the center, and the right. In a less
explicit manner, we can allow gt to automatically choose the alignment of each column based on
the data type (with the auto option).

56 cols_align

Usage

cols_align(
data,
align = c("auto", "left", "center", "right"),
columns = everything()

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

align Alignment type
singl-kw:[auto|left|center|right] // default: "auto"
This can be any of "center", "left", or "right" for center-, left-, or right-
alignment. Alternatively, the "auto" option (the default), will automatically
align values in columns according to the data type (see the Details section for
specifics on which alignments are applied).

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the alignment should be applied. Can either be a se-
ries of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().
By default this is set to everything() which means that the chosen alignment
affects all columns.

Details

When you create a gt table object using gt(), automatic alignment of column labels and their data
cells is performed. By default, left-alignment is applied to columns of class character, Date, or
POSIXct; center-alignment is for columns of class logical, factor, or list; and right-alignment
is used for the numeric and integer columns.

Value

An object of class gt_tbl.

Examples

Let’s use countrypops to create a small gt table. We can change the alignment of the population
column with cols_align(). In this example, the label and body cells of population will be
aligned to the left.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "San Marino") |>

cols_align_decimal 57

dplyr::slice_tail(n = 5) |>
gt(rowname_col = "year", groupname_col = "country_name") |>
cols_align(
align = "left",
columns = population

)

Function ID

5-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_hide(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_align_decimal Align all numeric values in a column along the decimal mark

Description

For numeric columns that contain values with decimal portions, it is sometimes useful to have them
lined up along the decimal mark for easier readability. We can do this with cols_align_decimal()
and provide any number of columns (the function will skip over columns that don’t require this type
of alignment).

Usage

cols_align_decimal(data, columns = everything(), dec_mark = ".", locale = NULL)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which decimal alignment should be applied. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),

58 cols_align_decimal

ends_with(), contains(), matches(), one_of(), num_range(), and everything().
By default this is set to everything() which means that decimal alignment will
be attempted on all columns.

dec_mark Decimal mark
scalar<character> // default: "."
The character used as a decimal mark in the numeric values to be aligned. If a
locale value was used when formatting the numeric values then locale is better
to use and it will override any value here in dec_mark.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used to obtain the type of decimal mark
used in the numeric values to be aligned (according to the locale’s formatting
rules). Examples include "en" for English (United States) and "fr" for French
(France). We can use the info_locales() function as a useful reference for
all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Examples

Let’s put together a two-column table to create a gt table. The first column char just contains letters
whereas the second column, num, has a collection of numbers and NA values. We could format
the numbers with fmt_number() and elect to drop the trailing zeros past the decimal mark with
drop_trailing_zeros = TRUE. This can leave formatted numbers that are hard to scan through
because the decimal mark isn’t fixed horizontally. We could remedy this and align the numbers by
the decimal mark with cols_align_decimal().

dplyr::tibble(
char = LETTERS[1:9],
num = c(1.2, -33.52, 9023.2, -283.527, NA, 0.401, -123.1, NA, 41)

) |>
gt() |>
fmt_number(
columns = num,
decimals = 3,
drop_trailing_zeros = TRUE

) |>
cols_align_decimal()

Function ID

5-2

cols_hide 59

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other column modification functions: cols_add(), cols_align(), cols_hide(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_hide Hide one or more columns

Description

The cols_hide() function allows us to hide one or more columns from appearing in the final
output table. While it’s possible and often desirable to omit columns from the input table data
before introduction to the gt() function, there can be cases where the data in certain columns is
useful (as a column reference during formatting of other columns) but the final display of those
columns is not necessary.

Usage

cols_hide(data, columns)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to hide in the output display table. Can either be a series of column
names provided in c(), a vector of column indices, or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything().

Details

The hiding of columns is internally a rendering directive, so, all columns that are ’hidden’ are still
accessible and useful in any expression provided to a rows argument. Furthermore, the cols_hide()
function (as with many gt functions) can be placed anywhere in a pipeline of gt function calls (acting
as a promise to hide columns when the timing is right). However there’s perhaps greater readabil-
ity when placing this call closer to the end of such a pipeline. The cols_hide() function quietly
changes the visible state of a column (much like the cols_unhide() function) and doesn’t yield
warnings or messages when changing the state of already-invisible columns.

60 cols_hide

Value

An object of class gt_tbl.

Examples

Let’s use a small portion of the countrypops dataset to create a gt table. We can hide the country_code_2
and country_code_3 columns with the cols_hide() function.

countrypops |>
dplyr::filter(country_name == "Egypt") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_hide(columns = c(country_code_2, country_code_3))

Using another countrypops-based gt table, we can use the population column to provide the
conditional placement of footnotes. Then, we’ll hide that column along with the country_code_3
column. Note that the order of the cols_hide() and tab_footnote() statements has no effect on
the final display of the table.

countrypops |>
dplyr::filter(country_name == "Pakistan") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_hide(columns = c(country_code_3, population)) |>
tab_footnote(
footnote = "Population above 220,000,000.",
locations = cells_body(
columns = year,
rows = population > 220E6

)
)

Function ID

5-12

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

cols_unhide() to perform the inverse operation.

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_label_with(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_label 61

cols_label Relabel one or more columns

Description

Column labels can be modified from their default values (the names of the columns from the input
table data). When you create a gt table object using gt(), column names effectively become the
column labels. While this serves as a good first approximation, column names as label defaults
aren’t often as appealing in a gt table as the option for custom column labels. The cols_label()
function provides the flexibility to relabel one or more columns and we even have the option to use
the md() or html() helper functions for rendering column labels from Markdown or using HTML.

Usage

cols_label(.data, ..., .list = list2(...), .fn = NULL, .process_units = NULL)

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Column label assignments
<multiple expressions> // required (or, use .list)
Expressions for the assignment of column labels for the table columns in .data.
Two-sided formulas (e.g., <LHS> ~ <RHS>) can be used, where the left-hand side
corresponds to selections of columns and the right-hand side evaluates to single-
length values for the label to apply. Column names should be enclosed in c().
Select helpers like starts_with(), ends_with(), contains(), matches(),
one_of(), and everything() can be used in the LHS. Named arguments are
also valid as input for simple mappings of column name to label text; they should
be of the form <column name> = <label>. Subsequent expressions that oper-
ate on the columns assigned previously will result in overwriting column label
values.

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)
Allows for the use of a list as an input alternative to

.fn Function to apply
function // default: NULL (optional)
An option to specify a function that will be applied to all of the provided label
values.

.process_units Option to process any available units throughout
scalar<logical> // default: NULL (optional)

62 cols_label

Should your column text contain text that is already in gt’s units notation (and,
importantly, is surrounded by "{{"/"}}"), using TRUE here reprocesses all col-
umn such that the units are properly registered for each of the column labels.
This ignores any column label assignments in ... or .list.

Value

An object of class gt_tbl.

A note on column names and column labels

It’s important to note that while columns can be freely relabeled, we continue to refer to columns
by their original column names. Column names in a tibble or data frame must be unique whereas
column labels in gt have no requirement for uniqueness (which is useful for labeling columns as,
say, measurement units that may be repeated several times—usually under different spanner labels).
Thus, we can still easily distinguish between columns in other gt function calls (e.g., in all of the
fmt*() functions) even though we may lose distinguishability between column labels once they
have undergone relabeling.

Incorporating units with gt’s units notation

Measurement units are often seen as part of column labels and indeed it can be much more straight-
forward to include them here rather than using other devices to make readers aware of units for spe-
cific columns. The gt package offers the function cols_units() to apply units to various columns
with an interface that’s similar to that of this function. However, it is also possible to define units
here along with the column label, obviating the need for pattern syntax that joins the two text com-
ponents. To do this, we have to surround the portion of text in the label that corresponds to the units
definition with "{{"/"}}".

Now that we know how to mark text for units definition, we know need to know how to write
proper units with the notation. Such notation uses a succinct method of writing units and it should
feel somewhat familiar though it is particular to the task at hand. Each unit is treated as a separate
entity (parentheses and other symbols included) and the addition of subscript text and exponents is
flexible and relatively easy to formulate. This is all best shown with a few examples:

• "m/s" and "m / s" both render as "m/s"

• "m s^-1" will appear with the "-1" exponent intact

• "m /s" gives the the same result, as "/<unit>" is equivalent to "<unit>^-1"

• "E_h" will render an "E" with the "h" subscript

• "t_i^2.5" provides a t with an "i" subscript and a "2.5" exponent

• "m[_0^2]" will use overstriking to set both scripts vertically

• "g/L %C6H12O6%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

• Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u" in "ug", "um", "uL", and "umol" will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

• We can transform shorthand symbol/unit names enclosed in ":" (e.g., ":angstrom:", ":ohm:",
etc.) into proper symbols

cols_label 63

• Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

• The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "**"

Examples

Let’s use a portion of the countrypops dataset to create a gt table. We can relabel all the table’s
columns with the cols_label() function to improve its presentation. In this simple case we are
supplying the name of the column on the left-hand side, and the label text on the right-hand side.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Uganda") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_label(
country_name = "Name",
year = "Year",
population = "Population"

)

Using the countrypops dataset again, we label columns similarly to before but this time making the
column labels be bold through Markdown formatting (with the md() helper function). It’s possible
here to use either a = or a ~ between the column name and the label text.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Uganda") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_label(
country_name = md("**Name**"),
year = md("**Year**"),
population ~ md("**Population**")

)

With a select portion of the metro dataset, let’s create a small gt table with three columns. Within
cols_label() we’d like to provide column labels that contain line breaks. For that, we can use

 to indicate where the line breaks should be. We also need to use the md() helper function
to signal to gt that this text should be interpreted as Markdown. Instead of calling md() on each
of labels as before, we can more conveniently use the .fn argument and provide the bare function
there (it will be applied to each label defined in the cols_label() call).

metro |>
dplyr::select(name, lines, passengers, connect_other) |>
dplyr::arrange(desc(passengers)) |>
dplyr::slice_head(n = 10) |>

64 cols_label

gt() |>
cols_hide(columns = passengers) |>
cols_label(
name = "Name of
Metro Station",
lines = "Metro
Lines",
connect_other = "Train
Services",
.fn = md

)

Using a subset of the towny dataset, we can create an interesting gt table. First, only certain columns
are selected from the dataset, some filtering of rows is done, rows are sorted, and then only the first
10 rows are kept. After the data is introduced to gt(), we then apply some spanner labels using
two calls of tab_spanner(). Below those spanners, we want to label the columns by the years of
interest. Using cols_label() and select expressions on the left side of the formulas, we can easily
relabel multiple columns with common label text. Note that we cannot use an = sign in any of the
expressions within cols_label(); because the left-hand side is not a single column name, we must
use formula syntax (i.e., with the ~).

towny |>
dplyr::select(
name, ends_with("2001"), ends_with("2006"), matches("2001_2006")

) |>
dplyr::filter(population_2001 > 100000) |>
dplyr::arrange(desc(pop_change_2001_2006_pct)) |>
dplyr::slice_head(n = 10) |>
gt() |>
fmt_integer() |>
fmt_percent(columns = matches("change"), decimals = 1) |>
tab_spanner(label = "Population", columns = starts_with("population")) |>
tab_spanner(label = "Density", columns = starts_with("density")) |>
cols_label(
ends_with("01") ~ "2001",
ends_with("06") ~ "2006",
matches("change") ~ md("Population Change,
2001 to 2006")

) |>
cols_width(everything() ~ px(120))

Here’s another table that uses the towny dataset. The big difference compared to the previous gt
table is that cols_label() as used here incorporates unit notation text (within "{{"/"}}").

towny |>
dplyr::select(
name, population_2021, density_2021, land_area_km2, latitude, longitude

) |>
dplyr::filter(population_2021 > 100000) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) |>
gt() |>

cols_label 65

fmt_integer(columns = population_2021) |>
fmt_number(
columns = c(density_2021, land_area_km2),
decimals = 1

) |>
fmt_number(columns = latitude, decimals = 2) |>
fmt_number(columns = longitude, decimals = 2, scale_by = -1) |>
cols_label(
starts_with("population") ~ "Population",
starts_with("density") ~ "Density, {{*persons* km^-2}}",
land_area_km2 ~ "Area, {{km^2}}",
latitude ~ "Latitude, {{:degrees:N}}",
longitude ~ "Longitude, {{:degrees:W}}"

) |>
cols_width(everything() ~ px(120))

The illness dataset has units within the units column. They’re formatted in just the right way for
gt too. Let’s do some text manipulation through dplyr::mutate() and some pivoting with tidyr’s
pivot_longer() and pivot_wider() in order to include the units as part of the column names
in the reworked table. These column names are in a format where the units are included within
"{{"/"}}", so, we can use cols_label() with the .process_units = TRUE option to register the
measurement units. In addition to this, because there is a
 included (for a line break), we should
use the .fn option and provide the md() helper function (as a bare function name). This ensures
that any line breaks will materialize.

illness |>
dplyr::mutate(test = paste0(test, ",
{{", units, "}}")) |>
dplyr::slice_head(n = 8) |>
dplyr::select(-c(starts_with("norm"), units)) |>
tidyr::pivot_longer(
cols = starts_with("day"),
names_to = "day",
names_prefix = "day_",
values_to = "value"

) |>
tidyr::pivot_wider(
names_from = test,
values_from = value

) |>
gt(rowname_col = "day") |>
tab_stubhead(label = "Day") |>
cols_label(
.fn = md,
.process_units = TRUE

) |>
cols_width(
stub() ~ px(50),
everything() ~ px(120)

)

66 cols_label_with

Function ID

5-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_label_with Relabel columns with a function

Description

Column labels can be modified from their default values (the names of the columns from the input
table data). When you create a gt table object using gt(), column names effectively become the col-
umn labels. While this serves as a good first approximation, you may want to make adjustments so
that the columns names present better in the gt output table. The cols_label_with() function al-
lows for modification of column labels through a supplied function. By default, the function will be
invoked on all column labels but this can be limited to a subset via the columns argument. With the
fn argument, we provide either a bare function name, a RHS formula (with . representing the vector
of column labels), or, an anonymous function (e.g., function(x) tools::toTitleCase(x)).

Usage

cols_label_with(data, columns = everything(), fn)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the column-labeling operations should be applied. Can
either be a series of column names provided in c(), a vector of column in-
dices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

cols_label_with 67

fn Function to apply
function|formula // required
The function or function call to be applied to the column labels. This can take
the form of a bare function (e.g., tools::toTitleCase), a function call as a
RHS formula (e.g., ~ tools::toTitleCase(.)), or an anonymous function as
in function(x) tools::toTitleCase(x).

Value

An object of class gt_tbl.

A note on column names and column labels

It’s important to note that while columns can be freely relabeled, we continue to refer to columns
by their original column names. Column names in a tibble or data frame must be unique whereas
column labels in gt have no requirement for uniqueness (which is useful for labeling columns as,
say, measurement units that may be repeated several times—usually under different spanner labels).
Thus, we can still easily distinguish between columns in other gt function calls (e.g., in all of the
fmt*() functions) even though we may lose distinguishability in column labels once they have been
relabeled.

Examples

Use a subset of the sp500 dataset to create a gt table. We want all the column labels to be en-
tirely capitalized versions of the default labels but, instead of using cols_label() and rewriting
each label manually in capital letters we can use cols_label_with() and instruct it to apply the
toupper() function to all column labels.

sp500 |>
dplyr::filter(
date >= "2015-12-01" &
date <= "2015-12-15"

) |>
dplyr::select(-c(adj_close, volume)) |>
gt() |>
cols_label_with(fn = toupper)

Use the countrypops dataset to create a gt table. To improve the presentation of the table, we are
again going to change the default column labels via function calls supplied within cols_label_with().
We can, if we prefer, apply multiple types of column label changes in sequence with multiple calls
of cols_label_with(). Here, we use the make_clean_names() functions from the janitor pack-
age and follow up with the removal of a numeral with gsub().

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::filter(grepl("^C", country_code_3)) |>
dplyr::select(-country_code_2, -year) |>
head(8) |>
gt() |>

68 cols_label_with

cols_move_to_start(columns = country_code_3) |>
fmt_integer(columns = population) |>
cols_label_with(
fn = ~ janitor::make_clean_names(., case = "title")

) |>
cols_label_with(
fn = ~ gsub("[0-9]", "", .)

)

We can make a svelte gt table with the pizzaplace dataset. There are ways to use one instance
of cols_label_with() with multiple functions called on the column labels. In the example, we
use an anonymous function call (with the function(x) { ... } construction) to perform multiple
mutations of x (the vector of column labels). We can even use the md() helper function with that to
signal to gt that the column label should be interpreted as Markdown text.

pizzaplace |>
dplyr::mutate(month = substr(date, 6, 7)) |>
dplyr::group_by(month) |>
dplyr::summarize(pizze_vendute = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(frazione_della_quota = pizze_vendute / 4000) |>
dplyr::mutate(date = paste0("2015/", month, "/01")) |>
dplyr::select(-month) |>
gt(rowname_col = "date") |>
fmt_date(date, date_style = "month", locale = "it") |>
fmt_percent(columns = frazione_della_quota) |>
fmt_integer(columns = pizze_vendute) |>
cols_width(everything() ~ px(100)) |>
cols_label_with(
fn = function(x) {
janitor::make_clean_names(x, case = "title") |>
toupper() |>
stringr::str_replace_all("^|$", "**") |>
md()

}
)

Function ID

5-5

Function Introduced

v0.9.0 (March 31, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(), cols_merge(),

cols_merge 69

cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge Merge data from two or more columns to a single column

Description

This function takes input from two or more columns and allows the contents to be merged into a
single column by using a pattern that specifies the arrangement. We can specify which columns
to merge together in the columns argument. The string-combining pattern is to be provided in the
pattern argument. The first column in the columns series operates as the target column (i.e., the
column that will undergo mutation) whereas all following columns will be untouched. There is the
option to hide the non-target columns (i.e., second and subsequent columns given in columns). The
formatting of values in different columns will be preserved upon merging.

Usage

cols_merge(
data,
columns,
hide_columns = columns[-1],
rows = everything(),
pattern = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // required
The columns for which the merging operations should be applied. The first
column resolved will be the target column (i.e., undergo mutation) and the other
columns will serve to provide input. Can either be a series of column names pro-
vided in c(), a vector of column indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). A vector is rec-
ommended because in that case we are absolutely certain about the order of
columns, and, that order information is needed for this and other arguments.

hide_columns Subset of columns to hide
<column-targeting expression>|FALSE // default: columns[-1]
Any column names provided here will have their state changed to hidden (via
internal use of cols_hide()) if they aren’t already hidden. This is convenient if

70 cols_merge

the shared purpose of these specified columns is only to provide string input to
the target column. To suppress any hiding of columns, FALSE can be used here.

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

pattern Formatting pattern
scalar<character> // default: NULL (optional)
A formatting pattern that specifies the arrangement of the columns values and
any string literals. The pattern uses numbers (within { }) that correspond to
the indices of columns provided in columns. If two columns are provided in
columns and we would like to combine the cell data onto the first column, "{1}
{2}" could be used. If a pattern isn’t provided then a space-separated pattern
that includes all columns will be generated automatically. Further details are
provided in the How the pattern works section.

Value

An object of class gt_tbl.

How the pattern works

There are two types of templating for the pattern string:

1. { } for arranging single column values in a row-wise fashion
2. << >> to surround spans of text that will be removed if any of the contained { } yields a

missing value

Integer values are placed in { } and those values correspond to the columns involved in the merge, in
the order they are provided in the columns argument. So the pattern "{1} ({2}-{3})" corresponds
to the target column value listed first in columns and the second and third columns cited (formatted
as a range in parentheses). With hypothetical values, this might result as the merged string "38.2
(3-8)".

Because some values involved in merging may be missing, it is likely that something like "38.2
(3-NA)" would be undesirable. For such cases, placing sections of text in << >> results in the entire
span being eliminated if there were to be an NA value (arising from { } values). We could instead
opt for a pattern like "{1}<< ({2}-{3})>>", which results in "38.2" if either columns {2} or {3}
have an NA value. We can even use a more complex nesting pattern like "{1}<< ({2}-<<{3}>>)>>"
to retain a lower limit in parentheses (where {3} is NA) but remove the range altogether if {2} is NA.

One more thing to note here is that if sub_missing() is used on values in a column, those specific
values affected won’t be considered truly missing by cols_merge() (since it’s been handled with
substitute text). So, the complex pattern "{1}<< ({2}-<<{3}>>)>>" might result in something
like "38.2 (3-limit)" if sub_missing(..., missing_text = "limit") were used on the third
column supplied in columns.

cols_merge 71

Comparison with other column-merging functions

There are three other column-merging functions that offer specialized behavior that is optimized for
common table tasks: cols_merge_range(), cols_merge_uncert(), and cols_merge_n_pct().
These functions operate similarly, where the non-target columns can be optionally hidden from the
output table through the autohide option.

Examples

Use a subset of the sp500 dataset to create a gt table. Use the cols_merge() function to merge the
open & close columns together, and, the low & high columns (putting an em dash between both).
Relabel the columns with cols_label().

sp500 |>
dplyr::slice(50:55) |>
dplyr::select(-volume, -adj_close) |>
gt() |>
cols_merge(
columns = c(open, close),
pattern = "{1}—{2}"

) |>
cols_merge(
columns = c(low, high),
pattern = "{1}—{2}"

) |>
cols_label(
open = "open/close",
low = "low/high"

)

Use a portion of gtcars to create a gt table. Use the cols_merge() function to merge the trq &
trq_rpm columns together, and, the mpg_c & mpg_h columns. Given the presence of NA values, we
can use patterns that drop parts of the output text whenever missing values are encountered.

gtcars |>
dplyr::filter(year == 2017) |>
dplyr::select(mfr, model, starts_with(c("trq", "mpg"))) |>
gt() |>
fmt_integer(columns = trq_rpm) |>
cols_merge(
columns = starts_with("trq"),
pattern = "{1}<< ({2} rpm)>>"

) |>
cols_merge(
columns = starts_with("mpg"),
pattern = "<<{1} city<</{2} hwy>>>>"

) |>
cols_label(
mfr = "Manufacturer",

72 cols_merge_n_pct

model = "Car Model",
trq = "Torque",
mpg_c = "MPG"

)

Function ID

5-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_n_pct Merge two columns to combine counts and percentages

Description

The cols_merge_n_pct() function is a specialized variant of the cols_merge() function. It oper-
ates by taking two columns that constitute both a count (col_n) and a fraction of the total population
(col_pct) and merges them into a single column. What results is a column containing both counts
and their associated percentages (e.g., 12 (23.2%)). The column specified in col_pct is dropped
from the output table.

Usage

cols_merge_n_pct(data, col_n, col_pct, rows = everything(), autohide = TRUE)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

col_n Column to target for counts
<column-targeting expression> // required
The column that contains values for the count component. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

cols_merge_n_pct 73

col_pct Column to target for percentages
<column-targeting expression> // required
The column that contains values for the percentage component. While select
helper functions such as starts_with() and ends_with() can be used for col-
umn targeting, it’s recommended that a single column name be used. This is to
ensure that exactly one column is provided here. This column should be format-
ted such that percentages are displayed (e.g., with fmt_percent()).

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

autohide Automatic hiding of the col_pct column
scalar<logical> // default: TRUE
An option to automatically hide the column specified as col_pct. Any columns
with their state changed to hidden will behave the same as before, they just won’t
be displayed in the finalized table.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge(), however, cols_merge_n_pct()
employs the following specialized semantics for NA and zero-value handling:

1. NAs in col_n result in missing values for the merged column (e.g., NA + 10.2% = NA)
2. NAs in col_pct (but not col_n) result in base values only for the merged column (e.g., 13 +

NA = 13)
3. NAs both col_n and col_pct result in missing values for the merged column (e.g., NA + NA =

NA)
4. If a zero (0) value is in col_n then the formatted output will be "0" (i.e., no percentage will

be shown)

Any resulting NA values in the col_n column following the merge operation can be easily formatted
using the sub_missing() function. Separate calls of sub_missing() can be used for the col_n
and col_pct columns for finer control of the replacement values. It is the responsibility of the
user to ensure that values are correct in both the col_n and col_pct columns (this function neither
generates nor recalculates values in either). Formatting of each column can be done independently
in separate fmt_number() and fmt_percent() calls.
This function is part of a set of four column-merging functions. The other three are the gen-
eral cols_merge() function and the specialized cols_merge_uncert() and cols_merge_range()
functions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

74 cols_merge_n_pct

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table that displays the
counts and percentages of the top 3 pizzas sold by pizza category in 2015. The cols_merge_n_pct()
function is used to merge the n and frac columns (and the frac column is formatted using fmt_percent()).

pizzaplace |>
dplyr::group_by(name, type, price) |>
dplyr::summarize(
n = dplyr::n(),
frac = n/nrow(pizzaplace),
.groups = "drop"

) |>
dplyr::arrange(type, dplyr::desc(n)) |>
dplyr::group_by(type) |>
dplyr::slice_head(n = 3) |>
gt(
rowname_col = "name",
groupname_col = "type"

) |>
fmt_currency(price) |>
fmt_percent(frac) |>
cols_merge_n_pct(
col_n = n,
col_pct = frac

) |>
cols_label(
n = md("*N* (%)"),
price = "Price"

) |>
tab_style(
style = cell_text(font = "monospace"),
locations = cells_stub()

) |>
tab_stubhead(md("Cat. and \nPizza Code")) |>
tab_header(title = "Top 3 Pizzas Sold by Category in 2015") |>
tab_options(table.width = px(512))

Function ID

5-17

Function Introduced

v0.3.0 (May 12, 2021)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_range(), cols_merge_uncert(), cols_merge(),

cols_merge_range 75

cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_range Merge two columns to a value range column

Description

The cols_merge_range() function is a specialized variant of the cols_merge() function. It op-
erates by taking a two columns that constitute a range of values (col_begin and col_end) and
merges them into a single column. What results is a column containing both values separated by a
long dash (e.g., 12.0 20.0). The column specified in col_end is dropped from the output table.

Usage

cols_merge_range(
data,
col_begin,
col_end,
rows = everything(),
autohide = TRUE,
sep = NULL,
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

col_begin Column to target for beginning of range
<column-targeting expression> // required
The column that contains values for the start of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

col_end Column to target for end of range
<column-targeting expression> // required
The column that contains values for the end of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

76 cols_merge_range

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

autohide Automatic hiding of the col_end column
scalar<logical> // default: TRUE
An option to automatically hide the column specified as col_end. Any columns
with their state changed to hidden will behave the same as before, they just won’t
be displayed in the finalized table.

sep Separator text for ranges
scalar<character> // default: NULL (optional)
The separator text that indicates the values are ranged. If a sep value is not
provided then the range separator specific to the locale provided will be used
(if a locale isn’t specified then an en dash will be used). You can specify the use
of an en dash with "--"; a triple-hyphen sequence ("---") will be transformed
to an em dash. Should you want hyphens to be taken literally, the sep value can
be supplied within the base I() function.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for applying a sep pattern specific
to a locale’s rules. Examples include "en" for English (United States) and "fr"
for French (France). We can use the info_locales() function as a useful ref-
erence for all of the locales that are supported. A locale ID can be also set in the
initial gt() function call (where it would be used automatically by any function
with a locale argument) but a locale value provided here will override that
global locale.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge(), however, cols_merge_range()
employs the following specialized operations for NA handling:

1. NAs in col_begin (but not col_end) result in a display of only

2. NAs in col_end (but not col_begin) result in a display of only the col_begin values only for
the merged column (this is the converse of the previous)

3. NAs both in col_begin and col_end result in missing values for the merged column

cols_merge_uncert 77

Any resulting NA values in the col_begin column following the merge operation can be easily
formatted using the sub_missing() function. Separate calls of sub_missing() can be used for the
col_begin and col_end columns for finer control of the replacement values.

This function is part of a set of four column-merging functions. The other three are the gen-
eral cols_merge() function and the specialized cols_merge_uncert() and cols_merge_n_pct()
functions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

Examples

Let’s use a subset of the gtcars dataset to create a gt table, keeping only the model, mpg_c, and
mpg_h columns. Merge the "mpg*" columns together as a single range column (which is labeled as
MPG, in italics) using the cols_merge_range() function. After the merging process, the column
label for the mpg_c column is updated with cols_label() to better describe the content.

gtcars |>
dplyr::select(model, starts_with("mpg")) |>
dplyr::slice(1:8) |>
gt() |>
cols_merge_range(
col_begin = mpg_c,
col_end = mpg_h

) |>
cols_label(mpg_c = md("*MPG*"))

Function ID

5-16

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_uncert(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_merge_uncert Merge columns to a value-with-uncertainty column

78 cols_merge_uncert

Description

The cols_merge_uncert() function is a specialized variant of the cols_merge() function. It
takes as input a base value column (col_val) and either: (1) a single uncertainty column, or (2)
two columns representing lower and upper uncertainty bounds. These columns will be essentially
merged in a single column (that of col_val). What results is a column with values and associ-
ated uncertainties (e.g., 12.0 ± 0.1), and any columns specified in col_uncert are hidden from
appearing the output table.

Usage

cols_merge_uncert(
data,
col_val,
col_uncert,
rows = everything(),
sep = " +/- ",
autohide = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

col_val Column to target for base values
<column-targeting expression> // required
The column that contains values for the start of the range. While select helper
functions such as starts_with() and ends_with() can be used for column
targeting, it’s recommended that a single column name be used. This is to ensure
that exactly one column is provided here.

col_uncert Column or columns to target for uncertainty values
<column-targeting expression> // required
The most common case involves supplying a single column with uncertainties;
these values will be combined with those in col_val. Less commonly, the lower
and upper uncertainty bounds may be different. For that case, two columns rep-
resenting the lower and upper uncertainty values away from col_val, respec-
tively, should be provided. While select helper functions such as starts_with()
and ends_with() can be used for column targeting, it’s recommended that one
or two column names be explicitly provided in a vector.

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should par-
ticipate in the merging process. The default everything() results in all rows
in columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples of
select helper functions include starts_with(), ends_with(), contains(),

cols_merge_uncert 79

matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

sep Separator text for uncertainties
scalar<character> // default: " +/- "

The separator text that contains the uncertainty mark for a single uncertainty
value. The default value of " +/- " indicates that an appropriate plus/minus
mark will be used depending on the output context. Should you want this special
symbol to be taken literally, it can be supplied within the I() function.

autohide Automatic hiding of the col_uncert column(s)
scalar<logical> // default: TRUE
An option to automatically hide any columns specified in col_uncert. Any
columns with their state changed to ’hidden’ will behave the same as before,
they just won’t be displayed in the finalized table.

Value

An object of class gt_tbl.

Comparison with other column-merging functions

This function could be somewhat replicated using cols_merge() in the case where a single column
is supplied for col_uncert, however, cols_merge_uncert() employs the following specialized
semantics for NA handling:

1. NAs in col_val result in missing values for the merged column (e.g., NA + 0.1 = NA)

2. NAs in col_uncert (but not col_val) result in base values only for the merged column (e.g.,
12.0 + NA = 12.0)

3. NAs both col_val and col_uncert result in missing values for the merged column (e.g., NA +
NA = NA)

Any resulting NA values in the col_val column following the merge operation can be easily for-
matted using the sub_missing() function.

This function is part of a set of four column-merging functions. The other three are the general
cols_merge() function and the specialized cols_merge_range() and cols_merge_n_pct() func-
tions. These functions operate similarly, where the non-target columns can be optionally hidden
from the output table through the hide_columns or autohide options.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). We’ll format the num column with the fmt_number() function. Next we merge
the currency and num columns into the currency column; this will contain a base value and an
uncertainty and it’s all done using the cols_merge_uncert() function. After the merging process,
the column label for the currency column is updated with cols_label() to better describe the
content.

exibble |>
dplyr::select(num, currency) |>

80 cols_move

dplyr::slice(1:7) |>
gt() |>
fmt_number(
columns = num,
decimals = 3,
use_seps = FALSE

) |>
cols_merge_uncert(
col_val = currency,
col_uncert = num

) |>
cols_label(currency = "value + uncert.")

Function ID

5-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge(),
cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_move Move one or more columns

Description

On those occasions where you need to move columns this way or that way, we can make use of the
cols_move() function. While it’s true that the movement of columns can be done upstream of gt,
it is much easier and less error prone to use the function provided here. The movement procedure
here takes one or more specified columns (in the columns argument) and places them to the right of
a different column (the after argument). The ordering of the columns to be moved is preserved,
as is the ordering of all other columns in the table.

Usage

cols_move(data, columns, after)

cols_move 81

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the moving operations should be applied. Can either be
a series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().
The columns move as a group to a different position. The order of the remaining
columns will be preserved.

after Column used as anchor
<column-targeting expression> // required
The column used to anchor the insertion of the moved columns. All of the moved
columns will be placed to the right of this column. While select helper functions
such as starts_with() and ends_with() can be used for column targeting, it’s
recommended that a single column name be used. This is to ensure that exactly
one column is provided here.

Details

The columns supplied in columns must all exist in the table and none of them can be in the after
argument. The after column must also exist and only one column should be provided here. If you
need to place one or more columns at the beginning of the column series, the cols_move_to_start()
function should be used. Similarly, if those columns to move should be placed at the end of the col-
umn series then use cols_move_to_end().

Value

An object of class gt_tbl.

Examples

Use the countrypops dataset to create a gt table. We’ll choose to position the population column
after the country_name column by using the cols_move() function.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Japan") |>
dplyr::slice_tail(n = 10) |>
gt() |>
cols_move(
columns = population,
after = country_name

) |>
fmt_integer(columns = population)

82 cols_move_to_end

Function ID

5-9

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_nanoplot(), cols_unhide(),
cols_units(), cols_width()

cols_move_to_end Move one or more columns to the end

Description

It’s possible to move a set of columns to the end of the column series, we only need to specify which
columns are to be moved. While this can be done upstream of gt, this function makes to process
much easier and it’s less error prone. The ordering of the columns that are moved to the end is
preserved (same with the ordering of all other columns in the table).

Usage

cols_move_to_end(data, columns)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the moving operations should be applied. Can either be
a series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().
The columns move as a group to the right-most side of the table. The order of
the remaining columns will be preserved.

Details

The columns supplied in columns must all exist in the table. If you need to place one or columns at
the start of the column series, the cols_move_to_start() function should be used. More control
is offered with the cols_move() function, where columns could be placed after a specific column.

cols_move_to_end 83

Value

An object of class gt_tbl.

Examples

For this example, we’ll use a portion of the countrypops dataset to create a simple gt table. Let’s
move the year column, which is the middle column, to the end of the column series with the
cols_move_to_end() function.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Benin") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_move_to_end(columns = year)

We can also move multiple columns at a time. With the same countrypops-based table, let’s move
both the year and country_name columns to the end of the column series.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Benin") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_move_to_end(columns = c(year, country_name))

Function ID

5-11

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_start(), cols_move(), cols_nanoplot(), cols_unhide(), cols_units(),
cols_width()

84 cols_move_to_start

cols_move_to_start Move one or more columns to the start

Description

We can easily move set of columns to the beginning of the column series and we only need to specify
which columns. It’s possible to do this upstream of gt, however, it is easier with this function and
it presents less possibility for error. The ordering of the columns that are moved to the start is
preserved (same with the ordering of all other columns in the table).

Usage

cols_move_to_start(data, columns)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the moving operations should be applied. Can either be
a series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().
The columns move as a group to the left-most side of the table. The order of the
remaining columns will be preserved.

Details

The columns supplied in columns must all exist in the table. If you need to place one or columns
at the end of the column series, the cols_move_to_end() function should be used. More control is
offered with the cols_move() function, where columns could be placed after a specific column.

Value

An object of class gt_tbl.

Examples

For this example, we’ll use a portion of the countrypops dataset to create a simple gt table. Let’s
move the year column, which is the middle column, to the start of the column series with the
cols_move_to_start() function.

cols_nanoplot 85

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Fiji") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_move_to_start(columns = year)

We can also move multiple columns at a time. With the same countrypops-based table, let’s move
both the year and population columns to the start of the column series.

countrypops |>
dplyr::select(-contains("code")) |>
dplyr::filter(country_name == "Fiji") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_move_to_start(columns = c(year, population))

Function ID

5-10

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move(), cols_nanoplot(), cols_unhide(), cols_units(),
cols_width()

cols_nanoplot Add a new column of nanoplots, taking input data from selected
columns

Description

Nanoplots are tiny plots you can use in your gt table. They are simple by design, mainly be-
cause there isn’t a lot of space to work with. With that simplicity, however, you do get a set of
very succinct data visualizations that adapt nicely to the amount of data you feed into them. With
cols_nanoplot() you take data from one or more columns as the basic inputs for the nanoplots
and generate a new column containing the plots. The nanoplots are robust against missing values,
and multiple strategies are available for handling missingness.

Nanoplots try to show individual data with reasonably good visibility. Interactivity is included as
a basic feature so one can hover over the data points and vertical guides will display the value as-
cribed to each data point. Because gt knows all about numeric formatting, values will be compactly

86 cols_nanoplot

formatted so as to not take up valuable real estate. If you need to create a nanoplot based on mone-
tary values, that can be handled by providing the currency code to the nanoplot_options() helper
(then hook that up to the options argument). A guide on the left-hand side of the plot area will
appear on hover and display the minimal and maximal y values.

There are three types of nanoplots available: "line", "bar", "boxplot". A line plot shows indi-
vidual data points and has smooth connecting lines between them to allow for easier scanning of
values. You can opt for straight-line connections between data points, or, no connections at all (it’s
up to you). You can even eschew the data points and just have a simple line. Regardless of how you
mix and match difference plot layers, the plot area focuses on the domain of the data points with
the goal of showing you the overall trend of the data. The data you feed into a line plot can consist
of a single vector of values (resulting in equally-spaced y values), or, you can supply two vectors
representative of x and y.

A bar plot is built a little bit differently. The focus is on evenly-spaced bars (requiring a single
vector of values) that project from a zero line, clearly showing the difference between positive and
negative values. By default, any type of nanoplot will have basic interactivity. One can hover over
the data points and vertical guides will display values ascribed to each. A guide on the left-hand
side of the plot area will display the minimal and maximal y values on hover.

Every box plot will take the collection of values for a row and construct the plot horizontally. This is
essentially a standard box-and-whisker diagram where outliers are automatically displayed outside
the left and right fences.

While basic customization options are present in the cols_nanoplot(), many more opportunities
for customizing nanoplots on a more granular level are possible with the nanoplot_options()
helper function. That function should be invoked at the options argument of cols_nanoplot().
Through that helper, layers of the nanoplots can be selectively removed and the aesthetics of the
remaining plot components can be modified.

Usage

cols_nanoplot(
data,
columns,
rows = everything(),
plot_type = c("line", "bar", "boxplot"),
plot_height = "2em",
missing_vals = c("gap", "zero", "remove"),
autoscale = FALSE,
autohide = TRUE,
columns_x_vals = NULL,
reference_line = NULL,
reference_area = NULL,
expand_x = NULL,
expand_y = NULL,
new_col_name = NULL,
new_col_label = NULL,
before = NULL,
after = NULL,
options = NULL

)

cols_nanoplot 87

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns from which to get data for the dependent variable
<column-targeting expression> // required
The columns which contain the numeric data to be plotted as nanoplots. Can
either be a series of column names provided in c(), a vector of column in-
dices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything(). Data collected from the columns will be concatenated to-
gether in the order of resolution.

rows Rows that should contain nanoplots
<row-targeting expression> // default: everything()
With rows we can specify which rows should contain nanoplots in the new col-
umn. The default everything() results in all rows in columns being format-
ted. Alternatively, we can supply a vector of row IDs within c(), a vector of
row indices, or a select helper function. Examples of select helper functions
include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

plot_type The type of nanoplot to display
singl-kw:[line|bar|boxplot] // default: "line"
Nanoplots can either take the form of a line plot (using "line"), a bar plot (with
"bar"), or a box plot ("boxplot"). A line plot, by default, contains layers for
a data line, data points, and a data area. Each of these can be deactivated by
using nanoplot_options(). With a bar plot, the always visible layer is that of
the data bars. Furthermore, a line plot can optionally take in x values through
the columns_x_vals argument whereas bar plots and box plots both ignore any
data representing the independent variable.

plot_height The height of the nanoplots
scalar<character> // default: "2em"
The height of the nanoplots. The default here is a sensible value of "2em". By
way of comparison, this is a far greater height than the default for icons through
fmt_icon() ("1em") and is the same height as images inserted via fmt_image()
(also having a "2em" height default).

missing_vals Treatment of missing values
singl-kw:[gap|zero|remove] // default: "gap"
If missing values are encountered within the input data, there are three strategies
available for their handling: (1) "gap" will display data gaps at the sites of
missing data, where data lines will have discontinuities; (2) "zero" will replace
NA values with zero values; and (3) "remove" will remove any incoming NA
values.

autoscale Automatically set x- and y-axis scale limits based on data

88 cols_nanoplot

scalar<logical> // default: FALSE
Using autoscale = TRUE will ensure that the bounds of all nanoplots produced
are based on the limits of data combined from all input rows. This will result in
a shared scale across all of the nanoplots (for y- and x-axis data), which is useful
in those cases where the nanoplot data should be compared across rows.

autohide Automatically hide the columns/columns_x_vals column(s)
scalar<logical> // default: TRUE
An option to automatically hide any columns specified in columns and also
columns_x_vals (if used). Any columns with their state changed to ’hidden’
will behave the same as before, they just won’t be displayed in the finalized
table. Should you want to have these ’input’ columns be viewable, set autohide
= FALSE.

columns_x_vals Columns containing values for the optional x variable
<column-targeting expression> // default: NULL (optional)
We can optionally obtain data for the independent variable (i.e., the x-axis data)
if specifying columns in columns_x_vals. This is only for the "line" type of
plot (set via the plot_type argument). We can supply either be a series of col-
umn names provided in c(), a vector of column indices, or a select helper func-
tion. Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). Data
collected from the columns will be concatenated together in the order of resolu-
tion.

reference_line Add a reference line
scalar<numeric|integer|character> // default: NULL (optional)
A reference line requires a single input to define the line. It could be a static
numeric value, applied to all nanoplots generated. Or, the input can be one of
the following for generating the line from the underlying data: (1) "mean", (2)
"median", (3) "min", (4) "max", (5) "q1", (6) "q3", (7) "first", or (8) "last".

reference_area Add a reference area
vector<numeric|integer|character>|list // default: NULL (optional)
A reference area requires two inputs to define bottom and top boundaries for a
rectangular area. The types of values supplied are the same as those expected for
reference_line, which is either a static numeric value or one of the following
keywords for the generation of the value: (1) "mean", (2) "median", (3) "min",
(4) "max", (5) "q1", (6) "q3", (7) "first", or (8) "last". Input can either be a
vector or list with two elements.

expand_x, expand_y

Expand plot scale in the x and y directions
vector<numeric|integer> // default: NULL (optional)
Should you need to have plots expand in the x or y direction, provide one or
more values to expand_x or expand_y. Any values provided that are outside of
the range of data provided to the plot should result in a scale expansion.

new_col_name Column name for the new column containing the plots
scalar<character> // default: NULL (optional)
A single column name in quotation marks. Values will be extracted from this
column and provided to compatible arguments. If not provided the new column
name will be "nanoplots".

cols_nanoplot 89

new_col_label Column label for the new column containing the plots
scalar<character> // default: NULL (optional)
A single column label. If not supplied then the column label will inherit from
new_col_name (if nothing provided to that argument, the label will be "nanoplots").

before, after Column used as anchor
<column-targeting expression> // default: NULL (optional)
A single column-resolving expression or column index can be given to either
before or after. The column specifies where the new column containing the
nanoplots should be positioned among the existing columns in the input data
table. While select helper functions such as starts_with() and ends_with()
can be used for column targeting, it’s recommended that a single column name
or index be used. This is to ensure that exactly one column is provided to either
of these arguments (otherwise, the function will be stopped). If nothing is pro-
vided for either argument then the new column will be placed at the end of the
column series.

options Set options for the nanoplots
obj:<nanoplot_options // default: NULL (optional)
By using the nanoplot_options() helper function here, you can alter the lay-
out and styling of the nanoplots in the new column.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values to insert into the nanoplots is done through columns and additionally by rows (if
nothing is provided for rows then entire columns are selected). Aside from declaring column names
in c() (with bare column names or names in quotes) we can use also tidyselect-style expressions.
This can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector.

How to supply data for nanoplots

The input data for nanoplots naturally needs to be numeric and there are two major ways to formu-
late that data: (1) from single values across many columns, and (2) using text-based value streams.

90 cols_nanoplot

It’s pretty easy to rationalize the first, and we may already have wide data in the input data frame
anyway (take a look at the illness and towny datasets for examples of this). There’s one data
value per column so the key thing here is to reference the columns in the correct order. With a select
helper, good column naming, and the columns being in the intended order, this is a snap.

The second option is to use text-based value streams. Sometimes you simply don’t want or don’t
need multiple columns and so a single column with all of the data might be more practical. To make
this work, you’d need to have a set of numerical values separated by some sort of delimiter (could be
a comma, a space, a semicolon, you get the idea). Here’s an example with three numbers, written
three ways: "3.6 -2.44 1.98", "3.6, -2.44, 1.98", and "3.6;-2.44;1.98". You can include
NA values, not a problem, and here’s an example of that: "6.232 NA 3.7 0.93". Another form of
value stream involves using datetimes in the ISO 8601 form of YYYY-MM-DD HH:MM:SS. These will
be internally converted to numeric values (seconds elapsed since "1970-01-01 00:00:00"). An
example of a datetime-based value stream is: "2012-06-12 08:24:13, 2012-06-12 10:37:08,
2012-06-12 14:03:24".

Value streams can be pretty big if you want them to be, and you don’t have to deal with containing
individual values across multiple columns. For the case where you need to provide two sets of
values (x and y, for line plots with columns and columns_x_vals), have two equivalently sized
value streams in two columns. Value streams can also be concatenated together by referencing
columns having their own separate value streams.

Reference line and reference area

Neither a horizontal reference line nor a reference area is present in the default view but these can
be added by providing valid input values in the reference_line and reference_area arguments.
A reference line can be either be a static numeric value (supply any number to reference_line), or
it can be a keyword that computes the reference line y value using the data values for each nanoplot.
The following keywords can be used:

1. "mean": The mean of the data values

2. "median": Median of data values

3. "min": Minimum value in set of data values

4. "max": The maximum value

5. "q1": The first, or lower, quartile of the data values

6. "q3": The third quartile, otherwise known as the upper quartile

7. "first": The first data value

8. "last": The last data value

The reference area accepts two inputs, and this can be two of the above keywords, a keyword and a
static numeric value, or two numeric values.

Examples

Let’s make some nanoplots with the illness dataset. The columns beginning with ’day’ all contain
ordered measurement values, comprising seven individual daily results. Using cols_nanoplot()
we create a new column to hold the nanoplots (with new_col_name = "nanoplots"), referencing
the columns containing the data (with columns = starts_with("day")). It’s also possible to define
a column label here using the new_col_label argument.

cols_nanoplot 91

illness |>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "test") |>
tab_header("Partial summary of daily tests performed on YF patient") |>
tab_stubhead(label = md("**Test**")) |>
cols_hide(columns = starts_with("norm")) |>
fmt_units(columns = units) |>
cols_nanoplot(
columns = starts_with("day"),
new_col_name = "nanoplots",
new_col_label = md("*Progression*")

) |>
cols_align(align = "center", columns = nanoplots) |>
cols_merge(columns = c(test, units), pattern = "{1} ({2})") |>
tab_footnote(
footnote = "Measurements from Day 3 through to Day 8.",
locations = cells_column_labels(columns = nanoplots)

)

The previous table showed us some line-based nanoplots. We can also make very small bar plots
with cols_nanoplot(). Let’s take the pizzaplace dataset and make a small summary table show-
ing daily pizza sales by type (there are four types). This will be limited to the first ten days of
pizza sales in 2015, so, there will be ten rows in total. We can use plot_type = "bar" to make
bar plots from the daily sales counts in the chicken, classic, supreme, and veggie columns.
Because we know there will always be four bars (one for each type of pizza) we can be a little
creative and apply colors to each of the bars through use of the data_bar_fill_color argument
in nanoplot_options().

pizzaplace |>
dplyr::select(type, date) |>
dplyr::group_by(date, type) |>
dplyr::summarize(sold = dplyr::n(), .groups = "drop") |>
tidyr::pivot_wider(names_from = type, values_from = sold) |>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "date") |>
tab_header(
title = md("First Ten Days of Pizza Sales in 2015")

) |>
cols_nanoplot(
columns = c(chicken, classic, supreme, veggie),
plot_type = "bar",
autohide = FALSE,
new_col_name = "pizzas_sold",
new_col_label = "Sales by Type",
options = nanoplot_options(
show_data_line = FALSE,
show_data_area = FALSE,
data_bar_stroke_color = "transparent",
data_bar_fill_color = c("brown", "gold", "purple", "green")

92 cols_nanoplot

)
) |>
cols_width(pizzas_sold ~ px(150)) |>
cols_align(columns = -date, align = "center") |>
fmt_date(columns = date, date_style = "yMMMEd") |>
opt_all_caps()

Now we’ll make another table that contains two columns of nanoplots. Starting from the towny
dataset, we first reduce it down to a subset of columns and rows. All of the columns related to either
population or density will be used as input data for the two nanoplots. Both nanoplots will use a
reference line that is generated from the median of the input data. And by naming the new nanoplot-
laden columns in a similar manner as the input data columns, we can take advantage of select helpers
(e.g., when using tab_spanner()). Many of the input data columns are now redundant because of
the plots, so we’ll elect to hide most of those with cols_hide().

towny |>
dplyr::select(name, starts_with("population"), starts_with("density")) |>
dplyr::filter(population_2021 > 200000) |>
dplyr::arrange(desc(population_2021)) |>
gt() |>
fmt_integer(columns = starts_with("population")) |>
fmt_number(columns = starts_with("density"), decimals = 1) |>
cols_nanoplot(
columns = starts_with("population"),
reference_line = "median",
autohide = FALSE,
new_col_name = "population_plot",
new_col_label = md("*Change*")

) |>
cols_nanoplot(
columns = starts_with("density"),
plot_type = "bar",
autohide = FALSE,
new_col_name = "density_plot",
new_col_label = md("*Change*")

) |>
cols_hide(columns = matches("2001|2006|2011|2016")) |>
tab_spanner(
label = "Population",
columns = starts_with("population")

) |>
tab_spanner(
label = "Density ({{*persons* km^-2}})",
columns = starts_with("density")

) |>
cols_label_with(
columns = -matches("plot"),
fn = function(x) gsub("\\D+", "", x)

) |>

cols_nanoplot 93

cols_align(align = "center", columns = matches("plot")) |>
cols_width(
name ~ px(140),
everything() ~ px(100)

) |>
opt_horizontal_padding(scale = 2)

The sza dataset can, with just some use of dplyr and tidyr, give us a wide table full of nanoplottable
values. We’ll transform the solar zenith angles to solar altitude angles and create a column of
nanoplots using the newly calculated values. There are a few NA values during periods where the
sun hasn’t risen (usually before 06:30 in the winter months) and those values will be replaced with
0 using missing_vals = "zero". We’ll also elect to create bar plots using the plot_type = "bar"
option. The height of the plots will be bumped up to "2.5em" from the default of "2em". Finally,
we will use nanoplot_options() to modify the coloring of the data bars.

sza |>
dplyr::filter(latitude == 20 & tst <= "1200") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>
dplyr::mutate(saa = 90 - sza) |>
dplyr::select(-sza) |>
tidyr::pivot_wider(
names_from = tst,
values_from = saa,
names_sort = TRUE

) |>
gt(rowname_col = "month") |>
tab_header(
title = "Solar Altitude Angles",
subtitle = "Average values every half hour from 05:30 to 12:00"

) |>
cols_nanoplot(
columns = matches("0"),
plot_type = "bar",
missing_vals = "zero",
new_col_name = "saa",
plot_height = "2.5em",
options = nanoplot_options(
data_bar_stroke_color = "GoldenRod",
data_bar_fill_color = "DarkOrange"

)
) |>
tab_options(
table.width = px(400),
column_labels.hidden = TRUE

) |>
cols_align(
align = "center",
columns = everything()

94 cols_nanoplot

) |>
tab_source_note(
source_note = "The solar altitude angle is the complement to
the solar zenith angle. TMYK."

)

You can use number and time streams as data for nanoplots. Let’s demonstrate how we can make
use of them with some creative transformation of the pizzaplace dataset. A value stream is really
a string with delimited numeric values, like this: "7.24,84.2,14". A value stream can also con-
tain dates and/or datetimes, and here’s an example of that: "2020-06-02 13:05:13,2020-06-02
14:24:05,2020-06-02 18:51:37". Having data in this form can often be more convenient since
different nanoplots might have varying amounts of data (and holding different amounts of data in
a fixed number of columns is cumbersome). There are date and time columns in this dataset and
we’ll use that to get x values denoting high-resolution time instants: the second of the day that a
pizza was sold (this is true pizza analytics). We also have the sell price for a pizza, and that’ll serve
as the y values. The pizzas belong to four different groups (in the type column) and we’ll group
by that and create value streams with paste(..., collapse = ",") in the dplyr summarize call.
With two value streams in each row (having the same number of values) we can now make a gt
table with nanoplots.

pizzaplace |>
dplyr::filter(date == "2015-01-01") |>
dplyr::mutate(date_time = paste(date, time)) |>
dplyr::select(type, date_time, price) |>
dplyr::group_by(type) |>
dplyr::summarize(
date_time = paste(date_time, collapse = ","),
sold = paste(price, collapse = ",")

) |>
gt(rowname_col = "type") |>
tab_header(
title = md("Pizzas sold on **January 1, 2015**"),
subtitle = "Between the opening hours of 11:30 to 22:30"

) |>
cols_nanoplot(
columns = sold,
columns_x_vals = date_time,
expand_x = c("2015-01-01 11:30", "2015-01-01 22:30"),
reference_line = "median",
new_col_name = "pizzas_sold",
new_col_label = "Pizzas Sold",
options = nanoplot_options(
show_data_line = FALSE,
show_data_area = FALSE,
currency = "USD"

)
) |>
cols_width(pizzas_sold ~ px(200)) |>
cols_align(columns = pizzas_sold, align = "center") |>

cols_nanoplot 95

opt_all_caps()

Notice that we hid the columns containing the value streams with cols_hide() because, while
useful, they don’t need to be displayed to anybody viewing a table. We have a lot of data points and
a connecting line is not as valuable here. It’s more interesting to see the clusters of the differently
priced pizzas over the entire day. Specifying a currency in nanoplot_options() is a nice touch
since the y values are sale prices in U.S. Dollars (hovering over data points gives correctly formatted
values). Finally, having a reference line based on the median gives pretty useful information. Seems
like customers preferred getting the "chicken"-type pizzas in large size!

Box plots can be generated, and we just need to use plot_type = "boxplot" to make that type
of nanoplot. Using a small portion of the pizzaplace dataset, we will create a simple table that
displays a box plot of pizza sales for a selection of days. By converting the string-time 24-hour-
clock time values to the number of seconds elapsed in a day, we get continuous values that can
be incorporated into each box plot. And, by supplying a function to the y_val_fmt_fn argument
within nanoplot_options(), we can transform the integer seconds values back to clock times for
display on hover.

pizzaplace |>
dplyr::filter(date <= "2015-01-14") |>
dplyr::mutate(time = as.numeric(hms::as_hms(time))) |>
dplyr::summarize(time = paste(time, collapse = ","), .by = date) |>
dplyr::mutate(is_weekend = lubridate::wday(date) %in% 6:7) |>
gt() |>
tab_header(title = "Pizza Sales in Early January 2015") |>
fmt_date(columns = date, date_style = 2) |>
cols_nanoplot(
columns = time,
plot_type = "boxplot",
options = nanoplot_options(y_val_fmt_fn = function(x) hms::as_hms(x))

) |>
cols_hide(columns = is_weekend) |>
cols_width(everything() ~ px(250)) |>
cols_align(align = "center", columns = nanoplots) |>
cols_align(align = "left", columns = date) |>
tab_style(
style = cell_borders(
sides = "left", color = "gray"),

locations = cells_body(columns = nanoplots)
) |>
tab_style_body(
style = cell_fill(color = "#E5FEFE"),
values = TRUE,
targets = "row"

) |>
tab_options(column_labels.hidden = TRUE)

Function ID

5-8

96 cols_unhide

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_unhide(),
cols_units(), cols_width()

cols_unhide Unhide one or more columns

Description

The cols_unhide() function allows us to take one or more hidden columns (usually made so via
the cols_hide() function) and make them visible in the final output table. This may be important
in cases where the user obtains a gt_tbl object with hidden columns and there is motivation to
reveal one or more of those.

Usage

cols_unhide(data, columns)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to unhide in the output display table. Can either be a series of col-
umn names provided in c(), a vector of column indices, or a select helper func-
tion. Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything().

Details

The hiding and unhiding of columns is internally a rendering directive, so, all columns that are ’hid-
den’ are still accessible and useful in any expression provided to a rows argument. The cols_unhide()
function quietly changes the visible state of a column (much like the cols_hide() function) and
doesn’t yield warnings or messages when changing the state of already-visible columns.

Value

An object of class gt_tbl.

cols_units 97

Examples

Let’s use a small portion of the countrypops dataset to create a gt table. We’ll hide the country_code_2
and country_code_3 columns with the cols_hide() function.

tab_1 <-
countrypops |>
dplyr::filter(country_name == "Singapore") |>
dplyr::slice_tail(n = 5) |>
gt() |>
cols_hide(columns = c(country_code_2, country_code_3))

tab_1

If the tab_1 object is provided without the code or source data to regenerate it, and, the user wants
to reveal otherwise hidden columns then the cols_unhide() function becomes useful.

tab_1 |> cols_unhide(columns = country_code_2)

Function ID

5-13

Function Introduced

v0.3.0 (May 12, 2021)

See Also

cols_hide() to perform the inverse operation.

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_units(), cols_width()

cols_units Define units for one or more columns

Description

Column labels can sometimes contain measurement units, and these might range from easy to de-
fine and typeset (e.g., "m/s") to very difficult. Such difficulty can arise from the need to include
subscripts or superscripts, non-ASCII symbols, etc. The cols_units() function tries to make this
task easier by letting you apply text pertaining to units to various columns. This takes advantage of
gt’s specialized units notation (e.g., "J Hz^-1 mol^-1" can be used to generate units for the molar
Planck constant). The notation here provides several conveniences for defining units, letting you
produce the correct formatting no matter what the table output format might be (i.e., HTML, La-
TeX, RTF, etc.). Details pertaining to the units notation can be found in the section entitled How to
use gt’s units notation.

98 cols_units

Usage

cols_units(.data, ..., .list = list2(...), .units_pattern = NULL)

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Column units definitions
<multiple expressions> // required (or, use .list)
Expressions for the assignment of column units for the table columns in .data.
Two-sided formulas (e.g., <LHS> ~ <RHS>) can be used, where the left-hand side
corresponds to selections of columns and the right-hand side evaluates to single-
length values for the units to apply. Column names should be enclosed in c().
Select helpers like starts_with(), ends_with(), contains(), matches(),
one_of(), and everything() can be used in the LHS. Named arguments are
also valid as input for simple mappings of column name to the gt units syntax;
they should be of the form <column name> = <units text>. Subsequent
expressions that operate on the columns assigned previously will result in over-
writing column units defintion values.

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)
Allows for the use of a list as an input alternative to

.units_pattern Pattern to combine column labels and units
scalar<character> // default: NULL (optional)
An optional pattern to be used for combining column labels with the defined
units. The default pattern is "{1}, {2}", where "{1}" refers to the column
label text and "{2}" is the text related to the associated units. This default
can be modified through the column_labels.units_pattern option found in
tab_options(). Setting a value here will provide an override to the column_labels.units_pattern
default (only for the resolved columns in the invocation of cols_units()).

Value

An object of class gt_tbl.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

• "m/s" and "m / s" both render as "m/s"

• "m s^-1" will appear with the "-1" exponent intact

• "m /s" gives the the same result, as "/<unit>" is equivalent to "<unit>^-1"

cols_units 99

• "E_h" will render an "E" with the "h" subscript

• "t_i^2.5" provides a t with an "i" subscript and a "2.5" exponent

• "m[_0^2]" will use overstriking to set both scripts vertically

• "g/L %C6H12O6%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

• Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u" in "ug", "um", "uL", and "umol" will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

• We can transform shorthand symbol/unit names enclosed in ":" (e.g., ":angstrom:", ":ohm:",
etc.) into proper symbols

• Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

• The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "**"

Examples

Let’s analyze some pizzaplace data with dplyr and then make a gt table. Here we are sepa-
rately defining new column labels with cols_label() and then defining the units (to combine to
those labels) through cols_units(). The default pattern for combination is "{1}, {2}" which is
acceptable here.

pizzaplace |>
dplyr::mutate(month = lubridate::month(date, label = TRUE, abbr = TRUE)) |>
dplyr::group_by(month) |>
dplyr::summarize(
n_sold = dplyr::n(),
rev = sum(price)

) |>
dplyr::mutate(chg = (rev - dplyr::lag(rev)) / dplyr::lag(rev)) |>
dplyr::mutate(month = as.character(month)) |>
gt(rowname_col = "month") |>
fmt_integer(columns = n_sold) |>
fmt_currency(columns = rev, use_subunits = FALSE) |>
fmt_percent(columns = chg) |>
sub_missing() |>
cols_label(
n_sold = "Number of Pizzas Sold",
rev = "Revenue Generated",
chg = "Monthly Changes in Revenue"

) |>
cols_units(
n_sold = "units month^-1",
rev = "USD month^-1",
chg = "% change *m*/*m*"

) |>
cols_width(

100 cols_units

stub() ~ px(40),
everything() ~ px(200)

)

The sza dataset has a wealth of information and here we’ll generate a smaller table that contains
the average solar zenith angles at noon for different months and at different northern latitudes. The
column labels are numbers representing the latitudes and it’s convenient to apply units of ’degrees
north’ to each of them with cols_units(). The extra thing we wanted to do here was to ensure
that the units are placed directly after the column labels, and we do that with .units_pattern =
"{1}{2}". This append the units ("{2}") right to the column label ("{1}").

sza |>
dplyr::filter(tst == "1200") |>
dplyr::select(-tst) |>
dplyr::arrange(desc(latitude)) |>
tidyr::pivot_wider(
names_from = latitude,
values_from = sza

) |>
gt(rowname_col = "month") |>
cols_units(
everything() ~ ":degree:N",
.units_pattern = "{1}{2}"

) |>
tab_spanner(
label = "Solar Zenith Angle",
columns = everything()

) |>
text_transform(
fn = toupper,
locations = cells_stub()

) |>
tab_style(
style = cell_text(align = "right"),
locations = cells_stub()

)

Taking a portion of the towny dataset, let’s use spanners to describe what’s in the columns and
use only measurement units for the column labels. The columns labels that have to do with pop-
ulation and density information will be replaced with units defined in cols_units(). We’ll use
a .units_pattern value of "{2}", which means that only the units will be present (the "{1}",
representing the column label text, is omitted). Spanners added through several invocations of
tab_spanner() will declare what the last four columns contain.

towny |>
dplyr::select(
name, land_area_km2,
ends_with("2016"), ends_with("2021")

cols_units 101

) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "name") |>
tab_stubhead(label = "City") |>
fmt_integer() |>
cols_label(
land_area_km2 ~ "Area, {{km^2}}",
starts_with("population") ~ "",
starts_with("density") ~ ""

) |>
cols_units(
starts_with("population") ~ "*ppl*",
starts_with("density") ~ "*ppl* km^-2",
.units_pattern = "{2}"

) |>
tab_spanner(
label = "Population",
columns = starts_with("population"),
gather = FALSE

) |>
tab_spanner(
label = "Density",
columns = starts_with("density"),
gather = FALSE

) |>
tab_spanner(
label = "2016",
columns = ends_with("2016"),
gather = FALSE

) |>
tab_spanner(
label = "2021",
columns = ends_with("2021"),
gather = FALSE

) |>
tab_style(
style = cell_text(align = "center"),
locations = cells_column_labels(
c(starts_with("population"), starts_with("density"))

)
) |>
cols_width(everything() ~ px(120)) |>
opt_horizontal_padding(scale = 3)

Function ID

5-6

102 cols_width

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_width()

cols_width Set the widths of columns

Description

Manual specifications of column widths can be performed using the cols_width() function. We
choose which columns get specific widths. This can be in units of pixels (easily set by use of
the px() helper function), or, as percentages (where the pct() helper function is useful). Width
assignments are supplied in ... through two-sided formulas, where the left-hand side defines the
target columns and the right-hand side is a single dimension.

Usage

cols_width(.data, ..., .list = list2(...))

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Column width assignments
<multiple expressions> // required (or, use .list)
Expressions for the assignment of column widths for the table columns in .data.
Two-sided formulas (e.g, <LHS> ~ <RHS>) can be used, where the left-hand
side corresponds to selections of columns and the right-hand side evaluates to
single-length character values in the form {##}px (i.e., pixel dimensions); the
px() helper function is best used for this purpose. Column names should be en-
closed in c(). The column-based select helpers starts_with(), ends_with(),
contains(), matches(), one_of(), and everything() can be used in the
LHS. Subsequent expressions that operate on the columns assigned previously
will result in overwriting column width values (both in the same cols_width()
call and across separate calls). All other columns can be assigned a default width
value by using everything() on the left-hand side.

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)
Allows for the use of a list as an input alternative to

cols_width 103

Details

Column widths can be set as absolute or relative values (with px and percentage values). Those
columns not specified are treated as having variable width. The sizing behavior for column widths
depends on the combination of value types, and, whether a table width has been set (which could, it-
self, be expressed as an absolute or relative value). Widths for the table and its container can be indi-
vidually modified with the table.width and container.width arguments within tab_options()).

Value

An object of class gt_tbl.

Examples

Use select columns from the exibble dataset to create a gt table. We can specify the widths of
columns with cols_width(). This is done with named arguments in ..., specifying the exact
widths for table columns (using everything() at the end will capture all remaining columns).

exibble |>
dplyr::select(
num, char, date,
datetime, row

) |>
gt() |>
cols_width(
num ~ px(150),
ends_with("r") ~ px(100),
starts_with("date") ~ px(200),
everything() ~ px(60)

)

Function ID

5-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other column modification functions: cols_add(), cols_align_decimal(), cols_align(), cols_hide(),
cols_label_with(), cols_label(), cols_merge_n_pct(), cols_merge_range(), cols_merge_uncert(),
cols_merge(), cols_move_to_end(), cols_move_to_start(), cols_move(), cols_nanoplot(),
cols_unhide(), cols_units()

104 constants

constants The fundamental physical constants

Description

This dataset contains values for over 300 basic fundamental constants in nature. The values orig-
inate from the 2018 adjustment which is based on the latest relevant precision measurements and
improvements of theoretical calculations. Such work has been carried out under the authority of the
Task Group on Fundamental Constants (TGFC) of the Committee on Data of the International Sci-
ence Council (CODATA). These updated values became available on May 20, 2019. They are pub-
lished at http://physics.nist.gov/constants, a website of the Fundamental Constants Data
Center of the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland,
USA.

Usage

constants

Format

A tibble with 354 rows and 4 variables:

name The name of the constant.

value The value of the constant.

uncert The uncertainty associated with the value. If NA then the value is seen as an ’exact’ value
(e.g., an electron volt has the exact value of 1.602 176 634 e-19 J).

sf_value,sf_uncert The number of significant figures associated with the value and any uncertainty
value.

units The units associated with the constant.

Examples

Here is a glimpse at the data available in constants.

dplyr::glimpse(constants)
#> Rows: 354
#> Columns: 6
#> $ name <chr> "alpha particle-electron mass ratio", "alpha particle mass",~
#> $ value <dbl> 7.294300e+03, 6.644657e-27, 5.971920e-10, 3.727379e+03, 4.00~
#> $ uncert <dbl> 2.4e-07, 2.0e-36, 1.8e-19, 1.1e-06, 6.3e-11, 1.2e-12, 2.2e-1~
#> $ sf_value <dbl> 12, 11, 11, 11, 13, 11, 12, 13, 9, 12, 12, 11, 11, 11, 12, 1~
#> $ sf_uncert <dbl> 2, ~
#> $ units <chr> NA, "kg", "J", "MeV", "u", "kg mol^-1", NA, NA, "m", "kg", "~

Dataset ID and Badge

DATA-9

http://physics.nist.gov/constants

countrypops 105

Dataset Introduced

v0.10.0 (October 7, 2023)

See Also

Other datasets: countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

countrypops Yearly populations of countries from 1960 to 2022

Description

A dataset that presents yearly, total populations of countries. Total population is based on counts
of all residents regardless of legal status or citizenship. Country identifiers include the English-
language country names, and the 2- and 3-letter ISO 3166-1 country codes. Each row contains a
population value for a given year (from 1960 to 2022). Any NA values for populations indicate
the non-existence of the entity during that year.

Usage

countrypops

Format

A tibble with 13,545 rows and 5 variables:

country_name The name of the country.

country_code_2, country_code_3 The 2- and 3-letter ISO 3166-1 country codes.

year The year for the population estimate.

population The population estimate, midway through the year.

Examples

Here is a glimpse at the data available in countrypops.

dplyr::glimpse(countrypops)
#> Rows: 13,545
#> Columns: 5
#> $ country_name <chr> "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "~
#> $ country_code_2 <chr> "AW", "AW", "AW", "AW", "AW", "AW", "AW", "AW", "AW", "~
#> $ country_code_3 <chr> "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW",~
#> $ year <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1~
#> $ population <int> 54608, 55811, 56682, 57475, 58178, 58782, 59291, 59522,~

106 currency

Dataset ID and Badge

DATA-1

Dataset Introduced

v0.2.0.5 (March 31, 2020)

Source

https://data.worldbank.org/indicator/SP.POP.TOTL

See Also

Other datasets: constants, exibble, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

currency Supply a custom currency symbol to fmt_currency()

Description

The currency() helper function makes it easy to specify a context-aware currency symbol to
currency argument of fmt_currency(). Since gt can render tables to several output formats,
currency() allows for different variations of the custom symbol based on the output context (which
are html, latex, rtf, and default). The number of decimal places for the custom currency defaults
to 2, however, a value set for the decimals argument of fmt_currency() will take precedence.

Usage

currency(..., .list = list2(...))

Arguments

... Currency symbols by output context
<named arguments> // required (or, use .list)

One or more named arguments using output contexts as the names and currency
symbol text as the values.

.list Alternative to ...
<list of multiple expressions> // required (or, use ...)

Allows for the use of a list as an input alternative to

https://data.worldbank.org/indicator/SP.POP.TOTL

currency 107

Details

We can use any combination of html, latex, rtf, and default as named arguments for the cur-
rency text in each of the namesake contexts. The default value is used as a fallback when there
doesn’t exist a dedicated currency text value for a particular output context (e.g., when a table is
rendered as HTML and we use currency(latex = "LTC", default = "ltc"), the currency sym-
bol will be "ltc". For convenience, if we provide only a single string without a name, it will
be taken as the default (i.e., currency("ltc") is equivalent to currency(default = "ltc")).
However, if we were to specify currency strings for multiple output contexts, names are required
each and every context.

Value

A list object of class gt_currency.

Examples

Use the exibble dataset to create a gt table. Within the fmt_currency() call, we’ll format the
currency column to have currency values in guilder (a defunct Dutch currency). We can register
this custom currency with the currency() helper function, supplying the "ƒ" HTML entity
for html outputs and using "f" for any other type of gt output.

exibble |>
gt() |>
fmt_currency(
columns = currency,
currency = currency(
html = "ƒ",
default = "f"

),
decimals = 2

)

Function ID

8-6

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), default_fonts(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

108 data_color

data_color Perform data cell colorization

Description

It’s possible to add color to data cells according to their values with the data_color() function.
There is a multitude of ways to perform data cell colorizing here:

• targeting: we can constrain which columns and rows should receive the colorization treatment
(through the columns and rows arguments)

• direction: ordinarily we perform coloring in a column-wise fashion but there is the option to
color data cells in a row-wise manner (this is controlled by the direction argument)

• coloring method: data_color() automatically computes colors based on the column type
but you can choose a specific methodology (e.g., with bins or quantiles) and the function will
generate colors accordingly; the method argument controls this through keywords and other
arguments act as inputs to specific methods

• coloring function: a custom function can be supplied to the fn argument for finer control over
color evaluation with data; the color mapping col_*() functions in the scales package can be
used here or any function you might want to define

• color palettes: with palette we could supply a vector of colors, a virdis or RColorBrewer
palette name, or, a palette from the paletteer package

• value domain: we can either opt to have the range of values define the domain, or, specify one
explicitly with the domain argument

• indirect color application: it’s possible to compute colors from one column and apply them to
one or more different columns; we can even perform a color mapping from multiple source
columns to the same multiple of target columns

• color application: with the apply_to argument, there’s an option for whether to apply the
cell-specific colors to the cell background or the cell text

• text autocoloring: if colorizing the cell background, data_color() will automatically recolor
the foreground text to provide the best contrast (can be deactivated with autocolor_text =
FALSE)

The data_color() function won’t fail with the default options used, but that won’t typically pro-
vide you the type of colorization you really need. You can however safely iterate through a collec-
tion of different options without running into too many errors.

Usage

data_color(
data,
columns = everything(),
rows = everything(),
direction = c("column", "row"),
target_columns = NULL,
method = c("auto", "numeric", "bin", "quantile", "factor"),

data_color 109

palette = NULL,
domain = NULL,
bins = 8,
quantiles = 4,
levels = NULL,
ordered = FALSE,
na_color = NULL,
alpha = NULL,
reverse = FALSE,
fn = NULL,
apply_to = c("fill", "text"),
autocolor_text = TRUE,
contrast_algo = c("apca", "wcag"),
colors = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which cell data color operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form a
constraint for cell data color operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

direction Color computation direction
singl-kw:[column|row] // default: "column"
Should the color computations be performed column-wise or row-wise? By
default this is set with the "column" keyword and colors will be applied down
columns. The alternative option with the "row" keyword ensures that the color
mapping works across rows.

target_columns Indirect columns to target
<row-targeting expression> // default: NULL optional

For indirect column coloring treatments, we can supply the columns that will
receive the styling. The necessary precondition is that we must use direction

110 data_color

= "column". If columns resolves to a single column then we may use one or
more columns in target_columns. If on the other hand columns resolves to
multiple columns, then target_columns must resolve to the same multiple.

method Color computation method
singl-kw:[auto|numeric|bin|quantile|factor] // default: "auto"
A method for computing color based on the data within body cells. Can be
"auto" (the default), "numeric", "bin", "quantile", or "factor". The "auto"
method will automatically choose the "numeric" method for numerical input
data or the "factor" method for any non-numeric inputs.

palette Color palette
vector<character> // default: NULL (optional)
A vector of color names, the name of an RColorBrewer palette, the name of a
viridis palette, or a discrete palette accessible from the paletteer package using
the <package>::<palette> syntax (e.g., "wesanderson::IsleofDogs1"). If
providing a vector of colors as a palette, each color value provided must either be
a color name (Only R/X11 color names or CSS 3.0 color names) or a hexadec-
imal string in the form of "#RRGGBB" or "#RRGGBBAA". If nothing is provided
here, the default R color palette is used (i.e., the colors from palette()).

domain Value domain
vector<numeric|integer|character> // default: NULL (optional)
The possible values that can be mapped. For the "numeric" and "bin" methods,
this can be a numeric range specified with a length of two vector. Representative
numeric data is needed for the "quantile" method and categorical data must
be used for the "factor" method. If NULL (the default value), the values in each
column or row (depending on direction) value will represent the domain.

bins Specification of bin number
scalar<numeric|integer> // default: 8
For method = "bin" this can either be a numeric vector of two or more unique
cut points, or, a single numeric value (greater than or equal to 2) giving the
number of intervals into which the domain values are to be cut. By default, this
is 8.

quantiles Specification of quantile number
scalar<numeric|integer> // default: 4
For method = "quantile" this is the number of equal-size quantiles to use. By
default, this is set to 4.

levels Specification of factor levels
vector<character> // default: NULL (optional)
For method = "factor" this allows for an alternate way of specifying levels. If
anything is provided here then any value supplied to domain will be ignored.
This should be a character vector of unique values.

ordered Use an ordered factor
scalar<logical> // default: FALSE
For method = "factor", setting this to TRUE means that the vector supplied to
domain will be treated as being in the correct order if that vector needs to be
coerced to a factor. By default, this is FALSE.

data_color 111

na_color Default color for NA values
scalar<character> // default: NULL (optional)
The color to use for missing values. By default (with na_color = NULL), the
color gray ("#808080") will be used. This option has no effect if providing a
color-mapping function to fn.

alpha Transparency value
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)
An optional, fixed alpha transparency value that will be applied to all color
palette values (regardless of whether a color palette was directly supplied in
palette or generated through a color mapping function via fn).

reverse Reverse order of computed colors
scalar<logical> // default: FALSE
Should the colors computed operate in the reverse order? If TRUE then colors
that normally change from red to blue will change in the opposite direction.

fn Color-mapping function
function // default: NULL (optional)
A color-mapping function. The function should be able to take a vector of data
values as input and return an equal-length vector of color values. The col_*()
functions provided in the scales package (i.e., scales::col_numeric(), scales::col_bin(),
and scales::col_factor()) can be invoked here with options, as those func-
tions themselves return a color-mapping function.

apply_to How to apply color
singl-kw:[fill|text] // default: "fill"
Which style element should the colors be applied to? Options include the cell
background (the default, given as "fill") or the cell text ("text").

autocolor_text Automatically recolor text
scalar<logical> // default: TRUE
An option to let gt modify the coloring of text within cells undergoing back-
ground coloring. This will result in better text-to-background color contrast. By
default, this is set to TRUE.

contrast_algo Color contrast algorithm choice
singl-kw:[apca|wcag] // default: "apca"
The color contrast algorithm to use when autocolor_text = TRUE. By default
this is "apca" (Accessible Perceptual Contrast Algorithm) and the alternative to
this is "wcag" (Web Content Accessibility Guidelines).

colors Deprecated Color mapping function
function // default: NULL (optional)
This argument is deprecated. Use the fn argument instead to provide a scales-
based color-mapping function. If providing a palette, use the palette argument.

Value

An object of class gt_tbl.

112 data_color

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that are
incompatible with a given coloring function/method will be skipped over. One strategy is to color
the bulk of cell values with one formatting function and then constrain the columns for later passes
(the last coloring done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Color computation methods

The data_color() function offers four distinct methods for computing color based on cell data
values. They are set by the method argument and the options go by the keywords "numeric",
"bin", "quantile", and "factor". There are other arguments in data_color() that variously
support these methods (e.g., bins for the "bin" method, etc.). Here we’ll go through each method,
providing a short explanation of what each one does and which options are available.

"numeric":
The "numeric" method provides a simple linear mapping from continuous numeric data to an
interpolated palette. Internally, this uses the scales::col_numeric() function. This method
is suited for numeric data cell values and can make use of a supplied domain value, in the form of
a two-element numeric vector describing the range of values, if provided.

"bin":
The "bin" method provides a mapping of continuous numeric data to value-based bins. Inter-
nally, this uses the scales::col_bin() function which itself uses base::cut(). As with the
"numeric" method, "bin" is meant for numeric data cell values. The use of a domain value
is supported with this method. The bins argument in data_color() is specific to this method,
offering the ability to: (1) specify the number of bins, or (2) provide a vector of cut points.

"quantile":

data_color 113

The "quantile" method provides a mapping of continuous numeric data to quantiles. Internally,
this uses the scales::col_quantile() function which itself uses stats::quantile(). Input
data cell values should be numeric, as with the "numeric" and "bin" methods. A numeric domain
value is supported with this method. The quantiles argument in data_color() controls the
number of equal-size quantiles to use.

"factor":
The "factor" method provides a mapping of factors to colors. With discrete palettes, color
interpolation is used when the number of factors does not match the number of colors in the
palette. Internally, this uses the scales::col_factor() function. Input data cell values can
be of any type (i.e., factor, character, numeric values, and more are supported). The optional
input to domain should take the form of categorical data. The levels and ordered arguments in
data_color() support this method.

Color palette access from RColorBrewer and viridis

All palettes from the RColorBrewer package and select palettes from viridis can be accessed by
providing the palette name in palette. RColorBrewer has 35 available palettes:

Palette Name Colors Category Colorblind Friendly
1 "BrBG" 11 Diverging Yes
2 "PiYG" 11 Diverging Yes
3 "PRGn" 11 Diverging Yes
4 "PuOr" 11 Diverging Yes
5 "RdBu" 11 Diverging Yes
6 "RdYlBu" 11 Diverging Yes
7 "RdGy" 11 Diverging No
8 "RdYlGn" 11 Diverging No
9 "Spectral" 11 Diverging No
10 "Dark2" 8 Qualitative Yes
11 "Paired" 12 Qualitative Yes
12 "Set1" 9 Qualitative No
13 "Set2" 8 Qualitative Yes
14 "Set3" 12 Qualitative No
15 "Accent" 8 Qualitative No
16 "Pastel1" 9 Qualitative No
17 "Pastel2" 8 Qualitative No
18 "Blues" 9 Sequential Yes
19 "BuGn" 9 Sequential Yes
20 "BuPu" 9 Sequential Yes
21 "GnBu" 9 Sequential Yes
22 "Greens" 9 Sequential Yes
23 "Greys" 9 Sequential Yes
24 "Oranges" 9 Sequential Yes
25 "OrRd" 9 Sequential Yes
26 "PuBu" 9 Sequential Yes
27 "PuBuGn" 9 Sequential Yes
28 "PuRd" 9 Sequential Yes
29 "Purples" 9 Sequential Yes

114 data_color

30 "RdPu" 9 Sequential Yes
31 "Reds" 9 Sequential Yes
32 "YlGn" 9 Sequential Yes
33 "YlGnBu" 9 Sequential Yes
34 "YlOrBr" 9 Sequential Yes
35 "YlOrRd" 9 Sequential Yes

We can access four colorblind-friendly palettes from viridis: "viridis", "magma", "plasma", and
"inferno". Simply provide any one of those names to palette.

Color palette access from paletteer

Choosing the right color palette can often be difficult because it’s both hard to discover suitable
palettes and then obtain the vector of colors. To make this process easier we can elect to use
the paletteer package, which makes a wide range of palettes from various R packages readily
available. The info_paletteer() information table allows us to easily inspect all of the discrete
color palettes available in paletteer. We only then need to specify the palette and associated package
using the <package>::<palette> syntax (e.g., "tvthemes::Stannis") for the palette argument.

A requirement for using paletteer in this way is that the package must be installed (gt doesn’t
import paletteer currently). This can be easily done with install.packages("paletteer"). Not
having this package installed with result in an error when using the <package>::<palette> syntax
in palette.

Foreground text and background fill

By default, gt will choose the ideal text color (for maximal contrast) when colorizing the back-
ground of data cells. This option can be disabled by setting autocolor_text to FALSE. The
contrast_algo argument lets us choose between two color contrast algorithms: "apca" (Accessi-
ble Perceptual Contrast Algorithm, the default algo) and "wcag" (Web Content Accessibility Guide-
lines).

Examples

The data_color() function can be used without any supplied arguments to colorize a gt table.
Let’s do this with the exibble dataset:

exibble |>
gt() |>
data_color()

What’s happened is that data_color() applies background colors to all cells of every column with
the default palette in R (accessed through palette()). The default method for applying color is
"auto", where numeric values will use the "numeric" method and character or factor values will
use the "factor" method. The text color undergoes an automatic modification that maximizes
contrast (since autocolor_text is TRUE by default).

You can use any of the available method keywords and gt will only apply color to the compatible
values. Let’s use the "numeric" method and supply palette values of "red" and "green".

data_color 115

exibble |>
gt() |>
data_color(
method = "numeric",
palette = c("red", "green")

)

With those options in place we see that only the numeric columns num and currency received color
treatments. Moreover, the palette colors were mapped to the lower and upper limits of the data in
each column; interpolated colors were used for the values in between the numeric limits of the two
columns.

We can constrain the cells to which coloring will be applied with the columns and rows arguments.
Further to this, we can manually set the limits of the data with the domain argument (which is
preferable in most cases). Here, the domain will be set as domain = c(0, 50).

exibble |>
gt() |>
data_color(
columns = currency,
rows = currency < 50,
method = "numeric",
palette = c("red", "green"),
domain = c(0, 50)

)

We can use any of the palettes available in the RColorBrewer and viridis packages. Let’s make a
new gt table from a subset of the countrypops dataset. Then, through data_color(), we’ll apply
coloring to the population column with the "numeric" method, use a domain between 2.5 and 3.4
million, and specify palette = "viridis".

countrypops |>
dplyr::filter(country_name == "Bangladesh") |>
dplyr::select(-contains("code")) |>
dplyr::slice_tail(n = 10) |>
gt() |>
data_color(
columns = population,
method = "numeric",
palette = "viridis",
domain = c(150E6, 170E6),
reverse = TRUE

)

We can alternatively use the fn argument for supplying the scales-based function scales::col_numeric().
That function call will itself return a function (which is what the fn argument actually requires) that
takes a vector of numeric values and returns color values. Here is an alternate version of the code
that returns the same table as in the previous example.

116 data_color

countrypops |>
dplyr::filter(country_name == "Bangladesh") |>
dplyr::select(-contains("code")) |>
dplyr::slice_tail(n = 10) |>
gt() |>
data_color(
columns = population,
fn = scales::col_numeric(
palette = "viridis",
domain = c(150E6, 170E6),
reverse = TRUE

)
)

Using your own function in fn can be very useful if you want to make use of specialized argu-
ments in the scales col_*() functions. You could even supply your own specialized function for
performing complex colorizing treatments!

The data_color() function has a way to apply colorization indirectly to other columns. That is,
you can apply colors to a column different from the one used to generate those specific colors. The
trick is to use the target_columns argument. Let’s do this with a more complete countrypops-
based table example.

countrypops |>
dplyr::filter(country_code_3 %in% c("FRA", "GBR")) |>
dplyr::filter(year %% 10 == 0) |>
dplyr::select(-contains("code")) |>
dplyr::mutate(color = "") |>
gt(groupname_col = "country_name") |>
fmt_integer(columns = population) |>
data_color(
columns = population,
target_columns = color,
method = "numeric",
palette = "viridis",
domain = c(4E7, 7E7)

) |>
cols_label(
year = "",
population = "Population",
color = ""

) |>
opt_vertical_padding(scale = 0.65)

When specifying a single column in columns we can use as many target_columns values as we
want. Let’s make another countrypops-based table where we map the generated colors from the
year column to all columns in the table. This time, the palette used is "inferno" (also from the
viridis package).

data_color 117

countrypops |>
dplyr::filter(country_code_3 %in% c("FRA", "GBR", "ITA")) |>
dplyr::select(-contains("code")) |>
dplyr::filter(year %% 5 == 0) |>
tidyr::pivot_wider(
names_from = "country_name",
values_from = "population"

) |>
gt() |>
fmt_integer(columns = c(everything(), -year)) |>
cols_width(
year ~ px(80),
everything() ~ px(160)

) |>
opt_all_caps() |>
opt_vertical_padding(scale = 0.75) |>
opt_horizontal_padding(scale = 3) |>
data_color(
columns = year,
target_columns = everything(),
palette = "inferno"

) |>
tab_options(
table_body.hlines.style = "none",
column_labels.border.top.color = "black",
column_labels.border.bottom.color = "black",
table_body.border.bottom.color = "black"

)

Now, it’s time to use pizzaplace to create a gt table. The color palette to be used is the "ggsci::red_material"
one (it’s in the ggsci R package but also obtainable from the the paletteer package). Colorization
will be applied to the to the sold and income columns. We don’t have to specify those in columns
because those are the only columns in the table. Also, the domain is not set here. We’ll use the
bounds of the available data in each column.

pizzaplace |>
dplyr::group_by(type, size) |>
dplyr::summarize(
sold = dplyr::n(),
income = sum(price),
.groups = "drop_last"

) |>
dplyr::group_by(type) |>
dplyr::mutate(f_sold = sold / sum(sold)) |>
dplyr::mutate(size = factor(
size, levels = c("S", "M", "L", "XL", "XXL"))

) |>
dplyr::arrange(type, size) |>
gt(

118 data_color

rowname_col = "size",
groupname_col = "type"

) |>
fmt_percent(
columns = f_sold,
decimals = 1

) |>
cols_merge(
columns = c(size, f_sold),
pattern = "{1} ({2})"

) |>
cols_align(align = "left", columns = stub()) |>
data_color(
method = "numeric",
palette = "ggsci::red_material"

)

Colorization can occur in a row-wise manner. The key to making that happen is by using direction
= "row". Let’s use the sza dataset to make a gt table. Then, color will be applied to values across
each ’month’ of data in that table. This is useful when not setting a domain as the bounds of each
row will be captured, coloring each cell with values relative to the range. The palette is "PuOr"
from the RColorBrewer package (only the name here is required).

sza |>
dplyr::filter(latitude == 20 & tst <= "1200") |>
dplyr::select(-latitude) |>
dplyr::filter(!is.na(sza)) |>
tidyr::spread(key = "tst", value = sza) |>
gt(rowname_col = "month") |>
sub_missing(missing_text = "") |>
data_color(
direction = "row",
palette = "PuOr",
na_color = "white"

)

Notice that na_color = "white" was used, and this avoids the appearance of gray cells for the
missing values (we also removed the "NA" text with sub_missing(), opting for empty strings).

Function ID

3-32

Function Introduced

v0.2.0.5 (March 31, 2020)

default_fonts 119

See Also

Other data formatting functions: fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(), fmt_datetime(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

default_fonts Provide a vector of sensible system fonts for use with gt tables

Description

The vector of fonts given by default_fonts() can be safely used with a gt table rendered as
HTML since the font stack is expected to be available across a wide set of systems. We can always
specify additional fonts to use and place them higher in precedence order, done through prepending
to this vector (i.e., this font stack should be placed after that to act as a set of fallbacks).

This vector of fonts is useful when specifying font values in the cell_text() function (itself
usable in the tab_style() and tab_style_body() functions). If using opt_table_font() (which
also has a font argument) we probably don’t need to specify this vector of fonts since that function
prepends font names (this is handled by its add option, which is TRUE by default).

Usage

default_fonts()

Value

A character vector of font names.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the char
and time columns). Attempting to modify the fonts used for the time column is much safer if
default_fonts() is appended to the end of the font listing in the cell_text() call. What will
happen, since the "Comic Sansa" and "Menloa" fonts shouldn’t exist, is that we’ll get the first
available font from vector of fonts that default_fonts() provides.

exibble |>
dplyr::select(char, time) |>
gt() |>
tab_style(
style = cell_text(
font = c("Comic Sansa", "Menloa", default_fonts())

),
locations = cells_body(columns = time)

)

120 define_units

Function ID

8-31

Function Introduced

v0.2.2 (August 5, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), define_units(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

define_units Define measurement units with gt’s units notation

Description

The define_units() function is available for working with text in gt’s units notation.

Usage

define_units(units_notation)

Arguments

units_notation Text in specialized units notation
scalar<character> // required
A single string that defines the units (e.g., "m/s") to be used.

Value

An object of class units_definition.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

• "m/s" and "m / s" both render as "m/s"

• "m s^-1" will appear with the "-1" exponent intact

• "m /s" gives the the same result, as "/<unit>" is equivalent to "<unit>^-1"

escape_latex 121

• "E_h" will render an "E" with the "h" subscript

• "t_i^2.5" provides a t with an "i" subscript and a "2.5" exponent

• "m[_0^2]" will use overstriking to set both scripts vertically

• "g/L %C6H12O6%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

• Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u" in "ug", "um", "uL", and "umol" will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

• We can transform shorthand symbol/unit names enclosed in ":" (e.g., ":angstrom:", ":ohm:",
etc.) into proper symbols

• Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

• The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "**"

Function ID

8-9

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
escape_latex(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

escape_latex Perform LaTeX escaping

Description

Text may contain several characters with special meanings in LaTeX. The escape_latex() func-
tion will transform a character vector so that it is safe to use within LaTeX tables.

Usage

escape_latex(text)

122 exibble

Arguments

text LaTeX text
vector<character> // required
A character vector containing the text that is to be LaTeX-escaped.

Value

A character vector.

Function ID

8-28

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), from_column(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

exibble A toy example tibble for testing with gt: exibble

Description

This tibble contains data of a few different classes, which makes it well-suited for quick experimen-
tation with the functions in this package. It contains only eight rows with numeric, character, and
factor columns. The last 4 rows contain NA values in the majority of this tibble’s columns (1 miss-
ing value per column). The date, time, and datetime columns are character-based dates/times
in the familiar ISO 8601 format. The row and group columns provide for unique rownames
and two groups (grp_a and grp_b) for experimenting with the gt() function’s rowname_col and
groupname_col arguments.

Usage

exibble

exibble 123

Format

A tibble with 8 rows and 9 variables:

num A numeric column ordered with increasingly larger values.

char A character column composed of names of fruits from a to h.

fctr A factor column with numbers from 1 to 8, written out.

date, time, datetime Character columns with dates, times, and datetimes.

currency A numeric column that is useful for testing currency-based formatting.

row A character column in the format row_X which can be useful for testing with row labels in a
table stub.

group A character column with four grp_a values and four grp_b values which can be useful for
testing tables that contain row groups.

Examples

Here is the entirety of the exibble table.

exibble
#> # A tibble: 8 x 9
#> num char fctr date time datetime currency row group
#> <dbl> <chr> <fct> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 0.111 apricot one 2015-01-15 13:35 2018-01-01~ 50.0 row_1 grp_a
#> 2 2.22 banana two 2015-02-15 14:40 2018-02-02~ 18.0 row_2 grp_a
#> 3 33.3 coconut three 2015-03-15 15:45 2018-03-03~ 1.39 row_3 grp_a
#> 4 444. durian four 2015-04-15 16:50 2018-04-04~ 65100 row_4 grp_a
#> 5 5550 <NA> five 2015-05-15 17:55 2018-05-05~ 1326. row_5 grp_b
#> 6 NA fig six 2015-06-15 <NA> 2018-06-06~ 13.3 row_6 grp_b
#> 7 777000 grapefruit seven <NA> 19:10 2018-07-07~ NA row_7 grp_b
#> 8 8880000 honeydew eight 2015-08-15 20:20 <NA> 0.44 row_8 grp_b

Dataset ID and Badge

DATA-6

Dataset Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other datasets: constants, countrypops, gtcars, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

124 extract_body

extract_body Extract the table body from a gt object

Description

We can extract the body of a gt table, even at various stages of its rendering, from a gt_tbl object
using the extract_body() function. By default, the data frame returned will have gone through all
of the build stages but we can intercept the table body after a certain build stage. Here are the eight
different build stages and some notes about each:

1. "init": the body table is initialized here, entirely with NA values. It’s important to note that
all columns of the are of the character type in this first stage. And all columns remain in the
same order as the input data table.

2. "fmt_applied": Any cell values that have had formatting applied to them are migrated to the
body table. All other cells remain as NA values. Depending on the output type, the formatting
may also be different.

3. "sub_applied": Any cell values that have had substitution functions applied to them (whether
or not they were previously formatted) are migrated to the body table or modified in place (if
formatted). All cells that had neither been formatted nor undergone substitution remain as NA
values.

4. "unfmt_included": All cells that either didn’t have any formatting or any substitution oper-
ations applied are migrated to the body table. NA values now become the string "NA", so, there
aren’t any true missing values in this body table.

5. "cols_merged": The result of column-merging operations (though cols_merge() and related
functions) is materialized here. Columns that were asked to be hidden will be present here (i.e.,
hiding columns doesn’t remove them from the body table).

6. "body_reassembled": Though columns do not move positions rows can move to different
positions, and this is usually due to migration to different row groups. At this stage, rows will
be in the finalized order that is seen in the associated display table.

7. "text_transformed": Various text_*() functions in gt can operate on body cells (now fully
formatted at this stage) and return transformed character values. After this stage, the effects
of those functions are apparent.

8. "footnotes_attached": Footnote marks are attached to body cell values (either on the left
or right of the content). This stage performs said attachment.

Usage

extract_body(
data,
build_stage = NULL,
output = c("html", "latex", "rtf", "word")

)

extract_cells 125

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

build_stage The build stage of the formatted R data frame
scalar<character> // default: NULL (optional)
When a gt undergoes rendering, the body of the table proceeds through several
build stages. Providing a single stage name will yield a data frame that has
been extracted after completed that stage. Here are the build stages in order: (1)
"init", (2) "fmt_applied", (3) "sub_applied", (4) "unfmt_included", (5)
"cols_merged", (6) "body_reassembled", (7) "text_transformed", and (8)
"footnotes_attached". If not supplying a value for build_stage then the en-
tire build for the table body (i.e., up to and including the "footnotes_attached"
stage) will be performed before returning the data frame.

output Output format
singl-kw:[html|latex|rtf|word] // default: "html"
The output format of the resulting data frame. This can either be "html" (the
default), "latex", "rtf", or "word".

Value

A data frame or tibble object containing the table body.

Function ID

13-6

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf(), as_word(), extract_cells(),
extract_summary(), gtsave()

extract_cells Extract a vector of formatted cells from a gt object

Description

Get a vector of cell data from a gt_tbl object. The output vector will have cell data formatted in
the same way as the table.

126 extract_cells

Usage

extract_cells(
data,
columns,
rows = everything(),
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for extraction. The default everything() results in all rows in
columns being formatted. Alternatively, we can supply a vector of row IDs
within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output format of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A vector of cell data extracted from a gt table.

Examples

Let’s create a gt table with the exibble dataset to use in the next few examples:

gt_tbl <- gt(exibble, rowname_col = "row", groupname_col = "group")

We can extract a cell from the table with the extract_cells() function. This is done by providing
a column and a row intersection:

extract_summary 127

extract_cells(gt_tbl, columns = num, row = 1)

#> [1] "1.111e-01"

Multiple cells can be extracted. Let’s get the first four cells from the char column.

extract_cells(gt_tbl, columns = char, rows = 1:4)

#> [1] "apricot" "banana" "coconut" "durian"

We can format cells and expect that the formatting is fully retained after extraction.

gt_tbl |>
fmt_number(columns = num, decimals = 2) |>
extract_cells(columns = num, rows = 1)

#> [1] "0.11"

Function ID

13-8

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf(), as_word(), extract_body(),
extract_summary(), gtsave()

extract_summary Extract a summary list from a gt object

Description

Get a list of summary row data frames from a gt_tbl object where summary rows were added via
the summary_rows() function. The output data frames contain the group_id and rowname columns,
whereby rowname contains descriptive stub labels for the summary rows.

Usage

extract_summary(data)

128 extract_summary

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

Value

A list of data frames containing summary data.

Examples

Use a modified version of sp500 the dataset to create a gt table with row groups and row labels.
Create summary rows labeled as min, max, and avg for every row group with summary_rows().
Then, extract the summary rows as a list object.

summary_extracted <-
sp500 |>
dplyr::filter(date >= "2015-01-05" & date <="2015-01-30") |>
dplyr::arrange(date) |>
dplyr::mutate(week = paste0("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>
gt(
rowname_col = "date",
groupname_col = "week"

) |>
summary_rows(
groups = everything(),
columns = c(open, high, low, close),
fns = list(
min = ~min(.),
max = ~max(.),
avg = ~mean(.)

),
) |>
extract_summary()

summary_extracted
#> $summary_df_data_list
#> $summary_df_data_list$W02
#> # A tibble: 3 x 9
#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 W02 min min NA 2006. 2030. 1992. 2003. NA
#> 2 W02 max max NA 2063. 2064. 2038. 2062. NA
#> 3 W02 avg avg NA 2035. 2049. 2017. 2031. NA
#>
#> $summary_df_data_list$W03

extract_summary 129

#> # A tibble: 3 x 9
#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 W03 min min NA 1992. 2018. 1988. 1993. NA
#> 2 W03 max max NA 2046. 2057. 2023. 2028. NA
#> 3 W03 avg avg NA 2020. 2033. 2000. 2015. NA
#>
#> $summary_df_data_list$W04
#> # A tibble: 3 x 9
#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 W04 min min NA 2020. 2029. 2004. 2023. NA
#> 2 W04 max max NA 2063. 2065. 2051. 2063. NA
#> 3 W04 avg avg NA 2035. 2049. 2023. 2042. NA
#>
#> $summary_df_data_list$W05
#> # A tibble: 3 x 9
#> group_id row_id rowname date open high low close week
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 W05 min min NA 2002. 2023. 1989. 1995. NA
#> 2 W05 max max NA 2050. 2058. 2041. 2057. NA
#> 3 W05 avg avg NA 2030. 2039. 2009. 2021. NA

Use the summary list to make a new gt table. The key thing is to use dplyr::bind_rows() and
then pass the tibble to gt().

summary_extracted |>
unlist(recursive = FALSE) |>
dplyr::bind_rows() |>
gt(groupname_col = "group_id") |>
cols_hide(columns = row_id)

Function ID

13-7

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf(), as_word(), extract_body(),
extract_cells(), gtsave()

130 fmt

fmt Set a column format with a formatter function

Description

The fmt() function provides a way to execute custom formatting functionality with raw data values
in a way that can consider all output contexts.

Along with the columns and rows arguments that provide some precision in targeting data cells, the
fns argument allows you to define one or more functions for manipulating the raw data.

If providing a single function to fns, the recommended format is in the form: fns = function(x)
.... This single function will format the targeted data cells the same way regardless of the output
format (e.g., HTML, LaTeX, RTF).

If you require formatting of x that depends on the output format, a list of functions can be provided
for the html, latex, rtf, and default contexts. This can be in the form of fns = list(html
= function(x) ..., latex = function(x) ..., default = function(x) ...). In this multiple-
function case, we recommended including the default function as a fallback if all contexts aren’t
provided.

Usage

fmt(data, columns = everything(), rows = everything(), compat = NULL, fns)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

fmt 131

compat Formatting compatibility
vector<character> // default: NULL (optional)
An optional vector that provides the compatible classes for the formatting. By
default this is NULL.

fns Formatting functions
function|list of functions // required
Either a single formatting function or a named list of functions.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Examples

Use the exibble dataset to create a gt table. Using the fmt() function, we’ll format the numeric
values in the num column with a function supplied to the fns argument. This supplied function will
take values in the column (x), multiply them by 1000, and exclose them in single quotes.

132 fmt_auto

exibble |>
dplyr::select(-row, -group) |>
gt() |>
fmt(
columns = num,
fns = function(x) {
paste0("'", x * 1000, "'")

}
)

Function ID

3-26

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_auto Automatically format column data according to their values

Description

The fmt_auto() function will automatically apply formatting of various types in a way that best
suits the data table provided. The function will attempt to format numbers such that they are con-
densed to an optimal width, either with scientific notation or large-number suffixing. Currency
values are detected by currency codes embedded in the column name and formatted in the correct
way. Although the functionality here is comprehensive it’s still possible to reduce the scope of au-
tomatic formatting with the scope argument and also by choosing a subset of columns and rows to
which the formatting will be applied.

Usage

fmt_auto(
data,
columns = everything(),
rows = everything(),
scope = c("numbers", "currency"),
lg_num_pref = c("sci", "suf"),

fmt_auto 133

locale = NULL
)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

scope Scope of automatic formatting
mult-kw:[numbers|currency] // default: c("numbers", "currency")

By default, the function will format both "numbers"-type values and "currency"-
type values though the scope can be reduced to a single type of value to format.

lg_num_pref Large-number preference
singl-kw:[sci|suf] // default: "sci"
When large numbers are present, there can be a fixed preference toward how
they are formatted. Choices are scientific notation for very small and very large
values ("sci"), or, the use of suffixed numbers ("suf", for large values only).

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

134 fmt_auto

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Examples

Use the exibble dataset to create a gt table. Format all of the columns automatically with the
fmt_auto() function.

exibble |>
gt() |>
fmt_auto()

Let’s now use the countrypops dataset to create another gt table. We’ll again use fmt_auto()
to automatically format all columns but this time the choice will be made to opt for large-number
suffixing instead of scientific notation. This is done by using the lg_num_pref = "suf" option.

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == 0) |>
tidyr::spread(year, population) |>
dplyr::arrange(desc(`2020`)) |>

fmt_bins 135

gt(rowname_col = "country_code_3") |>
fmt_auto(lg_num_pref = "suf")

Function ID

3-25

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_bins Format column data containing bin/interval information

Description

When using the cut() function (or other functions that use it in some way) you get bins that can
look like this: "(0,10]", "(10,15]", "(15,20]", "(20,40]". This interval notation expresses the
lower and upper limits of each range. The square or round brackets define whether each of the
endpoints are included in the range ([/] for inclusion, (/) for exclusion). Should bins of this sort be
present in a table, the fmt_bins() function can be used to format that syntax to a form that presents
better in a display table. It’s possible to format the values of the intervals with the fmt argument,
and, the separator can be modified with the sep argument.

Usage

fmt_bins(
data,
columns = everything(),
rows = everything(),
sep = "--",
fmt = NULL

)

136 fmt_bins

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

sep Separator between values
scalar<character> // default: "--"
The separator text that indicates the values are ranged. The default value of "--"
indicates that an en dash will be used for the range separator. Using "---" will
be taken to mean that an em dash should be used. Should you want these special
symbols to be taken literally, they can be supplied within the base I() function.

fmt Formatting expressions
<single expression> // default: NULL (optional)
An optional formatting expression in formula form. If used, the RHS of ~ should
contain a formatting call (e.g., ~ fmt_number(., decimals = 3, use_seps = FALSE).

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_bins() formatting function is compatible with body cells that are of the "character" or
"factor" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This

fmt_bins 137

can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Formatting expressions for fmt

We can supply a one-sided (RHS only) expression to fmt, and, several can be provided in a list.
The expression uses a formatting function (e.g., fmt_number(), fmt_currency(), etc.) and it must
contain an initial . that stands for the data object. If performing numeric formatting it might look
something like this:

fmt = ~ fmt_number(., decimals = 1, use_seps = FALSE)

Examples

Use the countrypops dataset to create a gt table. Before even getting to the gt() call, we use
the cut() function in conjunction with the scales::breaks_log() function to create some highly
customized bins. Consequently each country’s population in the 2021 year is assigned to a bin.
These bins have a characteristic type of formatting that can be used as input to fmt_bins(), and
using that formatting function allows us to customize the presentation of those ranges. For instance,
here we are formatting the left and right values of the ranges with the fmt_integer() function
(using formula syntax).

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::select(country_code_2, population) |>
dplyr::mutate(population_class = cut(
population,
breaks = scales::breaks_log(n = 20)(population)

138 fmt_bins

)
) |>
dplyr::group_by(population_class) |>
dplyr::summarize(
count = dplyr::n(),
countries = paste0(country_code_2, collapse = ",")

) |>
dplyr::arrange(desc(population_class)) |>
gt() |>
fmt_flag(columns = countries) |>
fmt_bins(
columns = population_class,
fmt = ~ fmt_integer(., suffixing = TRUE)

) |>
cols_label(
population_class = "Population Range",
count = "",
countries = "Countries"

) |>
cols_width(
population_class ~ px(150),
count ~ px(50)

) |>
tab_style(
style = cell_text(style = "italic"),
locations = cells_body(columns = count)

)

Function ID

3-17

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_bytes 139

fmt_bytes Format values as bytes

Description

With numeric values in a gt table, we can transform those to values of bytes with human readable
units. The fmt_bytes() function allows for the formatting of byte sizes to either of two common
representations: (1) with decimal units (powers of 1000, examples being "kB" and "MB"), and (2)
with binary units (powers of 1024, examples being "KiB" and "MiB").

It is assumed the input numeric values represent the number of bytes and automatic truncation of
values will occur. The numeric values will be scaled to be in the range of 1 to <1000 and then
decorated with the correct unit symbol according to the standard chosen. For more control over the
formatting of byte sizes, we can use the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_bytes(
data,
columns = everything(),
rows = everything(),
standard = c("decimal", "binary"),
decimals = 1,
n_sigfig = NULL,
drop_trailing_zeros = TRUE,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
incl_space = TRUE,
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required

140 fmt_bytes

This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

standard Standard used to express byte sizes
singl-kw:[decimal|binary] // default: "decimal"
The form of expressing large byte sizes is divided between: (1) decimal units
(powers of 1000; e.g., "kB" and "MB"), and (2) binary units (powers of 1024;
e.g., "KiB" and "MiB").

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 1
This corresponds to the exact number of decimal places to use. A value such as
2.34 can, for example, be formatted with 0 decimal places and it would result
in "2". With 4 decimal places, the formatted value becomes "2.3400". The
trailing zeros can be removed with drop_trailing_zeros = TRUE.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

fmt_bytes 141

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive numbers (effectively showing a
sign for all numbers except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign.

incl_space Include a space between the value and the units
scalar<logical> // default: TRUE
An option for whether to include a space between the value and the units. The
default is to use a space character for separation.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_bytes() formatting function is compatible with body cells that are of the "numeric" or
"integer" types. Any other types of body cells are ignored during formatting. This is to say that

142 fmt_bytes

cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_bytes() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• standard

• decimals

• n_sigfig

• drop_trailing_zeros

• drop_trailing_dec_mark

• use_seps

• pattern

• sep_mark

• dec_mark

fmt_bytes 143

• force_sign

• incl_space

• locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use a single column from the exibble dataset and create a simple gt table. We’ll format the num
column to display as byte sizes in the decimal standard through use of the fmt_bytes() function.

exibble |>
dplyr::select(num) |>
gt() |>
fmt_bytes()

Let’s create an analogous table again by using the fmt_bytes() function, this time showing byte
sizes as binary values by using standard = "binary".

exibble |>
dplyr::select(num) |>
gt() |>
fmt_bytes(standard = "binary")

Function ID

3-12

Function Introduced

v0.3.0 (May 12, 2021)

144 fmt_currency

See Also

The vector-formatting version of this function: vec_fmt_bytes().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_currency Format values as currencies

Description

With numeric values in a gt table, we can perform currency-based formatting with the fmt_currency()
function. The function supports both automatic formatting with either a three-letter or a numeric
currency code. We can also specify a custom currency that is formatted according to one or more
output contexts with the currency() helper function. We have fine control over the conversion
from numeric values to currency values, where we could take advantage of the following options:

• the currency: providing a currency code or common currency name will procure the correct
currency symbol and number of currency subunits; we could also use the currency() helper
function to specify a custom currency

• currency symbol placement: the currency symbol can be placed before or after the values

• decimals/subunits: choice of the number of decimal places, and a choice of the decimal sym-
bol, and an option on whether to include or exclude the currency subunits (the decimal portion)

• negative values: choice of a negative sign or parentheses for values less than zero

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value

• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

• pattern: option to use a text pattern for decoration of the formatted currency values

• locale-based formatting: providing a locale ID will result in currency formatting specific to
the chosen locale; it will also retrieve the locale’s currency if none is explicitly given

We can use the info_currencies() function for a useful reference on all of the possible inputs to
the currency argument.

fmt_currency 145

Usage

fmt_currency(
data,
columns = everything(),
rows = everything(),
currency = NULL,
use_subunits = TRUE,
decimals = NULL,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
placement = "left",
incl_space = FALSE,
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

currency Currency to use
scalar<character>|obj:<gt_currency> // default: NULL (optional)

146 fmt_currency

The currency to use for the numeric value. This input can be supplied as a 3-
letter currency code (e.g., "USD" for U.S. Dollars, "EUR" for the Euro currency).
Use info_currencies() to get an information table with all of the valid cur-
rency codes and examples of each. Alternatively, we can provide a common cur-
rency name (e.g., "dollar", "pound", "yen", etc.) to simplify the process. Use
info_currencies() with the type == "symbol" option to view an information
table with all of the supported currency symbol names along with examples.
We can also use the currency() helper function to specify a custom currency,
where the string could vary across output contexts. For example, using currency(html
= "ƒ", default = "f") would give us a suitable glyph for the Dutch guilder
in an HTML output table, and it would simply be the letter "f" in all other
output contexts). Please note that decimals will default to 2 when using the
currency() helper function.
If nothing is provided here but a locale value has been set (either in this func-
tion call or as part of the initial gt() call), the currency will be obtained from
that locale. Virtually all locales are linked to a territory that is a country (use
info_locales() for details on all locales used in this package), so, the in-use
(or de facto) currency will be obtained. As the default locale is "en", the "USD"
currency will be used if neither a locale nor a currency value is given.

use_subunits Show or hide currency subunits
scalar<logical> // default: TRUE
An option for whether the subunits portion of a currency value should be dis-
played. For example, with an input value of 273.81, the default formatting will
produce "$273.81". Removing the subunits (with use_subunits = FALSE) will
give us "$273".

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: NULL (optional)
The decimals values corresponds to the exact number of decimal places to use.
This value is optional as a currency has an intrinsic number of decimal places
(i.e., the subunits). A value such as 2.34 can, for example, be formatted with 0
decimal places and if the currency used is "USD" it would result in "$2". With 4
decimal places, the formatted value becomes "$2.3400".

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting. For example,
when use_subunits = FALSE or decimals = 0 a formatted value such as "$23"
can be fashioned as "$23." by setting drop_trailing_dec_mark = FALSE.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE

fmt_currency 147

An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).
Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.
If using system = "ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

148 fmt_currency

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

placement Currency symbol placement
singl-kw:[left|right] // default: "left"
The placement of the currency symbol. This can be either be "left" (as in
"$450") or "right" (which yields "450$").

incl_space Include a space between the value and the currency symbol
scalar<logical> // default: FALSE
An option for whether to include a space between the value and the currency
symbol. The default is to not introduce a space character.

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_currency() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This

fmt_currency 149

can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_currency() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• currency

• use_subunits

• decimals

• drop_trailing_dec_mark

• use_seps

• accounting

• scale_by

• suffixing

• pattern

• sep_mark

• dec_mark

• force_sign

• placement

• incl_space

• system

150 fmt_currency

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a locale ID here means
separator and decimal marks will be correct for the given locale. Should any values be provided
in sep_mark or dec_mark, they will be overridden by the locale’s preferred values. In addition to
number formatting, providing a locale value and not providing a currency allows gt to obtain the
currency code from the locale’s territory.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s make a simple gt table from the exibble dataset. We’ll keep only the num and currency,
columns, then, format those columns using fmt_currency() (with the "JPY" and "GBP" curren-
cies).

exibble |>
dplyr::select(num, currency) |>
gt() |>
fmt_currency(
columns = num,
currency = "JPY"

) |>
fmt_currency(
columns = currency,
currency = "GBP"

)

Let’s take a single column from exibble (currency) and format it with a currency name (this
differs from the 3-letter currency code). In this case, we’ll use the "euro" currency and set the
placement of the symbol to the right of any value. Additionally, the currency symbol will separated
from the value with a single space character (using incl_space = TRUE).

exibble |>
dplyr::select(currency) |>
gt() |>
fmt_currency(

fmt_currency 151

currency = "euro",
placement = "right",
incl_space = TRUE

)

With the pizzaplace dataset, let’s make a summary table that gets the number of "hawaiian"
pizzas sold (and revenue generated) by month. In the gt table, we’ll format only the revenue
column. The currency value is automatically U.S. Dollars when don’t supply either a currency
code or a locale. We’ll also create a grand summary with the grand_summary_rows() function.
Within that summary row, the total revenue needs to be formatted with fmt_currency() and we
can do that within the fmt argument.

pizzaplace |>
dplyr::filter(name == "hawaiian") |>
dplyr::mutate(month = lubridate::month(date, label = TRUE, abbr = TRUE)) |>
dplyr::select(month, price) |>
dplyr::group_by(month) |>
dplyr::summarize(
`number sold` = dplyr::n(),
revenue = sum(price)

) |>
gt(rowname_col = "month") |>
tab_header(title = "Summary of Hawaiian Pizzas Sold by Month") |>
fmt_currency(columns = revenue) |>
grand_summary_rows(
fns = list(label = "Totals:", id = "totals", fn = "sum"),
fmt = ~ fmt_currency(., columns = revenue),

) |>
opt_all_caps()

If supplying a locale value to fmt_currency(), we can opt use the locale’s assumed currency and
not have to supply a currency value (doing so would override the locale’s default currency). With
a column of locale values, we can format currency values on a row-by-row basis through the use of
the from_column() helper function. Here, we’ll reference the locale column in the argument of
the same name.

dplyr::tibble(
amount = rep(50.84, 5),
currency = c("JPY", "USD", "GHS", "KRW", "CNY"),
locale = c("ja", "en", "ee", "ko", "zh"),

) |>
gt() |>
fmt_currency(
columns = amount,
locale = from_column(column = "locale")

) |>
cols_hide(columns = locale)

152 fmt_currency

We can similarly use from_column() to reference a column that has currency code values. Here’s
an example of how to create a simple currency conversion table. The curr column contains the 3-
letter currency codes, and that column is referenced via from_column() in the currency argument
of fmt_currency().

dplyr::tibble(
flag = c("EU", "GB", "CA", "AU", "JP", "IN"),
curr = c("EUR", "GBP", "CAD", "AUD", "JPY", "INR"),
conv = c(
0.912952, 0.787687, 1.34411,
1.53927, 144.751, 82.9551

)
) |>
gt() |>
fmt_currency(
columns = conv,
currency = from_column(column = "curr")

) |>
fmt_flag(columns = flag) |>
cols_merge(columns = c(flag, curr)) |>
cols_label(
flag = "Currency",
conv = "Amount"

) |>
tab_header(
title = "Conversion of 1 USD to Six Other Currencies",
subtitle = md("Conversion rates obtained on **Aug 13, 2023**")

)

Function ID

3-8

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_currency().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_datetime(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_date 153

fmt_date Format values as dates

Description

Format input values to time values using one of 41 preset date styles. Input can be in the form of
POSIXt (i.e., datetimes), the Date type, or character (must be in the ISO 8601 form of YYYY-MM-DD HH:MM:SS
or YYYY-MM-DD).

Usage

fmt_date(
data,
columns = everything(),
rows = everything(),
date_style = "iso",
pattern = "{x}",
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

date_style Predefined style for dates
scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso"
The date style to use. By default this is the short name "iso" which corresponds
to ISO 8601 date formatting. There are 41 date styles in total and their short
names can be viewed using info_date_style().

154 fmt_date

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_date() formatting function is compatible with body cells that are of the "Date", "POSIXt"
or "character" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().

fmt_date 155

It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_date() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• date_style

• pattern

• locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the date_style argument

We need to supply a preset date style to the date_style argument. The date styles are numerous and
can handle localization to any supported locale. A large segment of date styles are termed flexible
date formats and this means that their output will adapt to any locale provided. That feature makes
the flexible date formats a better option for locales other than "en" (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes
1 "iso" "2000-02-29" ISO 8601
2 "wday_month_day_year" "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year" "Tuesday 29 February 2000"
5 "month_day_year" "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month" "29 February"
10 "day_m" "29 Feb"
11 "year" "2000"
12 "month" "February"
13 "day" "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day" "00/02/29"

156 fmt_date

16 "year_week" "2000-W09"
17 "year_quarter" "2000-Q1"
18 "yMd" "2/29/2000" flexible
19 "yMEd" "Tue, 2/29/2000" flexible
20 "yMMM" "Feb 2000" flexible
21 "yMMMM" "February 2000" flexible
22 "yMMMd" "Feb 29, 2000" flexible
23 "yMMMEd" "Tue, Feb 29, 2000" flexible
24 "GyMd" "2/29/2000 A" flexible
25 "GyMMMd" "Feb 29, 2000 AD" flexible
26 "GyMMMEd" "Tue, Feb 29, 2000 AD" flexible
27 "yM" "2/2000" flexible
28 "Md" "2/29" flexible
29 "MEd" "Tue, 2/29" flexible
30 "MMMd" "Feb 29" flexible
31 "MMMEd" "Tue, Feb 29" flexible
32 "MMMMd" "February 29" flexible
33 "GyMMM" "Feb 2000 AD" flexible
34 "yQQQ" "Q1 2000" flexible
35 "yQQQQ" "1st quarter 2000" flexible
36 "Gy" "2000 AD" flexible
37 "y" "2000" flexible
38 "M" "2" flexible
39 "MMM" "Feb" flexible
40 "d" "29" flexible
41 "Ed" "29 Tue" flexible

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). Note that a locale value provided
here will override any global locale setting performed in gt()’s own locale argument (it is settable
there as a value received by all other functions that have a locale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the date and
time columns). With the fmt_date() function, we’ll format the date column to display dates
formatted with the "month_day_year" date style.

exibble |>
dplyr::select(date, time) |>
gt() |>
fmt_date(

fmt_date 157

columns = date,
date_style = "month_day_year"

)

Again using the exibble dataset, let’s format the date column to have mixed date formats, where
dates after April 1st will be different than the others because of the expressions used in the rows
argument. This will involve two calls of fmt_date() with different statements provided for rows.
In the first call (dates after the 1st of April) the date style "m_day_year" is used; for the second
call, "day_m_year" is the named date style supplied to date_style.

exibble |>
dplyr::select(date, time) |>
gt() |>
fmt_date(
columns = date,
rows = as.Date(date) > as.Date("2015-04-01"),
date_style = "m_day_year"

) |>
fmt_date(
columns = date,
rows = as.Date(date) <= as.Date("2015-04-01"),
date_style = "day_m_year"

)

Use the exibble dataset to create a single-column gt table (with only the date column). Format
the date values using the "yMMMEd" date style (which is one of the ’flexible’ styles). Also, we’ll set
the locale to "nl" to get the dates in Dutch.

exibble |>
dplyr::select(date) |>
gt() |>
fmt_date(
date_style = "yMMMEd",
locale = "nl"

)

Function ID

3-13

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_date().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),

158 fmt_datetime

fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_datetime Format values as datetimes

Description

Format input values to datetime values using either presets for the date and time components or a
formatting directive (this can either use a CLDR datetime pattern or strptime formatting). The
input values can be in the form of POSIXct (i.e., datetimes), the Date type, or character (must be
in the ISO 8601 form of YYYY-MM-DD HH:MM:SS or YYYY-MM-DD).

Usage

fmt_datetime(
data,
columns = everything(),
rows = everything(),
date_style = "iso",
time_style = "iso",
sep = " ",
format = NULL,
tz = NULL,
pattern = "{x}",
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()

fmt_datetime 159

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

date_style Predefined style for dates
scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso"
The date style to use. By default this is the short name "iso" which corresponds
to ISO 8601 date formatting. There are 41 date styles in total and their short
names can be viewed using info_date_style().

time_style Predefined style for times
scalar<character>|scalar<numeric|integer>(1<=val<=25) // default: "iso"
The time style to use. By default this is the short name "iso" which corresponds
to how times are formatted within ISO 8601 datetime values. There are 25 time
styles in total and their short names can be viewed using info_time_style().

sep Separator between date and time components
scalar<character> // default: " "

The separator string to use between the date and time components. By default,
this is a single space character (" "). Only used when not specifying a format
code.

format Date/time formatting string
scalar<character> // default: NULL (optional)
An optional formatting string used for generating custom dates/times. If used
then the arguments governing preset styles (date_style and time_style) will
be ignored in favor of formatting via the format string.

tz Time zone
scalar<character> // default: NULL (optional)
The time zone for printing dates/times (i.e., the output). The default of NULL will
preserve the time zone of the input data in the output. If providing a time zone,
it must be one that is recognized by the user’s operating system (a vector of all
valid tz values can be produced with OlsonNames()).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

160 fmt_datetime

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_datetime() formatting function is compatible with body cells that are of the "Date",
"POSIXct" or "character" types. Any other types of body cells are ignored during formatting.
This is to say that cells of incompatible data types may be targeted, but there will be no attempt to
format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_datetime() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• date_style

• time_style

fmt_datetime 161

• sep

• format

• tz

• pattern

• locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the date_style argument

We can supply a preset date style to the date_style argument to separately handle the date portion
of the output. The date styles are numerous and can handle localization to any supported locale.
A large segment of date styles are termed flexible date formats and this means that their output
will adapt to any locale provided. That feature makes the flexible date formats a better option for
locales other than "en" (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes
1 "iso" "2000-02-29" ISO 8601
2 "wday_month_day_year" "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year" "Tuesday 29 February 2000"
5 "month_day_year" "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month" "29 February"
10 "day_m" "29 Feb"
11 "year" "2000"
12 "month" "February"
13 "day" "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day" "00/02/29"
16 "year_week" "2000-W09"
17 "year_quarter" "2000-Q1"
18 "yMd" "2/29/2000" flexible
19 "yMEd" "Tue, 2/29/2000" flexible
20 "yMMM" "Feb 2000" flexible
21 "yMMMM" "February 2000" flexible
22 "yMMMd" "Feb 29, 2000" flexible
23 "yMMMEd" "Tue, Feb 29, 2000" flexible
24 "GyMd" "2/29/2000 A" flexible

162 fmt_datetime

25 "GyMMMd" "Feb 29, 2000 AD" flexible
26 "GyMMMEd" "Tue, Feb 29, 2000 AD" flexible
27 "yM" "2/2000" flexible
28 "Md" "2/29" flexible
29 "MEd" "Tue, 2/29" flexible
30 "MMMd" "Feb 29" flexible
31 "MMMEd" "Tue, Feb 29" flexible
32 "MMMMd" "February 29" flexible
33 "GyMMM" "Feb 2000 AD" flexible
34 "yQQQ" "Q1 2000" flexible
35 "yQQQQ" "1st quarter 2000" flexible
36 "Gy" "2000 AD" flexible
37 "y" "2000" flexible
38 "M" "2" flexible
39 "MMM" "Feb" flexible
40 "d" "29" flexible
41 "Ed" "29 Tue" flexible

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

Formatting with the time_style argument

We can supply a preset time style to the time_style argument to separately handle the time portion
of the output. There are many time styles and all of them can handle localization to any supported
locale. Many of the time styles are termed flexible time formats and this means that their output
will adapt to any locale provided. That feature makes the flexible time formats a better option for
locales other than "en" (the default locale).

The following table provides a listing of all time styles and their output values (corresponding to
an input time of 14:35:00). It is noted which of these represent 12- or 24-hour time. Some of
the flexible formats (those that begin with "E") include the the day of the week. Keep this in mind
when pairing such time_style values with a date_style so as to avoid redundant or repeating
information.

Time Style Output Notes
1 "iso" "14:35:00" ISO 8601, 24h
2 "iso-short" "14:35" ISO 8601, 24h
3 "h_m_s_p" "2:35:00 PM" 12h
4 "h_m_p" "2:35 PM" 12h
5 "h_p" "2 PM" 12h
6 "Hms" "14:35:00" flexible, 24h
7 "Hm" "14:35" flexible, 24h
8 "H" "14" flexible, 24h
9 "EHm" "Thu 14:35" flexible, 24h
10 "EHms" "Thu 14:35:00" flexible, 24h
11 "Hmsv" "14:35:00 GMT+00:00" flexible, 24h
12 "Hmv" "14:35 GMT+00:00" flexible, 24h

fmt_datetime 163

13 "hms" "2:35:00 PM" flexible, 12h
14 "hm" "2:35 PM" flexible, 12h
15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM" flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms" "Thu 2:35:00 in the afternoon" flexible, 12h
19 "Bhms" "2:35:00 in the afternoon" flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon" flexible, 12h
21 "Bhm" "2:35 in the afternoon" flexible, 12h
22 "Bh" "2 in the afternoon" flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35 PM GMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Formatting with a CLDR datetime pattern

We can use a CLDR datetime pattern with the format argument to create a highly customized and
locale-aware output. This is a character string that consists of two types of elements:

• Pattern fields, which repeat a specific pattern character one or more times. These fields are
replaced with date and time data when formatting. The character sets of A-Z and a-z are
reserved for use as pattern characters.

• Literal text, which is output verbatim when formatting. This can include:

– Any characters outside the reserved character sets, including spaces and punctuation.
– Any text between single vertical quotes (e.g., 'text').
– Two adjacent single vertical quotes (”), which represent a literal single quote, either inside

or outside quoted text.

The number of pattern fields is quite sizable so let’s first look at how some CLDR datetime patterns
work. We’ll use the datetime string "2018-07-04T22:05:09.2358(America/Vancouver)" for all
of the examples that follow.

• "mm/dd/y" -> "05/04/2018"

• "EEEE, MMMM d, y" -> "Wednesday, July 4, 2018"

• "MMM d E" -> "Jul 4 Wed"

• "HH:mm" -> "22:05"

• "h:mm a" -> "10:05 PM"

• "EEEE, MMMM d, y 'at' h:mm a" -> "Wednesday, July 4, 2018 at 10:05 PM"

Here are the individual pattern fields:

Year:

164 fmt_datetime

Calendar Year:
This yields the calendar year, which is always numeric. In most cases the length of the "y" field
specifies the minimum number of digits to display, zero-padded as necessary. More digits will
be displayed if needed to show the full year. There is an exception: "yy" gives use just the two
low-order digits of the year, zero-padded as necessary. For most use cases, "y" or "yy" should
be good enough.

Field Patterns Output
"y" "2018"
"yy" "18"
"yyy" to "yyyyyyyyy" "2018" to "000002018"

Year in the Week in Year Calendar:
This is the year in ’Week of Year’ based calendars in which the year transition occurs on a week
boundary. This may differ from calendar year "y" near a year transition. This numeric year
designation is used in conjunction with pattern character "w" in the ISO year-week calendar as
defined by ISO 8601.

Field Patterns Output
"Y" "2018"
"YY" "18"
"YYY" to "YYYYYYYYY" "2018" to "000002018"

Quarter:
Quarter of the Year: formatting and standalone versions:
The quarter names are identified numerically, starting at 1 and ending at 4. Quarter names may
vary along two axes: the width and the context. The context is either ’formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may
be used in any other date format that shares the same form of the name. Here, the formatting
form for quarters of the year consists of some run of "Q" values whereas the standalone form
uses "q".

Field Patterns Output Notes
"Q"/"q" "3" Numeric, one digit
"QQ"/"qq" "03" Numeric, two digits (zero padded)
"QQQ"/"qqq" "Q3" Abbreviated
"QQQQ"/"qqqq" "3rd quarter" Wide
"QQQQQ"/"qqqqq" "3" Narrow

Month:
Month: formatting and standalone versions:
The month names are identified numerically, starting at 1 and ending at 12. Month names may
vary along two axes: the width and the context. The context is either ’formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may

fmt_datetime 165

be used in any other date format that shares the same form of the name. Here, the formatting
form for months consists of some run of "M" values whereas the standalone form uses "L".

Field Patterns Output Notes
"M"/"L" "7" Numeric, minimum digits
"MM"/"LL" "07" Numeric, two digits (zero padded)
"MMM"/"LLL" "Jul" Abbreviated
"MMMM"/"LLLL" "July" Wide
"MMMMM"/"LLLLL" "J" Narrow

Week:
Week of Year:
Values calculated for the week of year range from 1 to 53. Week 1 for a year is the first week
that contains at least the specified minimum number of days from that year. Weeks between
week 1 of one year and week 1 of the following year are numbered sequentially from 2 to 52 or
53 (if needed).
There are two available field lengths. Both will display the week of year value but the "ww"
width will always show two digits (where weeks 1 to 9 are zero padded).

Field Patterns Output Notes
"w" "27" Minimum digits
"ww" "27" Two digits (zero padded)

Week of Month:
The week of a month can range from 1 to 5. The first day of every month always begins at week
1 and with every transition into the beginning of a week, the week of month value is incremented
by 1.

Field Pattern Output
"W" "1"

Day:
Day of Month:
The day of month value is always numeric and there are two available field length choices in its
formatting. Both will display the day of month value but the "dd" formatting will always show
two digits (where days 1 to 9 are zero padded).

Field Patterns Output Notes
"d" "4" Minimum digits
"dd" "04" Two digits, zero padded

Day of Year:
The day of year value ranges from 1 (January 1) to either 365 or 366 (December 31), where the
higher value of the range indicates that the year is a leap year (29 days in February, instead of
28). The field length specifies the minimum number of digits, with zero-padding as necessary.

166 fmt_datetime

Field Patterns Output Notes
"D" "185"
"DD" "185" Zero padded to minimum width of 2
"DDD" "185" Zero padded to minimum width of 3

Day of Week in Month:
The day of week in month returns a numerical value indicating the number of times a given
weekday had occurred in the month (e.g., ’2nd Monday in March’). This conveniently resolves
to predicable case structure where ranges of day of the month values return predictable day of
week in month values:

• days 1 - 7 -> 1

• days 8 - 14 -> 2

• days 15 - 21 -> 3

• days 22 - 28 -> 4

• days 29 - 31 -> 5

Field Pattern Output
"F" "1"

Modified Julian Date:
The modified version of the Julian date is obtained by subtracting 2,400,000.5 days from the
Julian date (the number of days since January 1, 4713 BC). This essentially results in the number
of days since midnight November 17, 1858. There is a half day offset (unlike the Julian date,
the modified Julian date is referenced to midnight instead of noon).

Field Patterns Output
"g" to "ggggggggg" "58303" -> "000058303"

Weekday:
Day of Week Name:
The name of the day of week is offered in four different widths.

Field Patterns Output Notes
"E", "EE", or "EEE" "Wed" Abbreviated
"EEEE" "Wednesday" Wide
"EEEEE" "W" Narrow
"EEEEEE" "We" Short

Periods:
AM/PM Period of Day:
This denotes before noon and after noon time periods. May be upper or lowercase depending on
the locale and other options. The wide form may be the same as the short form if the ’real’ long
form (e.g. ’ante meridiem’) is not customarily used. The narrow form must be unique, unlike
some other fields.

fmt_datetime 167

Field Patterns Output Notes
"a", "aa", or "aaa" "PM" Abbreviated
"aaaa" "PM" Wide
"aaaaa" "p" Narrow

AM/PM Period of Day Plus Noon and Midnight:
Provide AM and PM as well as phrases for exactly noon and midnight. May be upper or low-
ercase depending on the locale and other options. If the locale doesn’t have the notion of a
unique ’noon’ (i.e., 12:00), then the PM form may be substituted. A similar behavior can occur
for ’midnight’ (00:00) and the AM form. The narrow form must be unique, unlike some other
fields.
(a) input_midnight: "2020-05-05T00:00:00" (b) input_noon: "2020-05-05T12:00:00"

Field Patterns Output Notes
"b", "bb", or "bbb" (a) "midnight" Abbreviated

(b) "noon"
"bbbb" (a) "midnight" Wide

(b) "noon"
"bbbbb" (a) "mi" Narrow

(b) "n"

Flexible Day Periods:
Flexible day periods denotes things like ’in the afternoon’, ’in the evening’, etc., and the flex-
ibility comes from a locale’s language and script. Each locale has an associated rule set that
specifies when the day periods start and end for that locale.
(a) input_morning: "2020-05-05T00:08:30" (b) input_afternoon: "2020-05-05T14:00:00"

Field Patterns Output Notes
"B", "BB", or "BBB" (a) "in the morning" Abbreviated

(b) "in the afternoon"
"BBBB" (a) "in the morning" Wide

(b) "in the afternoon"
"BBBBB" (a) "in the morning" Narrow

(b) "in the afternoon"

Hours, Minutes, and Seconds:
Hour 0-23:
Hours from 0 to 23 are for a standard 24-hour clock cycle (midnight plus 1 minute is 00:01)
when using "HH" (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"H" "8" Numeric, minimum digits
"HH" "08" Numeric, 2 digits (zero padded)

168 fmt_datetime

Hour 1-12:
Hours from 1 to 12 are for a standard 12-hour clock cycle (midnight plus 1 minute is 12:01)
when using "hh" (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"h" "8" Numeric, minimum digits
"hh" "08" Numeric, 2 digits (zero padded)

Hour 1-24:
Using hours from 1 to 24 is a less common way to express a 24-hour clock cycle (midnight
plus 1 minute is 24:01) when using "kk" (which is the more common width that indicates
zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"k" "9" Numeric, minimum digits
"kk" "09" Numeric, 2 digits (zero padded)

Hour 0-11:
Using hours from 0 to 11 is a less common way to express a 12-hour clock cycle (midnight
plus 1 minute is 00:01) when using "KK" (which is the more common width that indicates
zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"K" "7" Numeric, minimum digits
"KK" "07" Numeric, 2 digits (zero padded)

Minute:
The minute of the hour which can be any number from 0 to 59. Use "m" to show the minimum
number of digits, or "mm" to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"m" "5" Numeric, minimum digits
"mm" "06" Numeric, 2 digits (zero padded)

Seconds:
The second of the minute which can be any number from 0 to 59. Use "s" to show the minimum
number of digits, or "ss" to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"s" "9" Numeric, minimum digits
"ss" "09" Numeric, 2 digits (zero padded)

fmt_datetime 169

Fractional Second:
The fractional second truncates (like other time fields) to the width requested (i.e., count of
letters). So using pattern "SSSS" will display four digits past the decimal (which, incidentally,
needs to be added manually to the pattern).

Field Patterns Output
"S" to "SSSSSSSSS" "2" -> "235000000"

Milliseconds Elapsed in Day:
There are 86,400,000 milliseconds in a day and the "A" pattern will provide the whole number.
The width can go up to nine digits with "AAAAAAAAA" and these higher field widths will result
in zero padding if necessary.
Using "2011-07-27T00:07:19.7223":

Field Patterns Output
"A" to "AAAAAAAAA" "439722" -> "000439722"

Era:
The Era Designator:
This provides the era name for the given date. The Gregorian calendar has two eras: AD and
BC. In the AD year numbering system, AD 1 is immediately preceded by 1 BC, with nothing in
between them (there was no year zero).

Field Patterns Output Notes
"G", "GG", or "GGG" "AD" Abbreviated
"GGGG" "Anno Domini" Wide
"GGGGG" "A" Narrow

Time Zones:
TZ // Short and Long Specific non-Location Format:
The short and long specific non-location formats for time zones are suggested for displaying
a time with a user friendly time zone name. Where the short specific format is unavailable,
it will fall back to the short localized GMT format ("O"). Where the long specific format is
unavailable, it will fall back to the long localized GMT format ("OOOO").

Field Patterns Output Notes
"z", "zz", or "zzz" "PDT" Short Specific
"zzzz" "Pacific Daylight Time" Long Specific

TZ // Common UTC Offset Formats:
The ISO8601 basic format with hours, minutes and optional seconds fields is represented by
"Z", "ZZ", or "ZZZ". The format is equivalent to RFC 822 zone format (when the optional
seconds field is absent). This is equivalent to the "xxxx" specifier. The field pattern "ZZZZ"
represents the long localized GMT format. This is equivalent to the "OOOO" specifier. Finally,
"ZZZZZ" pattern yields the ISO8601 extended format with hours, minutes and optional seconds

170 fmt_datetime

fields. The ISO8601 UTC indicator Z is used when local time offset is 0. This is equivalent to
the "XXXXX" specifier.

Field Patterns Output Notes
"Z", "ZZ", or "ZZZ" "-0700" ISO 8601 basic format
"ZZZZ" "GMT-7:00" Long localized GMT format
"ZZZZZ" "-07:00" ISO 8601 extended format

TZ // Short and Long Localized GMT Formats:
The localized GMT formats come in two widths "O" (which removes the minutes field if it’s
0) and "OOOO" (which always contains the minutes field). The use of the GMT indicator changes
according to the locale.

Field Patterns Output Notes
"O" "GMT-7" Short localized GMT format
"OOOO" "GMT-07:00" Long localized GMT format

TZ // Short and Long Generic non-Location Formats:
The generic non-location formats are useful for displaying a recurring wall time (e.g., events,
meetings) or anywhere people do not want to be overly specific. Where either of these is un-
available, there is a fallback to the generic location format ("VVVV"), then the short localized
GMT format as the final fallback.

Field Patterns Output Notes
"v" "PT" Short generic non-location format
"vvvv" "Pacific Time" Long generic non-location format

TZ // Short Time Zone IDs and Exemplar City Formats:
These formats provide variations of the time zone ID and often include the exemplar city. The
widest of these formats, "VVVV", is useful for populating a choice list for time zones, because it
supports 1-to-1 name/zone ID mapping and is more uniform than other text formats.

Field Patterns Output Notes
"V" "cavan" Short time zone ID
"VV" "America/Vancouver" Long time zone ID
"VVV" "Vancouver" The tz exemplar city
"VVVV" "Vancouver Time" Generic location format

TZ // ISO 8601 Formats with Z for +0000:
The "X"-"XXX" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. The final two widths, "XXXX" and "XXXXX" allow for optional seconds fields. The sec-
onds field is not supported by the ISO 8601 specification. For all of these, the ISO 8601 UTC
indicator Z is used when the local time offset is 0.

Field Patterns Output Notes
"X" "-07" ISO 8601 basic format (h, optional m)

fmt_datetime 171

"XX" "-0700" ISO 8601 basic format (h & m)
"XXX" "-07:00" ISO 8601 extended format (h & m)
"XXXX" "-0700" ISO 8601 basic format (h & m, optional s)
"XXXXX" "-07:00" ISO 8601 extended format (h & m, optional s)

TZ // ISO 8601 Formats (no use of Z for +0000):
The "x"-"xxxxx" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. They are similar to the "X"-"XXXXX" field patterns except that the ISO 8601 UTC indica-
tor Z will not be used when the local time offset is 0.

Field Patterns Output Notes
"x" "-07" ISO 8601 basic format (h, optional m)
"xx" "-0700" ISO 8601 basic format (h & m)
"xxx" "-07:00" ISO 8601 extended format (h & m)
"xxxx" "-0700" ISO 8601 basic format (h & m, optional s)
"xxxxx" "-07:00" ISO 8601 extended format (h & m, optional s)

Formatting with a strptime format code

Performing custom date/time formatting with the format argument can also occur with a strptime
format code. This works by constructing a string of individual format codes representing formatted
date and time elements. These are all indicated with a leading %, literal characters are interpreted as
any characters not starting with a % character.

First off, let’s look at a few format code combinations that work well together as a strptime format.
This will give us an intuition on how these generally work. We’ll use the datetime "2015-06-08
23:05:37.48" for all of the examples that follow.

• "%m/%d/%Y" -> "06/08/2015"

• "%A, %B %e, %Y" -> "Monday, June 8, 2015"

• "%b %e %a" -> "Jun 8 Mon"

• "%H:%M" -> "23:05"

• "%I:%M %p" -> "11:05 pm"

• "%A, %B %e, %Y at %I:%M %p" -> "Monday, June 8, 2015 at 11:05 pm"

Here are the individual format codes for the date components:

• "%a" -> "Mon" (abbreviated day of week name)

• "%A" -> "Monday" (full day of week name)

• "%w" -> "1" (day of week number in 0..6; Sunday is 0)

• "%u" -> "1" (day of week number in 1..7; Monday is 1, Sunday 7)

• "%y" -> "15" (abbreviated year, using the final two digits)

• "%Y" -> "2015" (full year)

• "%b" -> "Jun" (abbreviated month name)

• "%B" -> "June" (full month name)

172 fmt_datetime

• "%m" -> "06" (month number)

• "%d" -> "08" (day number, zero-padded)

• "%e" -> "8" (day number without zero padding)

• "%j" -> "159" (day of the year, always zero-padded)

• "%W" -> "23" (week number for the year, always zero-padded)

• "%V" -> "24" (week number for the year, following the ISO 8601 standard)

• "%C" -> "20" (the century number)

Here are the individual format codes for the time components:

• "%H" -> "23" (24h hour)

• "%I" -> "11" (12h hour)

• "%M" -> "05" (minute)

• "%S" -> "37" (second)

• "%OS3" -> "37.480" (seconds with decimals; 3 decimal places here)
• %p -> "pm" (AM or PM indicator)

Here are some extra formats that you may find useful:

• "%z" -> "+0000" (signed time zone offset, here using UTC)

• "%F" -> "2015-06-08" (the date in the ISO 8601 date format)

• "%%" -> "%" (the literal "%" character, in case you need it)

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). Note that a locale value provided
here will override any global locale setting performed in gt()’s own locale argument (it is settable
there as a value received by all other functions that have a locale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Use the exibble dataset to create a single-column gt table (with only the datetime column). With
fmt_datetime() we’ll format the datetime column to have dates formatted with the "month_day_year"
style and times with the "h_m_s_p" 12-hour time style.

exibble |>
dplyr::select(datetime) |>
gt() |>
fmt_datetime(
date_style = "month_day_year",
time_style = "h_m_s_p"

)

fmt_datetime 173

Using the same input table, we can use fmt_datetime() with flexible date and time styles. Two
that work well together are "MMMEd" and "Hms". These date and time styles will, being flexible,
create outputs that conform to the locale value given to the locale argument. Let’s use two calls
of fmt_datetime(): the first will format all rows in datetime to the Danish locale (with locale =
"da") and the second call will target the first three rows with the same formatting, but in the default
locale (which is "en").

exibble |>
dplyr::select(datetime) |>
gt() |>
fmt_datetime(
date_style = "MMMEd",
time_style = "Hms",
locale = "da"

) |>
fmt_datetime(
rows = 1:3,
date_style = "MMMEd",
time_style = "Hms"

)

It’s possible to use the format argument and write our own formatting specification. Using the
CLDR datetime pattern "EEEE, MMMM d, y 'at' h:mm a (zzzz)" gives us datetime outputs with
time zone formatting. Let’s provide a time zone ID ("America/Vancouver") to the tz argument.

exibble |>
dplyr::select(datetime) |>
gt() |>
fmt_datetime(
format = "EEEE, MMMM d, y 'at' h:mm a (zzzz)",
tz = "America/Vancouver"

)

Function ID

3-15

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_datetime().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

174 fmt_duration

fmt_duration Format numeric or duration values as styled time duration strings

Description

Format input values to time duration values whether those input values are numbers or of the
difftime class. We can specify which time units any numeric input values have (as weeks, days,
hours, minutes, or seconds) and the output can be customized with a duration style (corresponding
to narrow, wide, colon-separated, and ISO forms) and a choice of output units ranging from weeks
to seconds.

Usage

fmt_duration(
data,
columns = everything(),
rows = everything(),
input_units = NULL,
output_units = NULL,
duration_style = c("narrow", "wide", "colon-sep", "iso"),
trim_zero_units = TRUE,
max_output_units = NULL,
pattern = "{x}",
use_seps = TRUE,
sep_mark = ",",
force_sign = FALSE,
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()

fmt_duration 175

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

input_units Declaration of duration units for numerical values
scalar<character> // default: NULL (optional)
If one or more selected columns contains numeric values (not difftime values,
which contain the duration units), a keyword must be provided for input_units
for gt to determine how those values are to be interpreted in terms of dura-
tion. The accepted units are: "seconds", "minutes", "hours", "days", and
"weeks".

output_units Choice of output units
mult-kw:[weeks|days|hours|minutes|seconds] // default: NULL (optional)
Controls the output time units. The default, NULL, means that gt will automati-
cally choose time units based on the input duration value. To control which time
units are to be considered for output (before trimming with trim_zero_units)
we can specify a vector of one or more of the following keywords: "weeks",
"days", "hours", "minutes", or "seconds".

duration_style Style for representing duration values
singl-kw:[narrow|wide|colon-sep|iso] // default: "narrow"
A choice of four formatting styles for the output duration values. With "narrow"
(the default style), duration values will be formatted with single letter time-
part units (e.g., 1.35 days will be styled as "1d 8h 24m"). With "wide", this
example value will be expanded to "1 day 8 hours 24 minutes" after format-
ting. The "colon-sep" style will put days, hours, minutes, and seconds in the
"([D]/)[HH]:[MM]:[SS]" format. The "iso" style will produce a value that
conforms to the ISO 8601 rules for duration values (e.g., 1.35 days will become
"P1DT8H24M").

trim_zero_units

Trimming of zero values
scalar<logical>|mult-kw:[leading|trailing|internal] // default: TRUE
Provides methods to remove output time units that have zero values. By default
this is TRUE and duration values that might otherwise be formatted as "0w 1d 0h
4m 19s" with trim_zero_units = FALSE are instead displayed as "1d 4m 19s".
Aside from using TRUE/FALSE we could provide a vector of keywords for more
precise control. These keywords are: (1) "leading", to omit all leading zero-
value time units (e.g., "0w 1d" -> "1d"), (2) "trailing", to omit all trailing
zero-value time units (e.g., "3d 5h 0s" -> "3d 5h"), and "internal", which
removes all internal zero-value time units (e.g., "5d 0h 33m" -> "5d 33m").

max_output_units

Maximum number of time units to display
scalar<numeric|integer>(val>=1) // default: NULL (optional)
If output_units is NULL, where the output time units are unspecified and left to
gt to handle, a numeric value provided for max_output_units will be taken as

176 fmt_duration

the maximum number of time units to display in all output time duration values.
By default, this is NULL and all possible time units will be displayed. This option
has no effect when duration_style = "colon-sep" (only output_units can
be used to customize that type of duration output).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

use_seps Use digit group separators
scalar<logical> // default: TRUE

An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","

The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE

Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. By default only
negative values will display a minus sign.

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

fmt_duration 177

Output units for the colon-separated duration style

The colon-separated duration style (enabled when duration_style = "colon-sep") is essentially
a clock-based output format which uses the display logic of chronograph watch functionality. It
will, by default, display duration values in the (D/)HH:MM:SS format. Any duration values greater
than or equal to 24 hours will have the number of days prepended with an adjoining slash mark.
While this output format is versatile, it can be changed somewhat with the output_units option.
The following combinations of output units are permitted:

• c("minutes", "seconds") -> MM:SS

• c("hours", "minutes") -> HH:MM

• c("hours", "minutes", "seconds") -> HH:MM:SS

• c("days", "hours", "minutes") -> (D/)HH:MM

Any other specialized combinations will result in the default set being used, which is c("days",
"hours", "minutes", "seconds")

Compatibility of formatting function with data values

The fmt_duration() formatting function is compatible with body cells that are of the "numeric",
"integer", or "difftime" types. Any other types of body cells are ignored during formatting.
This is to say that cells of incompatible data types may be targeted, but there will be no attempt to
format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if

178 fmt_duration

row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en" for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator and decimal marks will be correct for the given locale. Should any value be
provided in sep_mark, it will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use part of the sp500 table to create a gt table. Create a difftime-based column and format the
duration values to be displayed as the number of days since March 30, 2020.

sp500 |>
dplyr::slice_head(n = 10) |>
dplyr::mutate(
time_point = lubridate::ymd("2020-03-30"),
time_passed = difftime(time_point, date)

) |>
dplyr::select(time_passed, open, close) |>
gt(rowname_col = "month") |>
fmt_duration(
columns = time_passed,
output_units = "days",
duration_style = "wide"

) |>
fmt_currency(columns = c(open, close))

Function ID

3-16

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The vector-formatting version of this function: vec_fmt_duration().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(),

fmt_engineering 179

fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_engineering Format values to engineering notation

Description

With numeric values in a gt table, we can perform formatting so that the targeted values are rendered
in engineering notation, where numbers are written in the form of a mantissa (m) and an exponent
(n). When combined the construction is either of the form m x 10^n or mEn. The mantissa is
a number between 1 and 1000 and the exponent is a multiple of 3. For example, the number
0.0000345 can be written in engineering notation as 34.50 x 10^-6. This notation helps to simplify
calculations and make it easier to compare numbers that are on very different scales.

We have fine control over the formatting task, with the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• scaling: we can choose to scale targeted values by a multiplier value

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in formatting specific to the chosen
locale

Usage

fmt_engineering(
data,
columns = everything(),
rows = everything(),
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_by = 1,
exp_style = "x10n",
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign_m = FALSE,
force_sign_n = FALSE,
locale = NULL

)

180 fmt_engineering

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

exp_style Style declaration for exponent formatting
scalar<character> // default: "x10n"

fmt_engineering 181

Style of formatting to use for the scientific notation formatting. By default this
is "x10n" but other options include using a single letter (e.g., "e", "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten"
for using a stylized "10" marker.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign_m, force_sign_n

Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_engineering() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

182 fmt_engineering

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_engineering() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• decimals

• drop_trailing_zeros

• drop_trailing_dec_mark

• scale_by

• exp_style

• pattern

• sep_mark

• dec_mark

• force_sign_m

• force_sign_n

fmt_engineering 183

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Use the exibble dataset to create a gt table. Format the num column to display values in engineering
notation using the fmt_engineering() function.

exibble |>
gt() |>
fmt_engineering(columns = num)

Function ID

3-4

Function Introduced

v0.3.1 (August 9, 2021)

See Also

The vector-formatting version of this function: vec_fmt_engineering().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_flag(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

184 fmt_flag

fmt_flag Generate flag icons for countries from their country codes

Description

While it is fairly straightforward to insert images into body cells (using fmt_image() is one way to
it), there is often the need to incorporate specialized types of graphics within a table. One such group
of graphics involves iconography representing different countries, and the fmt_flag() function
helps with inserting a flag icon (or multiple) in body cells. To make this work seamlessly, the input
cells need to contain some reference to a country, and this is in the form of a 2-letter ISO 3166-1
country code (e.g., Egypt has the "EG" country code). This function will parse the targeted body
cells for those codes (and the countrypops dataset contains all of them) and insert the appropriate
flag graphics. Multiple flags can be included per cell by separating country codes with commas
(e.g., "GB,TT"). The sep argument allows for a common separator to be applied between flag
icons.

Usage

fmt_flag(
data,
columns = everything(),
rows = everything(),
height = "1em",
sep = " ",
use_title = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),

fmt_flag 185

num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

height Height of flag
scalar<character> // default: "1em"
The absolute height of the flag icon in the table cell. By default, this is set to
"1em".

sep Separator between flags
scalar<character> // default: " "

In the output of flag icons within a body cell, sep provides the separator between
each icon. By default, this is a single space character (" ").

use_title Display country name on hover
scalar<logical> // default: TRUE
An option to display a tooltip for the country name (in English) when hovering
over the flag icon.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_flag() formatting function is compatible with body cells that are of the "character" or
"factor" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

186 fmt_flag

expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_flag() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• height

• sep

• use_title

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Flag icons that can be used

You can view the entire set of supported flag icons as an informative table by using the info_flags()
function. In the information table that is provided, you’ll see every flag icon and the associated iden-
tifier that can be used with fmt_flag().

Examples

Use the countrypops dataset to create a gt table. We will only include a few columns and rows
from that table. The country_code_2 column has 2-letter country codes in the format required for
fmt_flag() and using that function transforms the codes in circular flag icons.

countrypops |>
dplyr::filter(year == 2021) |>
dplyr::filter(grepl("^S", country_name)) |>
dplyr::arrange(country_name) |>
dplyr::select(-country_code_3, -year) |>
dplyr::slice_head(n = 10) |>
gt() |>
cols_move_to_start(columns = country_code_2) |>
fmt_integer() |>
fmt_flag(columns = country_code_2) |>
cols_label(
country_code_2 = "",

fmt_flag 187

country_name = "Country",
population = "Population (2021)"

)

Using countrypops we can generate a table that provides populations every five years for the
Benelux countries ("BE", "NL", and "LU"). This requires some manipulation with dplyr and tidyr
before introducing the table to gt. With fmt_flag() we can obtain flag icons in the country_code_2
column. After that, we can merge the flag icons into the stub column, generating row labels that
have a combination of icon and text.

countrypops |>
dplyr::filter(country_code_2 %in% c("BE", "NL", "LU")) |>
dplyr::filter(year %% 10 == 0) |>
dplyr::select(country_name, country_code_2, year, population) |>
tidyr::pivot_wider(names_from = year, values_from = population) |>
dplyr::slice(1, 3, 2) |>
gt(rowname_col = "country_name") |>
tab_header(title = "Populations of the Benelux Countries") |>
tab_spanner(columns = everything(), label = "Year") |>
fmt_integer() |>
fmt_flag(columns = country_code_2) |>
cols_merge(
columns = c(country_name, country_code_2),
pattern = "{2} {1}"

)

The fmt_flag() function works well even when there are multiple country codes within the same
cell. It can operate on comma-separated codes without issue. When rendered to HTML, hovering
over each of the flag icons results in tooltip text showing the name of the country.

countrypops |>
dplyr::filter(year == 2021, population < 100000) |>
dplyr::select(country_code_2, population) |>
dplyr::mutate(population_class = cut(
population,
breaks = scales::breaks_pretty(n = 5)(population)
)

) |>
dplyr::group_by(population_class) |>
dplyr::summarize(
countries = paste0(country_code_2, collapse = ",")

) |>
dplyr::arrange(desc(population_class)) |>
gt() |>
tab_header(title = "Countries with Small Populations") |>
fmt_flag(columns = countries) |>
fmt_bins(
columns = population_class,

188 fmt_fraction

fmt = ~ fmt_integer(., suffixing = TRUE)
) |>
cols_label(
population_class = "Population Range",
countries = "Countries"

) |>
cols_width(population_class ~ px(150))

Function ID

3-21

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_fraction(), fmt_icon(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_fraction Format values as mixed fractions

Description

With numeric values in a gt table, we can perform mixed-fraction-based formatting. There are
several options for setting the accuracy of the fractions. Furthermore, there is an option for choosing
a layout (i.e., typesetting style) for the mixed-fraction output.

The following options are available for controlling this type of formatting:

• accuracy: how to express the fractional part of the mixed fractions; there are three keyword
options for this and an allowance for arbitrary denominator settings

• simplification: an option to simplify fractions whenever possible

• layout: We can choose to output values with diagonal or inline fractions

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol for the whole number portion

• pattern: option to use a text pattern for decoration of the formatted mixed fractions

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

fmt_fraction 189

Usage

fmt_fraction(
data,
columns = everything(),
rows = everything(),
accuracy = NULL,
simplify = TRUE,
layout = c("inline", "diagonal"),
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

accuracy Accuracy of fractions
singl-kw:[low|med|high]|scalar<numeric|integer>(val>=1) // default:
"low"

The type of fractions to generate. This can either be one of the keywords "low",
"med", or "high" (to generate fractions with denominators of up to 1, 2, or 3
digits, respectively) or an integer value greater than zero to obtain fractions with
a fixed denominator (2 yields halves, 3 is for thirds, 4 is quarters, etc.). For
the latter option, using simplify = TRUE will simplify fractions where possible
(e.g., 2/4 will be simplified as 1/2). By default, the "low" option is used.

simplify Simplify the fraction

190 fmt_fraction

scalar<logical> // default: TRUE
If choosing to provide a numeric value for accuracy, the option to simplify the
fraction (where possible) can be taken with TRUE (the default). With FALSE,
denominators in fractions will be fixed to the value provided in accuracy.

layout Layout of fractions in HTML output
singl-kw:[inline|diagonal] // default: "inline"
For HTML output, the "inline" layout is the default. This layout places the
numerals of the fraction on the baseline and uses a standard slash character. The
"diagonal" layout will generate fractions that are typeset with raised/lowered
numerals and a virgule.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

fmt_fraction 191

Compatibility of formatting function with data values

The fmt_fraction() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_fraction() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• accuracy

• simplify

• layout

• use_seps

• pattern

• sep_mark

192 fmt_fraction

• system

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en" for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator and decimal marks will be correct for the given locale. Should any value be
provided in sep_mark, it will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Using a summarized version of the pizzaplace dataset, let’s create a gt table. With the fmt_fraction()
function we can format the f_sold and f_income columns to display fractions. As for how the frac-
tions are represented, we are electing to use accuracy = 10. This gives all fractions as tenths. We
won’t simplify the fractions (by using simplify = FALSE) and this means that a fraction like 5/10
won’t become 1/2. With layout = "diagonal", we get a diagonal display of all fractions.

pizzaplace |>
dplyr::group_by(type, size) |>
dplyr::summarize(
sold = dplyr::n(),
income = sum(price),
.groups = "drop_last"

) |>
dplyr::group_by(type) |>
dplyr::mutate(
f_sold = sold / sum(sold),
f_income = income / sum(income),

) |>
dplyr::arrange(type, dplyr::desc(income)) |>
gt(rowname_col = "size") |>
tab_header(
title = "Pizzas Sold in 2015",
subtitle = "Fraction of Sell Count and Revenue by Size per Type"

) |>
fmt_integer(columns = sold) |>
fmt_currency(columns = income) |>

fmt_fraction 193

fmt_fraction(
columns = starts_with("f_"),
accuracy = 10,
simplify = FALSE,
layout = "diagonal"

) |>
sub_missing(missing_text = "") |>
tab_spanner(
label = "Sold",
columns = contains("sold")

) |>
tab_spanner(
label = "Revenue",
columns = contains("income")

) |>
text_transform(
locations = cells_body(),
fn = function(x) {
dplyr::case_when(
x == 0 ~ "nil",
x != 0 ~ x

)
}

) |>
cols_label(
sold = "Amount",
income = "Amount",
f_sold = md("_f_"),
f_income = md("_f_")

) |>
cols_align(align = "center", columns = starts_with("f")) |>
tab_options(
table.width = px(400),
row_group.as_column = TRUE

)

Function ID

3-7

Function Introduced

v0.4.0 (February 15, 2022)

See Also

The vector-formatting version of this function: vec_fmt_fraction().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_icon(),

194 fmt_icon

fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_icon Use icons within a table’s body cells

Description

We can draw from a library of thousands of icons and selectively insert them into a gt table. The
fmt_icon() function makes this possible and it operates a lot like fmt_flag() in that input cells
need to contain some reference to an icon name. We are exclusively using Font Awesome icons
here (and we do need to have the fontawesome package installed) so the reference is the short
icon name. Multiple icons can be included per cell by separating icon names with commas (e.g.,
"hard-drive,clock"). The sep argument allows for a common separator to be applied between
flag icons.

Usage

fmt_icon(
data,
columns = everything(),
rows = everything(),
height = "1em",
sep = " ",
stroke_color = NULL,
stroke_width = NULL,
stroke_alpha = NULL,
fill_color = NULL,
fill_alpha = NULL,
vertical_adj = NULL,
margin_left = NULL,
margin_right = NULL,
a11y = c("semantic", "decorative", "none")

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include

fmt_icon 195

starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

height Height of icon
scalar<character> // default: "1em"
The absolute height of the icon in the table cell. By default, this is set to "1em".

sep Separator between icons
scalar<character> // default: " "

In the output of icons within a body cell, sep provides the separator between
each icon. By default, this is a single space character (" ").

stroke_color Color of the icon stroke/outline
scalar<character> // default: NULL (optional)
The icon stroke is essentially the outline of the icon. The color of the stroke can
be modified by applying a single color here. If not provided then the default
value of "currentColor" is applied so that the stroke color matches that of the
parent HTML element’s color attribute.

stroke_width Width of the icon stroke/outline
scalar<character|numeric|integer> // default: NULL (optional)
The stroke_width option allows for setting the color of the icon outline stroke.
By default, the stroke width is very small at "1px" so a size adjustment here can
sometimes be useful.

stroke_alpha Transparency value for icon stroke/outline
scalar<numeric> // default: NULL (optional)
The level of transparency for the icon stroke can be controlled with a decimal
value between 0 and 1.

fill_color Color of the icon fill
scalar<character> // default: NULL (optional)
The fill color of the icon can be set with fill_color; providing a single color
here will change the color of the fill but not of the icon’s ’stroke’ or outline
(use stroke_color to modify that). If not provided then the default value of
"currentColor" is applied so that the fill matches the color of the parent HTML
element’s color attribute.

fill_alpha Transparency value for icon fill
scalar<numeric|integer>(0>=val>=1) // default: NULL (optional)
The level of transparency for the icon fill can be controlled with a decimal value
between 0 and 1.

196 fmt_icon

vertical_adj Vertical adjustment of icon from baseline
scalar<character|numeric|integer> // default: NULL (optional)
The vertical alignment of the icon. By default, a length of "-0.125em" is used.

margin_left Margin width left of icon
scalar<character|numeric|integer> // default: NULL (optional)
The length value for the margin that’s to the left of the icon can be set with
margin_left. By default, "auto" is used for this but if space is needed on the
left-hand side then a length of "0.2em" is recommended as a starting point.

margin_right Margin width right of icon
scalar<character|numeric|integer> // default: NULL (optional)
The length value for the margin that’s to the right of the icon can be set with
margin_right. By default, "auto" is used for this but if space is needed on the
right-hand side then a length of "0.2em" is recommended as a starting point.

a11y Accessibility mode for icon
singl-kw:[semantic|decorative|none] // default: "semantic"
The accessibility mode for the icon display can be set with the a11y argument.
Icons can either be "semantic" or "decorative". Using "none" will result in
no accessibility features for the icons.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_icon() formatting function is compatible with body cells that are of the "character" or
"factor" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

fmt_icon 197

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_icon() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• height

• sep

• stroke_color

• stroke_width

• stroke_alpha

• fill_color

• fill_alpha

• vertical_adj

• margin_left

• margin_right

• a11y

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Icons that can be used

The fmt_icon() function relies on an installation of the fontawesome package to operate and every
icon within that package can be accessed here with either an icon name or a full name. For example,
the Arrow Down icon has an icon name of "arrow-down" and its corresponding full name is "fas
fa-arrow-down". In most cases you’ll want to use the shorter name, but some icons have both a
Solid ("fas") and a Regular ("far") variant so only the full name can disambiguate the pairing.
In the latest release of fontawesome (v0.5.2), there are 2,025 icons and you can view the entire
icon listing by using the info_icons() function. What you’ll get from that is an information table
showing every icon and associated set of identifiers.

198 fmt_icon

Examples

For this first example of generating icons with fmt_icon(), let’s make a simple tibble that has
two columns of Font Awesome icon names. We separate multiple icons per cell with commas. By
default, the icons are 1 em in height; we’re going to make the icons slightly larger here (so we can
see the fine details of them) by setting height = "4em".

dplyr::tibble(
animals = c(
"hippo", "fish,spider", "mosquito,locust,frog",
"dog,cat", "kiwi-bird"

),
foods = c(
"bowl-rice", "egg,pizza-slice", "burger,lemon,cheese",
"carrot,hotdog", "bacon"

)
) |>
gt() |>
fmt_icon(height = "4em") |>
cols_align(align = "center", columns = everything())

Let’s take a few rows from the towny dataset and make it so the csd_type column contains Font
Awesome icon names (we want only the "city" and "house-chimney" icons here). After using
fmt_icon() to format the csd_type column, we get icons that are representative of the two cate-
gories of municipality for this subset of data.

towny |>
dplyr::select(name, csd_type, population_2021) |>
dplyr::filter(csd_type %in% c("city", "town")) |>
dplyr::group_by(csd_type) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 5) |>
dplyr::ungroup() |>
dplyr::mutate(
csd_type = ifelse(csd_type == "town", "house-chimney", "city")

) |>
gt() |>
fmt_integer() |>
fmt_icon(columns = csd_type) |>
cols_move_to_start(columns = csd_type) |>
cols_label(
csd_type = "",
name = "City/Town",
population_2021 = "Population"

)

Let’s use a portion of the metro dataset to create a gt table. Depending on which train services are
offered at the subset of stations, Font Awesome icon names will be applied to cells where the dif-
ferent services exist (the specific names are "train-subway", "train", and "train-tram"). With

fmt_icon 199

tidyr’s unite() function, those icon names can be converged into a single column (services)
with the NA values removed. Since the names correspond to icons and they are in the correct for-
mat (separated by commas), they can be formatted as Font Awesome icons with the fmt_icon()
function.

metro |>
dplyr::select(name, lines, connect_rer, connect_tramway, location) |>
dplyr::slice_tail(n = 10) |>
dplyr::mutate(lines = "train-subway") |>
dplyr::mutate(connect_rer = ifelse(!is.na(connect_rer), "train", NA)) |>
dplyr::mutate(
connect_tramway = ifelse(!is.na(connect_tramway), "train-tram", NA)

) |>
tidyr::unite(
col = services,
lines:connect_tramway,
sep = ",",
na.rm = TRUE

) |>
gt() |>
fmt_icon(
columns = services,
a11y = "decorative"

) |>
cols_merge(
columns = c(name, services),
pattern = "{1} ({2})"

) |>
cols_label(
name = "Station",
location = "Location"

)

Taking a handful of starred reviews from a popular film review website, we will attempt to format
a numerical score (0 to 4) to use the "star" and "star-half" icons. In this case, it is useful to
generate the repeating sequence of icon names (separated by commas) in the rating column before
introducing the table to gt(). We can make use of the numerical rating values in stars within
the fmt_icon() function with a little help from the from_column() helper. Using that, we can
dynamically adjust the icon’s fill_alpha (i.e., opacity) value and accentuate the films with higher
scores.

dplyr::tibble(
film = c(
"The Passengers of the Night", "Serena", "The Father",
"Roma", "The Handmaiden", "Violet", "Vice"

),
stars = c(3, 1, 3.5, 4, 4, 2.5, 1.5)

) |>

200 fmt_image

dplyr::mutate(rating = dplyr::case_when(
stars %% 1 == 0 ~ strrep("star,", stars),
stars %% 1 != 0 ~ paste0(strrep("star,", floor(stars)), "star-half")

)) |>
gt() |>
fmt_icon(
columns = rating,
fill_color = "red",
fill_alpha = from_column("stars", fn = function(x) x / 4)

) |>
cols_hide(columns = stars) |>
tab_source_note(
source_note = md(
"Data obtained from <https://www.rogerebert.com/reviews>."

)
)

Function ID

3-22

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_image Format image paths to generate images in cells

Description

To more easily insert graphics into body cells, we can use the fmt_image() function. This allows
for one or more images to be placed in the targeted cells. The cells need to contain some reference
to an image file, either: (1) complete http/https or local paths to the files; (2) the file names, where a
common path can be provided via path; or (3) a fragment of the file name, where the file_pattern
helps to compose the entire file name and path provides the path information. This should be
expressly used on columns that contain only references to image files (i.e., no image references
as part of a larger block of text). Multiple images can be included per cell by separating image
references by commas. The sep argument allows for a common separator to be applied between
images.

fmt_image 201

Usage

fmt_image(
data,
columns = everything(),
rows = everything(),
height = NULL,
width = NULL,
sep = " ",
path = NULL,
file_pattern = "{x}",
encode = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

height, width Height and width of images
scalar<character> // default: NULL (optional)
The absolute height of the image in the table cell. If you set the width and
height remains NULL (or vice versa), the width-to-height ratio will be preserved
when gt calculates the length of the missing dimension. If width and height
are both NULL, height is set as "2em" and width will be calculated.

sep Separator between images
scalar<character> // default: " "

In the output of images within a body cell, sep provides the separator between
each image.

path Path to image files
scalar<character> // default: NULL (optional)

202 fmt_image

An optional path to local image files (this is combined with all filenames).

file_pattern File pattern specification
scalar<character> // default: "{x}"

The pattern to use for mapping input values in the body cells to the names of
the graphics files. The string supplied should use "{x}" in the pattern to map
filename fragments to input strings.

encode Use Base64 encoding
scalar<logical> // default: TRUE

The option to always use Base64 encoding for image paths that are determined
to be local. By default, this is TRUE.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

fmt_image 203

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_image() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• height

• width

• sep

• path

• file_pattern

• encode

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Using a small portion of metro dataset, let’s create a gt table. We will only include a few columns
and rows from that table. The lines and connect_rer columns have comma-separated listings of
numbers/letters (corresponding to lines served at each station). We have a directory SVG graph-
ics for all of these lines in the package (the path for the image directory can be accessed via
system.file("metro_svg", package = "gt")), and the filenames roughly correspond to the data
in those two columns. The fmt_image() function can be used with these inputs since the path
and file_pattern arguments allow us to compose complete and valid file locations. What you get
from this are sequences of images in the table cells, taken from the referenced graphics files on disk.

metro |>
dplyr::select(name, caption, lines, connect_rer) |>
dplyr::slice_head(n = 10) |>
gt() |>
cols_merge(
columns = c(name, caption),
pattern = "{1}<< ({2})>>"

) |>
text_replace(
locations = cells_body(columns = name),
pattern = "\\((.*?)\\)",
replacement = "
(\\1)"

) |>
sub_missing(columns = connect_rer, missing_text = "") |>
fmt_image(
columns = lines,
path = system.file("metro_svg", package = "gt"),

204 fmt_index

file_pattern = "metro_{x}.svg"
) |>
fmt_image(
columns = connect_rer,
path = system.file("metro_svg", package = "gt"),
file_pattern = "rer_{x}.svg"

) |>
cols_label(
name = "Station",
lines = "Lines",
connect_rer = "RER"

) |>
cols_align(align = "left") |>
tab_style(
style = cell_borders(
sides = c("left", "right"),
weight = px(1),
color = "gray85"

),
locations = cells_body(columns = lines)

) |>
opt_stylize(style = 6, color = "blue") |>
opt_all_caps() |>
opt_horizontal_padding(scale = 1.75)

Function ID

3-20

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_index Format values to indexed characters

fmt_index 205

Description

With numeric values in a gt table we can transform those to index values, usually based on letters.
These characters can be derived from a specified locale and they are intended for ordering (often
leaving out characters with diacritical marks).

Usage

fmt_index(
data,
columns = everything(),
rows = everything(),
case = c("upper", "lower"),
index_algo = c("repeat", "excel"),
pattern = "{x}",
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

case Use uppercase or lowercase letters
singl-kw:[upper|lower] // default: "upper"
Should the resulting index characters be rendered as uppercase ("upper") or
lowercase ("lower") letters? By default, this is set to "upper".

index_algo Indexing algorithm
singl-kw:[repeat|excel] // default: "repeat"
The indexing algorithm handles the recycling of the index character set. By
default, the "repeat" option is used where characters are doubled, tripled,

206 fmt_index

and so on, when moving past the character set limit. The alternative is the
"excel" option, where Excel-based column naming is adapted and used here
(e.g., [..., Y, Z, AA, AB, ...]).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_index() formatting function is compatible with body cells that are of the "numeric" or
"integer" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

fmt_index 207

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_index() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• case

• index_algo

• pattern

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Examples

Using a summarized version of the towny dataset, let’s create a gt table. Here, the fmt_index()
function is used to transform incremental integer values into capitalized letters (in the ranking
column). With cols_merge() that formatted column of "A" to "E" values is merged with the
census_div column to create an indexed listing of census subdivisions, here ordered by increasing
total municipal population.

towny |>
dplyr::select(name, csd_type, census_div, population_2021) |>
dplyr::group_by(census_div) |>
dplyr::summarize(
population = sum(population_2021),
.groups = "drop_last"

) |>
dplyr::arrange(population) |>
dplyr::slice_head(n = 5) |>
dplyr::mutate(ranking = dplyr::row_number()) |>
dplyr::select(ranking, dplyr::everything()) |>
gt() |>

208 fmt_integer

fmt_integer() |>
fmt_index(columns = ranking, pattern = "{x}.") |>
cols_merge(columns = c(ranking, census_div)) |>
cols_align(align = "left", columns = ranking) |>
cols_label(
ranking = md("Census \nSubdivision"),
population = md("Population \nin 2021")

) |>
tab_header(title = md("The smallest \ncensus subdivisions")) |>
tab_options(table.width = px(325))

Function ID

3-10

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The vector-formatting version of this function: vec_fmt_index().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_integer Format values as integers

Description

With numeric values in a gt table, we can perform number-based formatting so that the targeted
values are always rendered as integer values. We can have fine control over integer formatting with
the following options:

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value

• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

fmt_integer 209

Usage

fmt_integer(
data,
columns = everything(),
rows = everything(),
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
force_sign = FALSE,
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

210 fmt_integer

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 2M). This option can accept a logical value,
where FALSE (the default) will not perform this transformation and TRUE will
apply thousands (K), millions (M), billions (B), and trillions (T) suffixes after au-
tomatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).
Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.
If using system = "ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"

fmt_integer 211

The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_integer() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to

212 fmt_integer

the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_integer() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• use_seps

• accounting

• scale_by

• suffixing

• pattern

• sep_mark

• force_sign

• system

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples in-
clude "en" for English (United States) and "fr" for French (France). The use of a valid locale ID
here means separator marks will be correct for the given locale. Should any value be provided in
sep_mark, it will be overridden by the locale’s preferred value.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

For this example, we’ll use two columns from the exibble dataset and create a simple gt table.
With the fmt_integer() function, we’ll format the num column as integer values having no digit
separators (with the use_seps = FALSE option).

fmt_integer 213

exibble |>
dplyr::select(num, char) |>
gt() |>
fmt_integer(use_seps = FALSE)

Let’s use a modified version of the countrypops dataset to create a gt table with row labels. We
will format all numeric columns with fmt_integer() and scale all values by 1 / 1E6, giving us
integer values representing millions of people. We can make clear what the values represent with
an informative spanner label via tab_spanner().

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == 0) |>
tidyr::spread(year, population) |>
dplyr::arrange(desc(`2015`)) |>
gt(rowname_col = "country_code_3") |>
fmt_integer(scale_by = 1 / 1E6) |>
tab_spanner(label = "Millions of People", columns = everything())

Using a subset of the towny dataset, we can do interesting things with integer values. Through
cols_add() we’ll add the difference column (which calculates the difference between 2021 and
2001 populations). All numeric values will be formatted with a first pass of fmt_integer(); a sec-
ond pass of fmt_integer() focuses on the difference column and here we use the force_sign
= TRUE option to draw attention to positive and negative difference values.

towny |>
dplyr::select(name, population_2001, population_2021) |>
dplyr::slice_tail(n = 10) |>
gt() |>
cols_add(difference = population_2021 - population_2001) |>
fmt_integer() |>
fmt_integer(columns = difference, force_sign = TRUE) |>
cols_label_with(fn = function(x) gsub("population_", "", x)) |>
tab_style(
style = cell_fill(color = "gray90"),
locations = cells_body(columns = difference)

)

Function ID

3-2

Function Introduced

v0.3.1 (August 9, 2021)

214 fmt_markdown

See Also

The fmt_number() function might be more of what you need if you’d like decimal values in your
outputs. Need to do integer-based formatting on a vector? Take a look at the vector-formatting
version of this function: vec_fmt_integer().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_markdown Format Markdown text

Description

Any Markdown-formatted text in the incoming cells will be transformed to the appropriate output
type during render when using fmt_markdown().

Usage

fmt_markdown(
data,
columns = everything(),
rows = everything(),
md_engine = c("markdown", "commonmark")

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),

fmt_markdown 215

num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

md_engine Choice of Markdown engine
singl-kw:[markdown|commonmark] // default: "markdown"
The engine preference for Markdown rendering. By default, this is set to "markdown"
where gt will use the markdown package for Markdown conversion to HTML
and LaTeX. The other option is "commonmark" and with that the commonmark
package will be used.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with the md_engine argument of fmt_markdown()
to obtain varying parameter values from a specified column within the table. This means that each
row could be formatted a little bit differently.

216 fmt_markdown

Please note that for this argument (md_engine), a from_column() call needs to reference a column
that has data of the character type. Additional columns for parameter values can be generated
with the cols_add() function (if not already present). Columns that contain parameter data can
also be hidden from final display with cols_hide().

Examples

Create a few Markdown-based text snippets.

text_1a <- "
This is Markdown.

Markdown’s syntax is comprised entirely of
punctuation characters, which punctuation
characters have been carefully chosen so as
to look like what they mean... assuming
you’ve ever used email.
"

text_1b <- "
Info on Markdown syntax can be found
[here](https://daringfireball.net/projects/markdown/).
"

text_2a <- "
The **gt** package has these datasets:

- `countrypops`
- `sza`
- `gtcars`
- `sp500`
- `pizzaplace`
- `exibble`
"

text_2b <- "
There's a quick reference [here](https://commonmark.org/help/).
"

Arrange the text snippets as a tibble using the dplyr::tribble() function. then, create a gt table
and format all columns with fmt_markdown().

dplyr::tribble(
~Markdown, ~md,
text_1a, text_2a,
text_1b, text_2b,

) |>
gt() |>
fmt_markdown(columns = everything()) |>
tab_options(table.width = px(400))

fmt_number 217

Function ID

3-23

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_markdown().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_number(), fmt_partsper(), fmt_passthrough(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_number Format numeric values

Description

With numeric values in a gt table, we can perform number-based formatting so that the targeted
values are rendered with a higher consideration for tabular presentation. Furthermore, there is finer
control over numeric formatting with the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value

• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_number(
data,
columns = everything(),
rows = everything(),
decimals = 2,
n_sigfig = NULL,
drop_trailing_zeros = FALSE,

218 fmt_number

drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,

fmt_number 219

n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).

220 fmt_number

Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.
If using system = "ind" then the default suffix set provided by suffixing =
TRUE will be the equivalent of c(NA, "L", "Cr"). This doesn’t apply suffixes to
the thousands range, but does express values in lakhs and crores.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

fmt_number 221

Compatibility of formatting function with data values

The fmt_number() formatting function is compatible with body cells that are of the "numeric" or
"integer" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_number() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• decimals

• n_sigfig

• drop_trailing_zeros

• drop_trailing_dec_mark

• use_seps

• accounting

222 fmt_number

• scale_by

• suffixing

• pattern

• sep_mark

• dec_mark

• force_sign

• system

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s use the exibble dataset to create a gt table. With the fmt_number() function, we’ll format the
num column to have three decimal places (with decimals = 3) and omit the use of digit separators
(with use_seps = FALSE).

exibble |>
gt() |>
fmt_number(
columns = num,
decimals = 3,
use_seps = FALSE

)

Use a modified version of the countrypops dataset to create a gt table with row labels. Format
all columns to use large-number suffixing (e.g., where "10,000,000" becomes "10M") with the
suffixing = TRUE option.

fmt_number 223

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == 0) |>
tidyr::spread(year, population) |>
dplyr::arrange(desc(`2015`)) |>
gt(rowname_col = "country_code_3") |>
fmt_number(suffixing = TRUE)

In a variation of the previous table, we can combine large-number suffixing with a declaration of
the number of significant digits to use. With things like population figures, n_sigfig = 3 is a very
good option.

countrypops |>
dplyr::select(country_code_3, year, population) |>
dplyr::filter(country_code_3 %in% c("CHN", "IND", "USA", "PAK", "IDN")) |>
dplyr::filter(year > 1975 & year %% 5 == 0) |>
tidyr::spread(year, population) |>
dplyr::arrange(desc(`2015`)) |>
gt(rowname_col = "country_code_3") |>
fmt_number(suffixing = TRUE, n_sigfig = 3)

There can be cases where you want to show numbers to a large number of decimal places but also
drop the unnecessary trailing zeros for low-precision values. Let’s take a portion of the towny
dataset and format the latitude and longitude columns with fmt_number(). We’ll have up to 5
digits displayed as decimal values, but we’ll also unconditionally drop any runs of trailing zeros in
the decimal part with drop_trailing_zeros = TRUE.

towny |>
dplyr::select(name, latitude, longitude) |>
dplyr::slice_head(n = 10) |>
gt() |>
fmt_number(decimals = 5, drop_trailing_zeros = TRUE) |>
cols_merge(columns = -name, pattern = "{1}, {2}") |>
cols_label(
name ~ "Municipality",
latitude = "Location"

)

Another strategy for dealing with precision of decimals is to have a separate column of values that
specify how many decimal digits to retain. Such a column can be added via cols_add() or it can
be part of the input table for gt(). With that column available, it can be referenced in the decimals
argument with the from_column() helper function. This approach yields a display of coordinate
values that reflects the measurement precision of each value.

towny |>
dplyr::select(name, latitude, longitude) |>
dplyr::slice_head(n = 10) |>

224 fmt_partsper

gt() |>
cols_add(dec_digits = c(1, 2, 2, 5, 5, 2, 3, 2, 3, 3)) |>
fmt_number(decimals = from_column(column = "dec_digits")) |>
cols_merge(columns = -name, pattern = "{1}, {2}") |>
cols_label(
name ~ "Municipality",
latitude = "Location"

) |>
cols_hide(columns = dec_digits)

Function ID

3-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The fmt_integer() function might be more useful if you really need to format numeric values to
appear as integers (i.e., no decimals will be shown and input values are rounded as necessary). Need
to do numeric formatting on a vector? Take a look at the vector-formatting version of this function:
vec_fmt_number().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values(), sub_zero()

fmt_partsper Format values as parts-per quantities

Description

With numeric values in a gt table we can format the values so that they are rendered as per mille,
ppm, ppb, etc., quantities. The following list of keywords (with associated naming and scaling
factors) is available to use within fmt_partsper():

• "per-mille": Per mille, (1 part in 1,000)

• "per-myriad": Per myriad, (1 part in 10,000)

• "pcm": Per cent mille (1 part in 100,000)

• "ppm": Parts per million, (1 part in 1,000,000)

• "ppb": Parts per billion, (1 part in 1,000,000,000)

• "ppt": Parts per trillion, (1 part in 1,000,000,000,000)

fmt_partsper 225

• "ppq": Parts per quadrillion, (1 part in 1,000,000,000,000,000)

The function provides a lot of formatting control and we can use the following options:

• custom symbol/units: we can override the automatic symbol or units display with our own
choice as the situation warrants

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• value scaling toggle: choose to disable automatic value scaling in the situation that values are
already scaled coming in (and just require the appropriate symbol or unit display)

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_partsper(
data,
columns = everything(),
rows = everything(),
to_units = c("per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", "ppq"),
symbol = "auto",
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
incl_space = "auto",
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include

226 fmt_partsper

starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

to_units Output Quantity
singl-kw:[per-mille|per-myriad|pcm|ppm|ppb|ppt|ppq] // default: "per-mille"
A keyword that signifies the desired output quantity. This can be any from the
following set: "per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", or
"ppq".

symbol Symbol or units to use in output display
scalar<character> // default: "auto"
The symbol/units to use for the quantity. By default, this is set to "auto" and
gt will choose the appropriate symbol based on the to_units keyword and the
output context. However, this can be changed by supplying a string (e.g, using
symbol = "ppbV" when to_units = "ppb").

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_values Scale input values accordingly
scalar<logical> // default: TRUE
Should the values be scaled through multiplication according to the keyword
set in to_units? By default this is TRUE since the expectation is that normally
values are proportions. Setting to FALSE signifies that the values are already
scaled and require only the appropriate symbol/units when formatted.

fmt_partsper 227

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

incl_space Include a space between the value and the symbol/units
scalar<character>|scalar<logical> // default: "auto"
An option for whether to include a space between the value and the symbol/units.
The default is "auto" which provides spacing dependent on the mark itself. This
can be directly controlled by using either TRUE or FALSE.

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

228 fmt_partsper

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_partsper() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_partsper() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• to_units

• symbol

• decimals

fmt_partsper 229

• drop_trailing_zeros

• drop_trailing_dec_mark

• scale_values

• use_seps

• pattern

• sep_mark

• dec_mark

• force_sign

• incl_space

• system

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Create a tibble of small numeric values and generate a gt table. Format the a column to appear
in scientific notation with fmt_scientific() and format the b column as per mille values with
fmt_partsper().

dplyr::tibble(x = 0:-5, a = 10^(0:-5), b = a) |>
gt(rowname_col = "x") |>
fmt_scientific(a, decimals = 0) |>
fmt_partsper(
columns = b,
to_units = "per-mille"

)

Function ID

3-6

230 fmt_passthrough

Function Introduced

v0.6.0 (May 24, 2022)

See Also

The vector-formatting version of this function: vec_fmt_partsper().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_passthrough(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_passthrough Format by simply passing data through

Description

We can format values with the fmt_passthrough() function, which does little more than: (1)
coercing to character (as all the fmt_*() functions do), and (2) applying decorator text via the
pattern argument (the default is to apply nothing). This foramtting function is useful when don’t
want to modify the input data other than to decorate it within a pattern.

Usage

fmt_passthrough(
data,
columns = everything(),
rows = everything(),
escape = TRUE,
pattern = "{x}"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

fmt_passthrough 231

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

escape Text escaping
scalar<logical> // default: TRUE
An option to escape text according to the final output format of the table. For
example, if a LaTeX table is to be generated then LaTeX escaping would be
performed during rendering. By default this is set to TRUE but setting as FALSE
would be useful in the case where text is crafted for a specific output format in
mind.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

232 fmt_passthrough

expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_passthrough() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• escape

• pattern

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Let’s use the exibble dataset to create a single-column gt table (with only the char column). Now
we can pass the data in that column through the ’non-formatter’ that is fmt_passthrough(). While
the the function doesn’t do any explicit formatting it has a feature common to all other formatting
functions: the pattern argument. So that’s what we’ll use in this example, applying a simple
pattern to the non-NA values that adds an "s" character.

exibble |>
dplyr::select(char) |>
gt() |>
fmt_passthrough(
rows = !is.na(char),
pattern = "{x}s"

)

Function ID

3-24

Function Introduced

v0.2.0.5 (March 31, 2020)

fmt_percent 233

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_percent Format values as a percentage

Description

With numeric values in a gt table, we can perform percentage-based formatting. It is assumed
the input numeric values are proportional values and, in this case, the values will be automatically
multiplied by 100 before decorating with a percent sign (the other case is accommodated though
setting the scale_values to FALSE). For more control over percentage formatting, we can use the
following options:

• percent sign placement: the percent sign can be placed after or before the values and a space
can be inserted between the symbol and the value.

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• value scaling toggle: choose to disable automatic value scaling in the situation that values are
already scaled coming in (and just require the percent symbol)

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

fmt_percent(
data,
columns = everything(),
rows = everything(),
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
accounting = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",

234 fmt_percent

force_sign = FALSE,
placement = "right",
incl_space = FALSE,
system = c("intl", "ind"),
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

fmt_percent 235

scale_values Multiply input values by 100
scalar<logical> // default: TRUE
Should the values be scaled through multiplication by 100? By default this
scaling is performed since the expectation is that incoming values are usually
proportional. Setting to FALSE signifies that the values are already scaled and
require only the percent sign when formatted.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

placement Percent sign placement
singl-kw:[right|left] // default: "right"
This option governs the placement of the percent sign. This can be either be
"right" (the default) or "left".

incl_space Include a space between the value and the % sign
scalar<logical> // default: FALSE
An option for whether to include a space between the value and the percent sign.
The default is to not introduce a space character.

236 fmt_percent

system Numbering system for grouping separators
singl-kw:[intl|ind] // default: "intl"
The international numbering system (keyword: "intl") is widely used and its
grouping separators (i.e., sep_mark) are always separated by three digits. The
alternative system, the Indian numbering system (keyword: "ind"), uses group-
ing separators that correspond to thousand, lakh, crore, and higher quantities.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_percent() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style

fmt_percent 237

expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_percent() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• decimals

• drop_trailing_zeros

• drop_trailing_dec_mark

• scale_values

• use_seps

• accounting

• pattern

• sep_mark

• dec_mark

• force_sign

• incl_space

• placement

• system

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

238 fmt_roman

Examples

Use a summarized version of the pizzaplace dataset to create a gt table. With the fmt_percent()
function, we can format the frac_of_quota column to display values as percentages (to one deci-
mal place).

pizzaplace |>
dplyr::mutate(month = as.numeric(substr(date, 6, 7))) |>
dplyr::group_by(month) |>
dplyr::summarize(pizzas_sold = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(frac_of_quota = pizzas_sold / 4000) |>
gt(rowname_col = "month") |>
fmt_percent(
columns = frac_of_quota,
decimals = 1

)

Function ID

3-5

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_percent().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_roman Format values as Roman numerals

Description

With numeric values in a gt table we can transform those to Roman numerals, rounding values as
necessary.

fmt_roman 239

Usage

fmt_roman(
data,
columns = everything(),
rows = everything(),
case = c("upper", "lower"),
pattern = "{x}"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

case Use uppercase or lowercase letters
singl-kw:[upper|lower] // default: "upper"

Should Roman numerals should be rendered as uppercase ("upper") or lower-
case ("lower") letters? By default, this is set to "upper".

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

Value

An object of class gt_tbl.

240 fmt_roman

Compatibility of formatting function with data values

The fmt_roman() formatting function is compatible with body cells that are of the "numeric" or
"integer" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_roman() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• case

• pattern

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with

fmt_roman 241

cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Create a tibble of small numeric values and generate a gt table. Format the roman column to appear
as Roman numerals with fmt_roman().

dplyr::tibble(arabic = c(1, 8, 24, 85), roman = arabic) |>
gt(rowname_col = "arabic") |>
fmt_roman(columns = roman)

Formatting values to Roman numerals can be very useful when combining such output with row
labels (usually through cols_merge()). Here’s an example where we take a portion of the illness
dataset and generate some row labels that combine (1) a row number (in lowercase Roman numer-
als), (2) the name of the test, and (3) the measurement units for the test (nicely formatted by way of
fmt_units()):

illness |>
dplyr::slice_head(n = 6) |>
gt(rowname_col = "test") |>
fmt_units(columns = units) |>
cols_hide(columns = starts_with("day")) |>
sub_missing(missing_text = "") |>
cols_merge_range(col_begin = norm_l, col_end = norm_u) |>
cols_add(i = 1:6) |>
fmt_roman(columns = i, case = "lower", pattern = "{x}.") |>
cols_merge(columns = c(test, i, units), pattern = "{2} {1} ({3})") |>
cols_label(norm_l = "Normal Range") |>
tab_stubhead(label = "Test")

Function ID

3-9

Function Introduced

v0.8.0 (November 16, 2022)

See Also

The vector-formatting version of this function: vec_fmt_roman().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_scientific(), fmt_spelled_num(), fmt_time(),
fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

242 fmt_scientific

fmt_scientific Format values to scientific notation

Description

With numeric values in a gt table, we can perform formatting so that the targeted values are rendered
in scientific notation, where extremely large or very small numbers can be expressed in a more
practical fashion. Here, numbers are written in the form of a mantissa (m) and an exponent (n) with
the construction m x 10^n or mEn. The mantissa component is a number between 1 and 10. For
instance, 2.5 x 10^9 can be used to represent the value 2,500,000,000 in scientific notation. In a
similar way, 0.00000012 can be expressed as 1.2 x 10^-7. Due to its ability to describe numbers
more succinctly and its ease of calculation, scientific notation is widely employed in scientific and
technical domains.

We have fine control over the formatting task, with the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• scaling: we can choose to scale targeted values by a multiplier value

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in formatting specific to the chosen
locale

Usage

fmt_scientific(
data,
columns = everything(),
rows = everything(),
decimals = 2,
n_sigfig = NULL,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_by = 1,
exp_style = "x10n",
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign_m = FALSE,
force_sign_n = FALSE,
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required

fmt_scientific 243

This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

244 fmt_scientific

exp_style Style declaration for exponent formatting
scalar<character> // default: "x10n"
Style of formatting to use for the scientific notation formatting. By default this
is "x10n" but other options include using a single letter (e.g., "e", "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten"
for using a stylized "10" marker.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign_m, force_sign_n

Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_scientific() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

fmt_scientific 245

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_scientific() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• decimals

• drop_trailing_zeros

• drop_trailing_dec_mark

• scale_by

• exp_style

• pattern

• sep_mark

• dec_mark

• force_sign_m

• force_sign_n

246 fmt_scientific

• locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide(). Finally, there
is no limitation to how many arguments the from_column() helper is applied so long as the argu-
ments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). The use of a valid locale ID here
means separator and decimal marks will be correct for the given locale. Should any values be
provided in sep_mark or dec_mark, they will be overridden by the locale’s preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()’s
own locale argument (it is settable there as a value received by all other functions that have a
locale argument). As a useful reference on which locales are supported, we can use the info_locales()
function to view an info table.

Examples

Let’s use the exibble dataset to create a simple gt table. We’ll elect to the num column as partially
numeric and partially in scientific notation. This is done with two separate calls of fmt_number()
and fmt_scientific(). We’ll use the expressions num > 500 and num <= 500 in the functions’
respective rows arguments to target formatting to specific cells.

exibble |>
gt() |>
fmt_number(
columns = num,
rows = num > 500,
decimals = 1,
scale_by = 1/1000,
pattern = "{x}K"

) |>
fmt_scientific(
columns = num,
rows = num <= 500,
decimals = 1

)

The constants table contains a plethora of data on the fundamental physical constant and most
values (in the units used) are either very small or very large, so scientific formatting is suitable.
The values differ in the degree of measurement precision and separate columns (sf_value and
sf_uncert) contain the exact number of significant figures for each measurement value and the
associated uncertainty value. We can use the n_sigfig argument of fmt_scientific() in con-
junction with the from_column() helper to get the correct number of significant digits for each
value.

fmt_spelled_num 247

constants |>
dplyr::filter(grepl("Planck", name)) |>
gt() |>
fmt_scientific(
columns = value,
n_sigfig = from_column(column = "sf_value")

) |>
fmt_scientific(
columns = uncert,
n_sigfig = from_column(column = "sf_uncert")

) |>
cols_hide(columns = starts_with("sf")) |>
fmt_units(columns = units) |>
sub_missing(missing_text = "")

Function ID

3-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_scientific().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_spelled_num(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

fmt_spelled_num Format values to spelled-out numbers

Description

With numeric values in a gt table we can transform those to numbers that are spelled out with
the fmt_spelled_num() function. Any values from 0 to 100 can be spelled out so, for example,
the value 23 will be formatted as "twenty-three". Providing a locale ID will result in the number
spelled out in the locale’s language rules. For example, should a Swedish locale ("sv") be provided,
the input value 23 will yield "tjugotre". In addition to this, we can optionally use the pattern
argument for decoration of the formatted values.

248 fmt_spelled_num

Usage

fmt_spelled_num(
data,
columns = everything(),
rows = everything(),
pattern = "{x}",
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

fmt_spelled_num 249

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_spelled_num() formatting function is compatible with body cells that are of the "numeric"
or "integer" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_spelled_num() to
obtain varying parameter values from a specified column within the table. This means that each row
could be formatted a little bit differently. These arguments provide support for from_column():

• pattern

• locale

250 fmt_spelled_num

Please note that for both of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Supported locales

The following 80 locales are supported in the locale argument of fmt_spelled_num(): "af"
(Afrikaans), "ak" (Akan), "am" (Amharic), "ar" (Arabic), "az" (Azerbaijani), "be" (Belarusian),
"bg" (Bulgarian), "bs" (Bosnian), "ca" (Catalan), "ccp" (Chakma), "chr" (Cherokee), "cs"
(Czech), "cy" (Welsh), "da" (Danish), "de" (German), "de-CH" (German (Switzerland)), "ee"
(Ewe), "el" (Greek), "en" (English), "eo" (Esperanto), "es" (Spanish), "et" (Estonian), "fa"
(Persian), "ff" (Fulah), "fi" (Finnish), "fil" (Filipino), "fo" (Faroese), "fr" (French), "fr-BE"
(French (Belgium)), "fr-CH" (French (Switzerland)), "ga" (Irish), "he" (Hebrew), "hi" (Hindi),
"hr" (Croatian), "hu" (Hungarian), "hy" (Armenian), "id" (Indonesian), "is" (Icelandic), "it"
(Italian), "ja" (Japanese), "ka" (Georgian), "kk" (Kazakh), "kl" (Kalaallisut), "km" (Khmer),
"ko" (Korean), "ky" (Kyrgyz), "lb" (Luxembourgish), "lo" (Lao), "lrc" (Northern Luri), "lt"
(Lithuanian), "lv" (Latvian), "mk" (Macedonian), "ms" (Malay), "mt" (Maltese), "my" (Burmese),
"ne" (Nepali), "nl" (Dutch), "nn" (Norwegian Nynorsk), "no" (Norwegian), "pl" (Polish), "pt"
(Portuguese), "qu" (Quechua), "ro" (Romanian), "ru" (Russian), "se" (Northern Sami), "sk"
(Slovak), "sl" (Slovenian), "sq" (Albanian), "sr" (Serbian), "sr-Latn" (Serbian (Latin)), "su"
(Sundanese), "sv" (Swedish), "sw" (Swahili), "ta" (Tamil), "th" (Thai), "tr" (Turkish), "uk"
(Ukrainian), "vi" (Vietnamese), "yue" (Cantonese), and "zh" (Chinese).

Examples

Let’s use a summarized version of the gtcars dataset to create a gt table. The fmt_spelled_num()
function is used to transform integer values into spelled-out numbering (in the n column). That
formatted column of numbers-as-words is given cell background colors via data_color() (the
underlying numerical values are always available).

gtcars |>
dplyr::select(mfr, ctry_origin) |>
dplyr::group_by(mfr, ctry_origin) |>
dplyr::count() |>
dplyr::ungroup() |>
dplyr::arrange(ctry_origin) |>
gt(rowname_col = "mfr", groupname_col = "ctry_origin") |>
cols_label(n = "No. of Entries") |>
fmt_spelled_num() |>
tab_stub_indent(rows = everything(), indent = 2) |>
data_color(
columns = n,
method = "numeric",
palette = "viridis",
alpha = 0.8

) |>

fmt_spelled_num 251

opt_all_caps() |>
opt_vertical_padding(scale = 0.5) |>
cols_align(align = "center", columns = n)

With a considerable amount of dplyr and tidyr work done to the pizzaplace dataset, we can create
a new gt table. The fmt_spelled_num() function will be used here to transform the integer values
in the rank column. We’ll do so with a special pattern that puts the word ’Number’ in front of
every spelled-out number.

pizzaplace |>
dplyr::mutate(month = lubridate::month(date, label = TRUE)) |>
dplyr::filter(month %in% month.abb[1:6]) |>
dplyr::group_by(name, month) |>
dplyr::summarize(sum = sum(price), .groups = "drop") |>
dplyr::arrange(month, desc(sum)) |>
dplyr::group_by(month) |>
dplyr::slice_head(n = 5) |>
dplyr::mutate(rank = dplyr::row_number()) |>
dplyr::ungroup() |>
dplyr::select(-sum) |>
tidyr::pivot_wider(names_from = month, values_from = c(name)) |>
gt() |>
fmt_spelled_num(columns = rank, pattern = "Number {x}") |>
opt_all_caps() |>
cols_align(columns = -rank, align = "center") |>
cols_width(
rank ~ px(120),
everything() ~ px(100)

) |>
opt_table_font(stack = "rounded-sans") |>
tab_options(table.font.size = px(14))

Function ID

3-11

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The vector-formatting version of this function: vec_fmt_spelled_num().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_time(), fmt_units(),
fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()

252 fmt_time

fmt_time Format values as times

Description

Format input values to time values using one of 25 preset time styles. Input can be in the form of
POSIXt (i.e., datetimes), character (must be in the ISO 8601 forms of HH:MM:SS or YYYY-MM-DD HH:MM:SS),
or Date (which always results in the formatting of 00:00:00).

Usage

fmt_time(
data,
columns = everything(),
rows = everything(),
time_style = "iso",
pattern = "{x}",
locale = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

time_style Predefined style for times
scalar<character>|scalar<numeric|integer>(1<=val<=25) // default: "iso"
The time style to use. By default this is the short name "iso" which corresponds
to how times are formatted within ISO 8601 datetime values. There are 25 time
styles in total and their short names can be viewed using info_time_style().

fmt_time 253

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_time() formatting function is compatible with body cells that are of the "Date", "POSIXt"
or "character" types. Any other types of body cells are ignored during formatting. This is to say
that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().

254 fmt_time

It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_time() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• time_style

• pattern

• locale

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Formatting with the time_style argument

We need to supply a preset time style to the time_style argument. There are many time styles
and all of them can handle localization to any supported locale. Many of the time styles are termed
flexible time formats and this means that their output will adapt to any locale provided. That
feature makes the flexible time formats a better option for locales other than "en" (the default
locale).

The following table provides a listing of all time styles and their output values (corresponding to an
input time of 14:35:00). It is noted which of these represent 12- or 24-hour time.

Time Style Output Notes
1 "iso" "14:35:00" ISO 8601, 24h
2 "iso-short" "14:35" ISO 8601, 24h
3 "h_m_s_p" "2:35:00 PM" 12h
4 "h_m_p" "2:35 PM" 12h
5 "h_p" "2 PM" 12h
6 "Hms" "14:35:00" flexible, 24h
7 "Hm" "14:35" flexible, 24h
8 "H" "14" flexible, 24h
9 "EHm" "Thu 14:35" flexible, 24h
10 "EHms" "Thu 14:35:00" flexible, 24h
11 "Hmsv" "14:35:00 GMT+00:00" flexible, 24h
12 "Hmv" "14:35 GMT+00:00" flexible, 24h
13 "hms" "2:35:00 PM" flexible, 12h
14 "hm" "2:35 PM" flexible, 12h

fmt_time 255

15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM" flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms" "Thu 2:35:00 in the afternoon" flexible, 12h
19 "Bhms" "2:35:00 in the afternoon" flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon" flexible, 12h
21 "Bhm" "2:35 in the afternoon" flexible, 12h
22 "Bh" "2 in the afternoon" flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35 PM GMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include
"en" for English (United States) and "fr" for French (France). Note that a locale value provided
here will override any global locale setting performed in gt()’s own locale argument (it is settable
there as a value received by all other functions that have a locale argument). As a useful reference
on which locales are supported, we can use the info_locales() function to view an info table.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the date and
time columns). Format the time column with the fmt_time() function to display times formatted
with the "h_m_s_p" time style.

exibble |>
dplyr::select(date, time) |>
gt() |>
fmt_time(
columns = time,
time_style = "h_m_s_p"

)

Again using the exibble dataset, let’s format the time column to have mixed time formats, where
times after 16:00 will be different than the others because of the expressions used in the rows
argument. This will involve two calls of fmt_time() with different statements provided for rows.
In the first call (times after 16:00) the time style "h_m_s_p" is used; for the second call, "h_m_p" is
the named time style supplied to time_style.

exibble |>
dplyr::select(date, time) |>
gt() |>
fmt_time(

256 fmt_time

columns = time,
rows = time > "16:00",
time_style = "h_m_s_p"

) |>
fmt_time(
columns = time,
rows = time <= "16:00",
time_style = "h_m_p"

)

Use the exibble dataset to create a single-column gt table (with only the time column). Format
the time values using the "EBhms" time style (which is one of the ’flexible’ styles). Also, we’ll set
the locale to "sv" to get the times in Swedish.

exibble |>
dplyr::select(time) |>
gt() |>
fmt_time(
columns = time,
time_style = "EBhms",
locale = "sv"

)

Function ID

3-14

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

The vector-formatting version of this function: vec_fmt_time().

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

fmt_units 257

fmt_units Format measurement units

Description

The fmt_units() function lets you better format measurement units in the table body. These
must conform to gt’s specialized units notation (e.g., "J Hz^-1 mol^-1" can be used to generate
units for the molar Planck constant) for the best conversion. The notation here provides several
conveniences for defining units, so as long as the values to be formatted conform to this syntax,
you’ll obtain nicely-formatted units no matter what the table output format might be (i.e., HTML,
LaTeX, RTF, etc.). Details pertaining to the units notation can be found in the section entitled How
to use gt’s units notation.

Usage

fmt_units(data, columns = everything(), rows = everything())

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()

Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()

In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

Value

An object of class gt_tbl.

258 fmt_units

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

How to use gt’s units notation

The units notation involves a shorthand of writing units that feels familiar and is fine-tuned for the
task at hand. Each unit is treated as a separate entity (parentheses and other symbols included) and
the addition of subscript text and exponents is flexible and relatively easy to formulate. This is all
best shown with examples:

• "m/s" and "m / s" both render as "m/s"
• "m s^-1" will appear with the "-1" exponent intact
• "m /s" gives the the same result, as "/<unit>" is equivalent to "<unit>^-1"

• "E_h" will render an "E" with the "h" subscript
• "t_i^2.5" provides a t with an "i" subscript and a "2.5" exponent
• "m[_0^2]" will use overstriking to set both scripts vertically
• "g/L %C6H12O6%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit

partial, and the formula will render correctly with subscripted numbers
• Common units that are difficult to write using ASCII text may be implicitly converted to the

correct characters (e.g., the "u" in "ug", "um", "uL", and "umol" will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

fmt_units 259

• We can transform shorthand symbol/unit names enclosed in ":" (e.g., ":angstrom:", ":ohm:",
etc.) into proper symbols

• Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

• The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "**"

Examples

Let’s use the illness dataset and create a new gt table. The units column contains character
values in gt’s specialized units notation (e.g., "x10^9 / L") so the fmt_units() function was used
to better format those units.

illness |>
gt() |>
fmt_units(columns = units) |>
sub_missing(columns = -starts_with("norm")) |>
sub_missing(columns = c(starts_with("norm"), units), missing_text = "") |>
sub_large_vals(rows = test == "MYO", threshold = 1200) |>
fmt_number(
decimals = 2,
drop_trailing_zeros = TRUE

) |>
tab_header(title = "Laboratory Findings for the YF Patient") |>
tab_spanner(label = "Day", columns = starts_with("day")) |>
cols_label_with(fn = ~ gsub("day_", "", .)) |>
cols_merge_range(col_begin = norm_l, col_end = norm_u) |>
cols_label(
starts_with("norm") ~ "Normal Range",
test ~ "Test",
units ~ "Units"

) |>
cols_width(
starts_with("day") ~ px(80),
everything() ~ px(120)

) |>
tab_style(
style = cell_text(align = "center"),
locations = cells_column_labels(columns = starts_with("day"))

) |>
tab_style(
style = cell_fill(color = "aliceblue"),
locations = cells_body(columns = c(test, units))

) |>
opt_vertical_padding(scale = 0.4) |>
opt_align_table_header(align = "left") |>
tab_options(heading.padding = px(10))

260 fmt_url

The constants dataset contains values for hundreds of fundamental physical constants. We’ll take
a subset of values that have some molar basis and generate a gt table from that. Like the illness
dataset, this one has a units column so, again, the fmt_units() function will be used to format
those units. Here, the preference for typesetting measurement units is to have positive and negative
exponents (e.g., not "<unit_1> / <unit_2>" but rather "<unit_1> <unit_2>^-1").

constants |>
dplyr::filter(grepl("molar", name)) |>
gt() |>
cols_hide(columns = c(uncert, starts_with("sf"))) |>
fmt_units(columns = units) |>
fmt_scientific(columns = value, decimals = 3) |>
tab_header(title = "Physical Constants Having a Molar Basis") |>
tab_options(column_labels.hidden = TRUE)

Function ID

3-18

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

fmt_url Format URLs to generate links

Description

Should cells contain URLs, the fmt_url() function can be used to make them navigable links. This
should be expressly used on columns that contain only URL text (i.e., no URLs as part of a larger
block of text). Should you have such a column of data, there are options for how the links should
be styled. They can be of the conventional style (with underlines and text coloring that sets it apart
from other text), or, they can appear to be button-like (with a surrounding box that can be filled with
a color of your choosing).

URLs in data cells are detected in two ways. The first is using the simple Markdown notation for
URLs of the form: [label](URL). The second assumes that the text is the URL. In the latter case
the URL is also used as the label but there is the option to use the label argument to modify that
text.

fmt_url 261

Usage

fmt_url(
data,
columns = everything(),
rows = everything(),
label = NULL,
as_button = FALSE,
color = "auto",
show_underline = "auto",
button_fill = "auto",
button_width = "auto",
button_outline = "auto",
target = NULL,
rel = NULL,
referrerpolicy = NULL,
hreflang = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
Can either be a series of column names provided in c(), a vector of column
indices, or a select helper function. Examples of select helper functions include
starts_with(), ends_with(), contains(), matches(), one_of(), num_range(),
and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should undergo
formatting. The default everything() results in all rows in columns being for-
matted. Alternatively, we can supply a vector of row captions within c(), a vec-
tor of row indices, or a select helper function. Examples of select helper func-
tions include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything(). We can also use expressions to filter down
to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

label Link label
scalar<character> // default: NULL (optional)
The visible ’label’ to use for the link. If NULL (the default) the URL will serve
as the label. There are two non-NULL options: (1) a static text can be used for
the label by providing a string, and (2) a function can be provided to fashion a
label from every URL.

as_button Style link as a button

262 fmt_url

scalar<logical> // default: FALSE
An option to style the link as a button. By default, this is FALSE. If this option is
chosen then the button_fill argument becomes usable.

color Link color
scalar<character> // default: "auto"
The color used for the resulting link and its underline. This is "auto" by default;
this allows gt to choose an appropriate color based on various factors (such as
the background button_fill when as_button is TRUE).

show_underline Show the link underline
scalar<character>|scalar<logical> // default: "auto"
Should the link be decorated with an underline? By default this is "auto" which
means that gt will choose TRUE when as_button = FALSE and FALSE in the other
case. The link underline will be the same color as that set in the color option.

button_fill, button_width, button_outline

Button options
scalar<character> // default: "auto"
Options for styling a link-as-button (and only applies if as_button = TRUE). All
of these options are by default set to "auto", allowing gt to choose appropriate
fill, width, and outline values.

target, rel, referrerpolicy, hreflang

Anchor element attributes
scalar<character> // default: NULL
Additional anchor element attributes. For descriptions of each attribute and the
allowed values, refer to the MDN Web Docs reference on the anchor HTML
element.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

The fmt_url() formatting function is compatible with body cells that are of the "character" or
"factor" types. Any other types of body cells are ignored during formatting. This is to say that
cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a#attributes

fmt_url 263

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given formatting function will be skipped over, like character values and
numeric fmt_*() functions. So it’s safe to select all columns with a particular formatting function
(only those values that can be formatted will be formatted), but, you may not want that. One strategy
is to format the bulk of cell values with one formatting function and then constrain the columns for
later passes with other types of formatting (the last formatting done to a cell is what you get in the
final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base formatting on values in the column or another column, or, you’d like to use
a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with certain arguments of fmt_url() to obtain
varying parameter values from a specified column within the table. This means that each row could
be formatted a little bit differently. These arguments provide support for from_column():

• label

• as_button

• color

• show_underline

• button_fill

• button_width

• button_outline

Please note that for each of the aforementioned arguments, a from_column() call needs to ref-
erence a column that has data of the correct type (this is different for each argument). Addi-
tional columns for parameter values can be generated with the cols_add() function (if not al-
ready present). Columns that contain parameter data can also be hidden from final display with
cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is
applied so long as the arguments belong to this closed set.

Examples

Using a portion of the towny dataset, let’s create a gt table. We can use the fmt_url() function
on the website column to generate navigable links to websites. By default the links are underlined
and the color will be chosen for you (it’s dark cyan).

towny |>
dplyr::filter(csd_type == "city") |>

264 fmt_url

dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
gt() |>
tab_header(
title = md("The 10 Largest Municipalities in `towny`"),
subtitle = "Population values taken from the 2021 census."

) |>
fmt_integer() |>
fmt_url(columns = website) |>
cols_label(
name = "Name",
website = "Site",
population_2021 = "Population"

)

Let’s try something else. We can set a static text label for the link with the label argument (and
we’ll use the word "site" for this). The link underline is removable with show_underline =
FALSE. With this change, it seems sensible to merge the link to the "name" column and enclose the
link text in parentheses (the cols_merge() function handles all that).

towny |>
dplyr::filter(csd_type == "city") |>
dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
gt() |>
tab_header(
title = md("The 10 Largest Municipalities in `towny`"),
subtitle = "Population values taken from the 2021 census."

) |>
fmt_integer() |>
fmt_url(
columns = website,
label = "site",
show_underline = FALSE

) |>
cols_merge(
columns = c(name, website),
pattern = "{1} ({2})"

) |>
cols_label(
name = "Name",
population_2021 = "Population"

)

The fmt_url() function allows for the styling of links as ’buttons’. This is as easy as setting
as_button = TRUE. Doing that unlocks the ability to set a button_fill color. This color can auto-
matically selected by gt (this is the default) but here we’re using "steelblue". The label argument

fmt_url 265

also accepts a function! We can choose to adapt the label text from the URLs by eliminating any
leading "https://" or "www." parts.

towny |>
dplyr::filter(csd_type == "city") |>
dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
dplyr::mutate(ranking = dplyr::row_number()) |>
gt(rowname_col = "ranking") |>
tab_header(
title = md("The 10 Largest Municipalities in `towny`"),
subtitle = "Population values taken from the 2021 census."

) |>
fmt_integer() |>
fmt_url(
columns = website,
label = function(x) gsub("https://|www.", "", x),
as_button = TRUE,
button_fill = "steelblue",
button_width = px(150)

) |>
cols_move_to_end(columns = website) |>
cols_align(align = "center", columns = website) |>
cols_width(
ranking ~ px(40),
website ~ px(200)

) |>
tab_options(column_labels.hidden = TRUE) |>
tab_style(
style = cell_text(weight = "bold"),
locations = cells_stub()

) %>%
opt_vertical_padding(scale = 0.75)

It’s perhaps inevitable that you’ll come across missing values in your column of URLs. The
fmt_url() function will preserve input NA values, allowing you to handle them with sub_missing().
Here’s an example of that.

towny |>
dplyr::arrange(population_2021) |>
dplyr::select(name, website, population_2021) |>
dplyr::slice_head(n = 10) |>
gt() |>
tab_header(
title = md("The 10 Smallest Municipalities in `towny`"),
subtitle = "Population values taken from the 2021 census."

) |>

266 from_column

fmt_integer() |>
fmt_url(columns = website) |>
cols_label(
name = "Name",
website = "Site",
population_2021 = "Population"

) |>
sub_missing()

Function ID

3-19

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

from_column Reference a column of values for certain parameters

Description

It can be useful to obtain parameter values from a column in a gt for functions that operate on the
table body and stub cells. For example, you might want to indent row labels in the stub. You could
call tab_stub_indent() and indent different rows to various indentation levels. However, each
level of indentation applied necessitates a new call of that function. To make this better, we can
use indentation values available in a table column via the from_column() helper function. For the
tab_stub_indent() case, you’d invoke this helper at the indent argument and specify the column
that has the values.

Usage

from_column(column, na_value = NULL, fn = NULL)

from_column 267

Arguments

column Column name
scalar<character> // required
A single column name in quotation marks. Values will be extracted from this
column and provided to compatible arguments.

na_value Default replacement for NA values
scalar<character|numeric|logical> // default: NULL (optional)
A single value to replace any NA values in the column. Take care to provide
a value that is of the same type as the column values to avoid any undesirable
coercion.

fn Function to apply
function|formula // default: NULL (optional)
If a function is provided here, any values extracted from the table column (except
NA values) can be mutated.

Value

A list object of class gt_column.

Functions that allow the use of the from_column() helper

Only certain functions (and furthermore a subset of arguments within each) support the use of
from_column() for accessing varying parameter values. These functions are:

• tab_stub_indent()

• fmt_number()

• fmt_integer()

• fmt_scientific()

• fmt_engineering()

• fmt_percent()

• fmt_partsper()

• fmt_fraction()

• fmt_currency()

• fmt_roman()

• fmt_index()

• fmt_spelled_num()

• fmt_bytes()

• fmt_date()

• fmt_time()

• fmt_datetime()

• fmt_url()

• fmt_image()

268 from_column

• fmt_flag()

• fmt_markdown()

• fmt_passthrough()

Within help documents for each of these functions you’ll find the Compatibility of arguments with
the from_column() helper function section and sections like these describe which arguments sup-
port the use of from_column().

Examples

The from_column() function can be used in a variety of formatting functions so that values for
common options don’t have to be static, they can change in every row (so long as you have a
column of compatible option values). Here’s an example where we have a table of repeating numeric
values along with a column of currency codes. We can format the numbers to currencies with
fmt_currency() and use from_column() to reference the column of currency codes, giving us
values that are each formatted as having a different currency.

dplyr::tibble(
amount = rep(30.75, 6),
curr = c("USD", "EUR", "GBP", "CAD", "AUD", "JPY"),

) |>
gt() |>
fmt_currency(currency = from_column(column = "curr"))

Let’s summarize the gtcars dataset to get a set of rankings of car manufacturer by country of ori-
gin. The n column represents the number of cars a manufacturer has within this dataset and we can
use that column as a way to size the text. We do that in the tab_style() call; the from_column()
function is used within the cell_text() statement to fashion different font sizes from that n col-
umn. This is done in conjunction with the fn argument of from_column(), which helps to tweak
the values in n to get a useful range of font sizes.

gtcars |>
dplyr::select(mfr, ctry_origin) |>
dplyr::group_by(mfr, ctry_origin) |>
dplyr::count() |>
dplyr::ungroup() |>
dplyr::arrange(ctry_origin) |>
gt(groupname_col = "ctry_origin") |>
tab_style(
style = cell_text(
size = from_column(
column = "n",
fn = function(x) paste0(5 + (x * 3), "px")

)
),
locations = cells_body()

) |>
tab_style(

ggplot_image 269

style = cell_text(align = "center"),
locations = cells_row_groups()

) |>
cols_hide(columns = n) |>
tab_options(column_labels.hidden = TRUE) |>
opt_all_caps() |>
opt_vertical_padding(scale = 0.25) |>
cols_align(align = "center", columns = mfr)

Function ID

8-5

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), google_font(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

ggplot_image Helper function for adding a ggplot

Description

We can add a ggplot2 plot inside of a table with the help of the ggplot_image() function. The
function provides a convenient way to generate an HTML fragment with a ggplot object. Because
this function is currently HTML-based, it is only useful for HTML table output. To use this function
inside of data cells, it is recommended that the text_transform() function is used. With that
function, we can specify which data cells to target and then include a call to ggplot_image()
within the required user-defined function (for the fn argument). If we want to include a plot in
other places (e.g., in the header, within footnote text, etc.) we need to use ggplot_image() within
the html() helper function.

By itself, the function creates an HTML image tag with an image URI embedded within (a 100 dpi
PNG). We can easily experiment with any ggplot2 plot object, and using it within ggplot_image(plot_object = <plot object>
evaluates to:
<img src=<data URI> style=\"height:100px;\">

where a height of 100px is a default height chosen to work well within the heights of most table
rows. There is the option to modify the aspect ratio of the plot (the default aspect_ratio is 1.0)
and this is useful for elongating any given plot to fit better within the table construct.

270 ggplot_image

Usage

ggplot_image(plot_object, height = 100, aspect_ratio = 1)

Arguments

plot_object A ggplot plot object
obj:<ggplot> // required
A ggplot plot object.

height Height of image
scalar<numeric|integer> // default: 100
The absolute height of the output image in the table cell (in "px" units). By
default, this is set to "100px".

aspect_ratio The final aspect ratio of plot
scalar<numeric|integer> // default: 1.0
This is the plot’s final aspect ratio. Where the height of the plot is fixed using
the height argument, the aspect_ratio will either compress (aspect_ratio
< 1.0) or expand (aspect_ratio > 1.0) the plot horizontally. The default value
of 1.0 will neither compress nor expand the plot.

Value

A character object with an HTML fragment that can be placed inside of a cell.

Examples

Create a ggplot plot.

library(ggplot2)

plot_object <-
ggplot(
data = gtcars,
aes(x = hp, y = trq, size = msrp)

) +
geom_point(color = "blue") +
theme(legend.position = "none")

Create a tibble that contains two cells (where one is a placeholder for an image), then, create a gt
table. Use the text_transform() function to insert the plot using by calling ggplot_object()
within the user- defined function.

dplyr::tibble(
text = "Here is a ggplot:",
ggplot = NA

) |>
gt() |>
text_transform(

google_font 271

locations = cells_body(columns = ggplot),
fn = function(x) {
plot_object |>
ggplot_image(height = px(200))

}
)

Function ID

9-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other image addition functions: local_image(), test_image(), web_image()

google_font Helper function for specifying a font from the Google Fonts service

Description

The google_font() helper function can be used wherever a font name should be specified. There
are two instances where this helper can be used: the name argument in opt_table_font() (for
setting a table font) and in that of cell_text() (used with tab_style()). To get a helpful listing
of fonts that work well in tables, use the info_google_fonts() function.

Usage

google_font(name)

Arguments

name Google Font name
scalar<character> // required
The complete name of a font available in Google Fonts.

Value

An object of class font_css.

272 google_font

Examples

Use the exibble dataset to create a gt table of two columns and eight rows. We’ll replace miss-
ing values with em dashes using the sub_missing() function. For text in the time column, we
will use the font called "IBM Plex Mono" which is available in Google Fonts. This is defined
in the google_font() function call, itself part of a vector that includes fonts returned by the
default_fonts() function (those fonts will serve as fallbacks just in case the font supplied by
Google Fonts is not accessible). In terms of placement, all of this is given to the font argument of
the cell_text() helper function which is itself given to the style argument of tab_style().

exibble |>
dplyr::select(char, time) |>
gt() |>
sub_missing() |>
tab_style(
style = cell_text(
font = c(
google_font(name = "IBM Plex Mono"),
default_fonts()

)
),
locations = cells_body(columns = time)

)

We can use a subset of the sp500 dataset to create a small gt table. With fmt_currency(),
we can display a dollar sign for the first row of the monetary values. Then, we’ll set a larger
font size for the table and opt to use the "Merriweather" font by calling google_font() within
opt_table_font(). In cases where that font may not materialize, we include two font fallbacks:
"Cochin" and the catchall "Serif" group.

sp500 |>
dplyr::slice(1:10) |>
dplyr::select(-volume, -adj_close) |>
gt() |>
fmt_currency(
rows = 1,
currency = "USD",
use_seps = FALSE

) |>
tab_options(table.font.size = px(20)) |>
opt_table_font(
font = list(
google_font(name = "Merriweather"),
"Cochin", "Serif"

)
)

Function ID

8-30

grand_summary_rows 273

Function Introduced

v0.2.2 (August 5, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), gt_latex_dependencies(), html(), md(),
nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

grand_summary_rows Add grand summary rows using aggregation functions

Description

Add grand summary rows by using the table data and any suitable aggregation functions. With grand
summary rows, all of the available data in the gt table is incorporated (regardless of whether some
of the data are part of row groups). Multiple grand summary rows can be added via expressions
given to fns. You can selectively format the values in the resulting grand summary cells by use of
formatting expressions in fmt.

Usage

grand_summary_rows(
data,
columns = everything(),
fns = NULL,
fmt = NULL,
side = c("bottom", "top"),
missing_text = "---",
formatter = NULL,
...

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the summaries should be calculated. Can either be a
series of column names provided in c(), a vector of column indices, or a select

274 grand_summary_rows

helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

fns Aggregation Expressions
<expression|list of expressions>

Functions used for aggregations. This can include base functions like mean,
min, max, median, sd, or sum or any other user-defined aggregation function.
Multiple functions, each of which would generate a different row, are to be
supplied within a list(). We can specify the functions by use of function names
in quotes (e.g., "sum"), as bare functions (e.g., sum), or in formula form (e.g.,
minimum ~ min(.)) where the LHS could be used to supply the summary row
label and ID values. More information on this can be found in the Aggregation
expressions for fns section.

fmt Formatting expressions
<expression|list of expressions>

Formatting expressions in formula form. The RHS of ~ should contain a format-
ting call (e.g., ~ fmt_number(., decimals = 3, use_seps = FALSE). Op-
tionally, the LHS could contain a group-targeting expression (e.g., "group_a"
~ fmt_number(.)). More information on this can be found in the Formatting
expressions for fmt section.

side Side used for placement of grand summary rows
singl-kw:[bottom|top] // default: "bottom"
Should the grand summary rows be placed at the "bottom" (the default) or the
"top" of the table?

missing_text Replacement text for NA values
scalar<character> // default: "---"
The text to be used in place of NA values in summary cells with no data outputs.

formatter Deprecated Formatting function
<expression>

Deprecated, please use fmt instead. This was previously used as a way to input
a formatting function name, which could be any of the fmt_*() functions avail-
able in the package (e.g., fmt_number(), fmt_percent(), etc.), or a custom
function using fmt(). The options of a formatter can be accessed through

... Deprecated Formatting arguments
<Named arguments>

Deprecated (along with formatter) but otherwise used for argument values for
a formatting function supplied in formatter. For example, if using formatter
= fmt_number, options such as decimals = 1, use_seps = FALSE, and the like
can be used here.

Value

An object of class gt_tbl.

Using columns to target column data for aggregation

Targeting of column data for which aggregates should be generated is done through the columns
argument. We can declare column names in c() (with bare column names or names in quotes)

grand_summary_rows 275

or we can use tidyselect-style expressions. This can be as basic as supplying a select helper like
starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns are selected (with the everything() default). This default may be not
what’s needed unless all columns can undergo useful aggregation by expressions supplied in fns.

Aggregation expressions for fns

There are a number of ways to express how an aggregation should work for each summary row.
In addition to that, we have the ability to pass important information such as the summary row ID
value and its label (the former necessary for targeting within tab_style() or tab_footnote() and
the latter used for display in the rendered table). Here are a number of instructive examples for how
to supply such expressions.

Double-sided formula with everything supplied:
We can be explicit and provide a double-sided formula (in the form <LHS> ~ <RHS>) that expresses
everything about a summary row. That is, it has an aggregation expression (where . represents
the data in the focused column). Here’s an example:
list(id = "minimum", label = "min") ~ min(., na.rm = TRUE)

The left side (the list) contains named elements that identify the id and label for the summary
row. The right side has an expression for obtaining a minimum value (dropping NA values in the
calculation).
The list() can be replaced with c() but the advantage of a list is allowing the use of the md()
and html() helper functions. The above example can be written as:
list(id = "minimum", label = md("**Minimum**")) ~ min(., na.rm = TRUE)

and we can have that label value interpreted as Markdown text.

Function names in quotes:
With fns = "min" we get the equivalent of the fuller expression:
list(id = "min", label = "min") ~ min(., na.rm = TRUE)

For sake of convenience, common aggregation functions with the na.rm argument will be rewrit-
ten with the na.rm = TRUE option. These functions are: "min", "max", "mean", "median", "sd",
and "sum".
Should you need to specify multiple aggregation functions in this way (giving you multiple sum-
mary rows), use c() or list().

RHS formula expressions:
With fns = ~ min(.) or fns = list(~ min(.)), gt will use the function name as the id and
label. The expansion of this shorthand to full form looks like this:
list(id = "min", label = "min") ~ min(.)

The RHS expression is kept as written and the name portion is both the id and the label.

Named vector or list with RHS formula expression:
Using fns = c(minimum = ~ min(.)) or fns = list(minimum = ~ min(.)) expands to this:
list(id = "minimum", label = "minimum") ~ min(.)

276 grand_summary_rows

Unnamed vector or list with RHS formula expression:
With fns = c("minimum", "min") ~ min(.) or fns = list("minimum", "min") ~ min(.) the LHS
contains the label and id values and, importantly, the order is label first and id second. This
can be rewritten as:
list(id = "min", label = "minimum") ~ min(.)

If the vector or list is partially named, gt has enough to go on to disambiguate the unnamed
element. So with fns = c("minimum", label = "min") ~ min(.), "min" is indeed the label
and "minimum" is taken as the id value.

A fully named list with three specific elements:
We can avoid using a formula if we are satisfied with the default options of a function (except some
of those functions with the na.rm options, see above). Instead, a list with the named elements id,
label, and fn could be used. It can look like this:
fns = list(id = "mean_id", label = "average", fn = "mean")

which translates to
list(id = "mean_id", label = "average") ~ mean(., na.rm = TRUE)

Formatting expressions for fmt

Given that we are generating new data in a table, we might also want to take the opportunity to
format those new values right away. We can do this in the fmt argument, either with a single
expression or a number of them in a list.

We can supply a one-sided (RHS only) expression to fmt, and, several can be provided in a list.
The expression uses a formatting function (e.g., fmt_number(), fmt_currency(), etc.) and it must
contain an initial . that stands for the data object. If performing numeric formatting on all columns
in the new grand summary rows, it might look something like this:

fmt = ~ fmt_number(., decimals = 1, use_seps = FALSE)

We can use the columns and rows arguments that are available in every formatting function. This
allows us to format only a subset of columns or rows. Summary rows can be targeted by using their
ID values and these are settable within expressions given to fns (see the Aggregation expressions
for fns section for details on this). Here’s an example with hypothetical column and row names:

fmt = ~ fmt_number(., columns = num, rows = "mean", decimals = 3)

Extraction of summary rows

Should we need to obtain the summary data for external purposes, the extract_summary() function
can be used with a gt_tbl object where summary rows were added via grand_summary_rows() or
summary_rows().

Examples

Use a modified version of the sp500 dataset to create a gt table with row groups and row labels.
Create the grand summary rows min, max, and avg for the table with the grand_summary_rows()
function.

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <= "2015-01-16") |>

grand_summary_rows 277

dplyr::arrange(date) |>
dplyr::mutate(week = paste0("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>
gt(
rowname_col = "date",
groupname_col = "week"

) |>
grand_summary_rows(
columns = c(open, high, low, close),
fns = list(
min ~ min(.),
max ~ max(.),
avg ~ mean(.)

),
fmt = ~ fmt_number(., use_seps = FALSE)

)

Let’s take the countrypops dataset and process that a bit before handing it off to gt. We can
create a single grand summary row with totals that appears at the top of the table body (with side
= "top"). We can define the aggregation with a list that contains parameters for the grand summary
row label ("TOTALS"), the ID value of that row ("totals"), and the aggregation function (expressed
as "sum", which gt recognizes as the sum() function). Finally, we’ll add a background fill to the
grand summary row with tab_style().

countrypops |>
dplyr::filter(country_code_2 %in% c("BE", "NL", "LU")) |>
dplyr::filter(year %% 10 == 0) |>
dplyr::select(country_name, year, population) |>
tidyr::pivot_wider(names_from = year, values_from = population) |>
gt(rowname_col = "country_name") |>
tab_header(title = "Populations of the Benelux Countries") |>
tab_spanner(columns = everything(), label = "Year") |>
fmt_integer() |>
grand_summary_rows(
fns = list(label = "TOTALS", id = "totals", fn = "sum"),
fmt = ~ fmt_integer(.),
side = "top"

) |>
tab_style(
locations = cells_grand_summary(),
style = cell_fill(color = "lightblue" |> adjust_luminance(steps = +1))

)

Function ID

6-2

Function Introduced

v0.2.0.5 (March 31, 2020)

278 grp_add

See Also

Other row addition/modification functions: row_group_order(), rows_add(), summary_rows()

grp_add Add one or more gt tables to a gt_group container object

Description

Should you have a gt_group object, created through use of the gt_group() function, you might
want to add more gt tables to that container. While it’s common to generate a gt_group object with
a collection of gt_tbl objects, one can also create an ’empty’ gt_group object. Whatever your
workflow might be, the grp_add() function makes it possible to flexibly add one or more new gt
tables, returning a refreshed gt_group object.

Usage

grp_add(.data, ..., .list = list2(...), .before = NULL, .after = NULL)

Arguments

.data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

... One or more gt table objects
obj:<gt_tbl> // required (or, use ...)
One or more gt table (gt_tbl) objects, typically generated via the gt() function.

.list Alternative to ...
<list of multiple expressions> // (or, use ...)
Allows for the use of a list as an input alternative to

.before, .after

Table used as anchor
scalar<numeric|integer> // default: NULL (optional)
A single index for either .before or .after, specifying where the supplied
gt_tbl objects should be placed amongst the existing collection of gt tables.
If nothing is provided for either argument the incoming gt_tbl objects will be
appended.

Value

An object of class gt_group.

Function ID

14-4

grp_clone 279

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_clone(), grp_options(), grp_pull(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_clone Clone one or more gt tables in a gt_group container object

Description

Should you have a gt_group object, created through use of the gt_group() function, you may in
certain circumstances want to create replicas of gt_tbl objects in that collection. This can be done
with the grp_clone() function and the placement of the cloned gt tables can be controlled with
either the before or after arguments.

Usage

grp_clone(data, which = NULL, before = NULL, after = NULL)

Arguments

data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

which The tables to clone
vector<numeric|integer> // default: NULL (optional)
A vector of index values denoting which gt tables should be cloned inside of the
gt_group object.

before, after Table used as anchor
scalar<numeric|integer> // default: NULL (optional)
A single index for either before or after, specifies where the cloned gt_tbl
objects should be placed amongst the existing collection of gt tables. If nothing
is provided for either argument, the incoming gt_tbl objects will be appended.

Value

An object of class gt_group.

Function ID

14-5

280 grp_options

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_options(), grp_pull(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_options Modify table options for all tables within a gt_group object

Description

Modify the options for a collection of gt tables in a gt_group object. These options are named by
the components, the subcomponents, and the element that can adjusted.

Usage

grp_options(
data,
table.width = NULL,
table.layout = NULL,
table.align = NULL,
table.margin.left = NULL,
table.margin.right = NULL,
table.background.color = NULL,
table.additional_css = NULL,
table.font.names = NULL,
table.font.size = NULL,
table.font.weight = NULL,
table.font.style = NULL,
table.font.color = NULL,
table.font.color.light = NULL,
table.border.top.style = NULL,
table.border.top.width = NULL,
table.border.top.color = NULL,
table.border.right.style = NULL,
table.border.right.width = NULL,
table.border.right.color = NULL,
table.border.bottom.style = NULL,
table.border.bottom.width = NULL,
table.border.bottom.color = NULL,
table.border.left.style = NULL,
table.border.left.width = NULL,
table.border.left.color = NULL,
heading.background.color = NULL,
heading.align = NULL,

grp_options 281

heading.title.font.size = NULL,
heading.title.font.weight = NULL,
heading.subtitle.font.size = NULL,
heading.subtitle.font.weight = NULL,
heading.padding = NULL,
heading.padding.horizontal = NULL,
heading.border.bottom.style = NULL,
heading.border.bottom.width = NULL,
heading.border.bottom.color = NULL,
heading.border.lr.style = NULL,
heading.border.lr.width = NULL,
heading.border.lr.color = NULL,
column_labels.background.color = NULL,
column_labels.font.size = NULL,
column_labels.font.weight = NULL,
column_labels.text_transform = NULL,
column_labels.padding = NULL,
column_labels.padding.horizontal = NULL,
column_labels.vlines.style = NULL,
column_labels.vlines.width = NULL,
column_labels.vlines.color = NULL,
column_labels.border.top.style = NULL,
column_labels.border.top.width = NULL,
column_labels.border.top.color = NULL,
column_labels.border.bottom.style = NULL,
column_labels.border.bottom.width = NULL,
column_labels.border.bottom.color = NULL,
column_labels.border.lr.style = NULL,
column_labels.border.lr.width = NULL,
column_labels.border.lr.color = NULL,
column_labels.hidden = NULL,
column_labels.units_pattern = NULL,
row_group.background.color = NULL,
row_group.font.size = NULL,
row_group.font.weight = NULL,
row_group.text_transform = NULL,
row_group.padding = NULL,
row_group.padding.horizontal = NULL,
row_group.border.top.style = NULL,
row_group.border.top.width = NULL,
row_group.border.top.color = NULL,
row_group.border.bottom.style = NULL,
row_group.border.bottom.width = NULL,
row_group.border.bottom.color = NULL,
row_group.border.left.style = NULL,
row_group.border.left.width = NULL,
row_group.border.left.color = NULL,
row_group.border.right.style = NULL,

282 grp_options

row_group.border.right.width = NULL,
row_group.border.right.color = NULL,
row_group.default_label = NULL,
row_group.as_column = NULL,
table_body.hlines.style = NULL,
table_body.hlines.width = NULL,
table_body.hlines.color = NULL,
table_body.vlines.style = NULL,
table_body.vlines.width = NULL,
table_body.vlines.color = NULL,
table_body.border.top.style = NULL,
table_body.border.top.width = NULL,
table_body.border.top.color = NULL,
table_body.border.bottom.style = NULL,
table_body.border.bottom.width = NULL,
table_body.border.bottom.color = NULL,
stub.background.color = NULL,
stub.font.size = NULL,
stub.font.weight = NULL,
stub.text_transform = NULL,
stub.border.style = NULL,
stub.border.width = NULL,
stub.border.color = NULL,
stub.indent_length = NULL,
stub_row_group.font.size = NULL,
stub_row_group.font.weight = NULL,
stub_row_group.text_transform = NULL,
stub_row_group.border.style = NULL,
stub_row_group.border.width = NULL,
stub_row_group.border.color = NULL,
data_row.padding = NULL,
data_row.padding.horizontal = NULL,
summary_row.background.color = NULL,
summary_row.text_transform = NULL,
summary_row.padding = NULL,
summary_row.padding.horizontal = NULL,
summary_row.border.style = NULL,
summary_row.border.width = NULL,
summary_row.border.color = NULL,
grand_summary_row.background.color = NULL,
grand_summary_row.text_transform = NULL,
grand_summary_row.padding = NULL,
grand_summary_row.padding.horizontal = NULL,
grand_summary_row.border.style = NULL,
grand_summary_row.border.width = NULL,
grand_summary_row.border.color = NULL,
footnotes.background.color = NULL,
footnotes.font.size = NULL,

grp_options 283

footnotes.padding = NULL,
footnotes.padding.horizontal = NULL,
footnotes.border.bottom.style = NULL,
footnotes.border.bottom.width = NULL,
footnotes.border.bottom.color = NULL,
footnotes.border.lr.style = NULL,
footnotes.border.lr.width = NULL,
footnotes.border.lr.color = NULL,
footnotes.marks = NULL,
footnotes.spec_ref = NULL,
footnotes.spec_ftr = NULL,
footnotes.multiline = NULL,
footnotes.sep = NULL,
source_notes.background.color = NULL,
source_notes.font.size = NULL,
source_notes.padding = NULL,
source_notes.padding.horizontal = NULL,
source_notes.border.bottom.style = NULL,
source_notes.border.bottom.width = NULL,
source_notes.border.bottom.color = NULL,
source_notes.border.lr.style = NULL,
source_notes.border.lr.width = NULL,
source_notes.border.lr.color = NULL,
source_notes.multiline = NULL,
source_notes.sep = NULL,
row.striping.background_color = NULL,
row.striping.include_stub = NULL,
row.striping.include_table_body = NULL,
container.width = NULL,
container.height = NULL,
container.padding.x = NULL,
container.padding.y = NULL,
container.overflow.x = NULL,
container.overflow.y = NULL,
ihtml.active = NULL,
ihtml.use_pagination = NULL,
ihtml.use_pagination_info = NULL,
ihtml.use_sorting = NULL,
ihtml.use_search = NULL,
ihtml.use_filters = NULL,
ihtml.use_resizers = NULL,
ihtml.use_highlight = NULL,
ihtml.use_compact_mode = NULL,
ihtml.use_text_wrapping = NULL,
ihtml.use_page_size_select = NULL,
ihtml.page_size_default = NULL,
ihtml.page_size_values = NULL,
ihtml.pagination_type = NULL,

284 grp_options

page.orientation = NULL,
page.numbering = NULL,
page.header.use_tbl_headings = NULL,
page.footer.use_tbl_notes = NULL,
page.width = NULL,
page.height = NULL,
page.margin.left = NULL,
page.margin.right = NULL,
page.margin.top = NULL,
page.margin.bottom = NULL,
page.header.height = NULL,
page.footer.height = NULL

)

Arguments

data The gt table group object
obj:<gt_group> // required
This is gt_group container object. It is typically generated through use of the
gt_group() function along with one or more gt_tbl objects, or, made by split-
ting a gt table with gt_split().

table.width Table width
The table width can be specified as a single-length character with units of pixels
or as a percentage. If provided as a single-length numeric vector, it is assumed
that the value is given in units of pixels. The px() and pct() helper functions
can also be used to pass in numeric values and obtain values as pixel or percent
units.

table.layout The table-layout property
This is the value for the table-layout CSS style in the HTML output context.
By default, this is "fixed" but another valid option is "auto".

table.align Horizontal alignment of table
The table.align option lets us set the horizontal alignment of the table in its
container. By default, this is "center". Other options are "left" and "right".
This will automatically set table.margin.left and table.margin.right to
the appropriate values.

table.margin.left, table.margin.right

Left and right table margins
The size of the margins on the left and right of the table within the container can
be set with table.margin.left and table.margin.right. Can be specified
as a single-length character with units of pixels or as a percentage. If provided
as a single-length numeric vector, it is assumed that the value is given in units of
pixels. The px() and pct() helper functions can also be used to pass in numeric
values and obtain values as pixel or percent units. Using table.margin.left
or table.margin.right will overwrite any values set by table.align.

table.background.color, heading.background.color, column_labels.background.color, row_group.background.color, stub.background.color, summary_row.background.color, grand_summary_row.background.color, footnotes.background.color, source_notes.background.color

Background colors

grp_options 285

These options govern background colors for the parent element table and the
following child elements: heading, column_labels, row_group, stub, summary_row,
grand_summary_row, footnotes, and source_notes. A color name or a hex-
adecimal color code should be provided.

table.additional_css

Additional CSS
The table.additional_css option can be used to supply an additional block
of CSS rules to be applied after the automatically generated table CSS.

table.font.names

Default table fonts
The names of the fonts used for the table can be supplied through table.font.names.
This is a vector of several font names. If the first font isn’t available, then the
next font is tried (and so on).

table.font.size, heading.title.font.size, heading.subtitle.font.size, column_labels.font.size, row_group.font.size, stub.font.size, footnotes.font.size, source_notes.font.size

Table font sizes
The font sizes for the parent text element table and the following child ele-
ments: heading.title, heading.subtitle, column_labels, row_group, footnotes,
and source_notes. Can be specified as a single-length character vector with
units of pixels (e.g., 12px) or as a percentage (e.g., 80\%). If provided as a
single-length numeric vector, it is assumed that the value is given in units of
pixels. The px() and pct() helper functions can also be used to pass in nu-
meric values and obtain values as pixel or percentage units.

table.font.weight, heading.title.font.weight, heading.subtitle.font.weight, column_labels.font.weight, row_group.font.weight, stub.font.weight

Table font weights
The font weights of the table, heading.title, heading.subtitle, column_labels,
row_group, and stub text elements. Can be a text-based keyword such as
"normal", "bold", "lighter", "bolder", or, a numeric value between 1 and
1000, inclusive. Note that only variable fonts may support the numeric mapping
of weight.

table.font.style

Default table font style
This is the default font style for the table. Can be one of either "normal",
"italic", or "oblique".

table.font.color, table.font.color.light

Default dark and light text for the table
These options define text colors used throughout the table. There are two vari-
ants: table.font.color is for text overlaid on lighter background colors, and
table.font.color.light is automatically used when text needs to be overlaid
on darker background colors. A color name or a hexadecimal color code should
be provided.

table.border.top.style, table.border.top.width, table.border.top.color, table.border.right.style, table.border.right.width, table.border.right.color, table.border.bottom.style, table.border.bottom.width, table.border.bottom.color, table.border.left.style, table.border.left.width, table.border.left.color

Top border properties
The style, width, and color properties of the table’s absolute top and absolute
bottom borders.

heading.align Horizontal alignment in the table header
Controls the horizontal alignment of the heading title and subtitle. We can either
use "center", "left", or "right".

286 grp_options

heading.padding, column_labels.padding, data_row.padding, row_group.padding, summary_row.padding, grand_summary_row.padding, footnotes.padding, source_notes.padding

Vertical padding throughout the table
The amount of vertical padding to incorporate in the heading (title and subtitle),
the column_labels (this includes the column spanners), the row group labels
(row_group.padding), in the body/stub rows (data_row.padding), in sum-
mary rows (summary_row.padding or grand_summary_row.padding), or in
the footnotes and source notes (footnotes.padding and source_notes.padding).

heading.padding.horizontal, column_labels.padding.horizontal, data_row.padding.horizontal, row_group.padding.horizontal, summary_row.padding.horizontal, grand_summary_row.padding.horizontal, footnotes.padding.horizontal, source_notes.padding.horizontal

Horizontal padding throughout the table
The amount of horizontal padding to incorporate in the heading (title and sub-
title), the column_labels (this includes the column spanners), the row group la-
bels (row_group.padding.horizontal), in the body/stub rows (data_row.padding),
in summary rows (summary_row.padding.horizontal or grand_summary_row.padding.horizontal),
or in the footnotes and source notes (footnotes.padding.horizontal and
source_notes.padding.horizontal).

heading.border.bottom.style, heading.border.bottom.width, heading.border.bottom.color

Properties of the header’s bottom border
The style, width, and color properties of the header’s bottom border. This border
shares space with that of the column_labels location. If the width of this
border is larger, then it will be the visible border.

heading.border.lr.style, heading.border.lr.width, heading.border.lr.color

Properties of the header’s left and right borders
The style, width, and color properties for the left and right borders of the heading
location.

column_labels.text_transform, row_group.text_transform, stub.text_transform, summary_row.text_transform, grand_summary_row.text_transform

Text transforms throughout the table
Options to apply text transformations to the column_labels, row_group, stub,
summary_row, and grand_summary_row text elements. Either of the "uppercase",
"lowercase", or "capitalize" keywords can be used.

column_labels.vlines.style, column_labels.vlines.width, column_labels.vlines.color

Properties of all vertical lines by the column labels
The style, width, and color properties for all vertical lines (’vlines’) of the the
column_labels.

column_labels.border.top.style, column_labels.border.top.width, column_labels.border.top.color

Properties of the border above the column labels
The style, width, and color properties for the top border of the column_labels
location. This border shares space with that of the heading location. If the
width of this border is larger, then it will be the visible border.

column_labels.border.bottom.style, column_labels.border.bottom.width, column_labels.border.bottom.color

Properties of the border below the column labels
The style, width, and color properties for the bottom border of the column_labels
location.

column_labels.border.lr.style, column_labels.border.lr.width, column_labels.border.lr.color

Properties of the left and right borders next to the column labels
The style, width, and color properties for the left and right borders of the column_labels
location.

grp_options 287

column_labels.hidden

Hiding all column labels
An option to hide the column labels. If providing TRUE then the entire column_labels
location won’t be seen and the table header (if present) will collapse downward.

column_labels.units_pattern

Pattern to combine column labels and units
The default pattern for combining column labels with any defined units for col-
umn labels. The pattern is initialized as "{1}, {2}", where "{1}" refers to the
column label text and "{2}" is the text related to the associated units. When
using cols_units(), there is the opportunity to provide a specific pattern that
overrides the units pattern unit. Further to this, if specifying units directly in
cols_label() (through the units syntax surrounded by "{{"/"}}") there is no
need for a units pattern and any value here will be disregarded.

row_group.border.top.style, row_group.border.top.width, row_group.border.top.color, row_group.border.bottom.style, row_group.border.bottom.width, row_group.border.bottom.color, row_group.border.left.style, row_group.border.left.width, row_group.border.left.color, row_group.border.right.style, row_group.border.right.width, row_group.border.right.color

Border properties associated with the row_group location
The style, width, and color properties for all top, bottom, left, and right borders
of the row_group location.

row_group.default_label

The default row group label
An option to set a default row group label for any rows not formally placed in
a row group named by group in any call of tab_row_group(). If this is set as
NA_character_ and there are rows that haven’t been placed into a row group
(where one or more row groups already exist), those rows will be automatically
placed into a row group without a label.

row_group.as_column

Structure row groups with a column
How should row groups be structured? By default, they are separate rows that
lie above the each of the groups. Setting this to TRUE will structure row group
labels as a separate column in the table stub.

table_body.hlines.style, table_body.hlines.width, table_body.hlines.color, table_body.vlines.style, table_body.vlines.width, table_body.vlines.color

Properties of all horizontal and vertical lines in the table body
The style, width, and color properties for all horizontal lines (’hlines’) and ver-
tical lines (’vlines’) in the table_body.

table_body.border.top.style, table_body.border.top.width, table_body.border.top.color, table_body.border.bottom.style, table_body.border.bottom.width, table_body.border.bottom.color

Properties of top and bottom borders in the table body
The style, width, and color properties for all top and bottom borders of the
table_body location.

stub.border.style, stub.border.width, stub.border.color

Properties of the vertical border of the table stub
The style, width, and color properties for the vertical border of the table stub.

stub.indent_length

Width of each indentation
The width of each indentation level for row labels in the stub. The indentation
can be set by using tab_stub_indent(). By default this is "5px".

stub_row_group.font.size, stub_row_group.font.weight, stub_row_group.text_transform, stub_row_group.border.style, stub_row_group.border.width, stub_row_group.border.color

Properties of the row group column in the table stub

288 grp_options

Options for the row group column in the table stub (made possible when using
row_group.as_column = TRUE). The defaults for these options mirror that of the
stub.* variants (except for stub_row_group.border.width, which is "1px"
instead of "2px").

summary_row.border.style, summary_row.border.width, summary_row.border.color

Properties of horizontal borders belonging to summary rows
The style, width, and color properties for all horizontal borders of the summary_row
location.

grand_summary_row.border.style, grand_summary_row.border.width, grand_summary_row.border.color

Properties of horizontal borders belonging to grand summary rows
The style, width, and color properties for the top borders of the grand_summary_row
location.

footnotes.border.bottom.style, footnotes.border.bottom.width, footnotes.border.bottom.color

Properties of the bottom border belonging to the footnotes
The style, width, and color properties for the bottom border of the footnotes
location.

footnotes.border.lr.style, footnotes.border.lr.width, footnotes.border.lr.color

Properties of left and right borders belonging to the footnotes
The style, width, and color properties for the left and right borders of the footnotes
location.

footnotes.marks

Sequence of footnote marks
The set of sequential marks used to reference and identify each of the footnotes
(same input as the opt_footnote_marks() function). We can supply a vector
that represents the series of footnote marks. This vector is recycled when its
usage goes beyond the length of the set. At each cycle, the marks are simply
combined (e.g., * -> ** -> ***). The option exists for providing keywords for
certain types of footnote marks. The keyword "numbers" (the default, indicating
that we want to use numeric marks). We can use lowercase "letters" or up-
percase "LETTERS". There is the option for using a traditional symbol set where
"standard" provides four symbols, and, "extended" adds two more symbols,
making six.

footnotes.spec_ref, footnotes.spec_ftr

Specifications for formatting of footnote marks
Optional specifications for formatting of footnote references (footnotes.spec_ref)
and their associated marks the footer section (footnotes.spec_ftr) (same in-
put as the opt_footnote_spec() function). This is a string containing speci-
fication control characters. The default is the spec string "^i", which is super-
script text set in italics. Other control characters that can be used are: (1) "b" for
bold text, and (2) "(" / ")" for the enclosure of footnote marks in parentheses.

footnotes.multiline, source_notes.multiline

Typesetting of multiple footnotes and source notes
An option to either put footnotes and source notes in separate lines (the default,
or TRUE) or render them as a continuous line of text with footnotes.sep pro-
viding the separator (by default " ") between notes.

footnotes.sep, source_notes.sep

Separator characters between adjacent footnotes and source notes

grp_options 289

The separating characters between adjacent footnotes and source notes in their
respective footer sections when rendered as a continuous line of text (when
footnotes.multiline == FALSE). The default value is a single space character
(" ").

source_notes.border.bottom.style, source_notes.border.bottom.width, source_notes.border.bottom.color

Properties of the bottom border belonging to the source notes
The style, width, and color properties for the bottom border of the source_notes
location.

source_notes.border.lr.style, source_notes.border.lr.width, source_notes.border.lr.color

Properties of left and right borders belonging to the source notes
The style, width, and color properties for the left and right borders of the source_notes
location.

row.striping.background_color

Background color for row stripes
The background color for striped table body rows. A color name or a hexadeci-
mal color code should be provided.

row.striping.include_stub

Inclusion of the table stub for row stripes
An option for whether to include the stub when striping rows.

row.striping.include_table_body

Inclusion of the table body for row stripes
An option for whether to include the table body when striping rows.

container.width, container.height, container.padding.x, container.padding.y

Table container dimensions and padding
The width and height of the table’s container, and, the vertical and horizontal
padding of the table’s container. The container width and height can be specified
with units of pixels or as a percentage. The padding is to be specified as a length
with units of pixels. If provided as a numeric value, it is assumed that the value
is given in units of pixels. The px() and pct() helper functions can also be used
to pass in numeric values and obtain values as pixel or percent units.

container.overflow.x, container.overflow.y

Table container overflow
Options to enable scrolling in the horizontal and vertical directions when the
table content overflows the container dimensions. Using TRUE (the default for
both) means that horizontal or vertical scrolling is enabled to view the entire
table in those directions. With FALSE, the table may be clipped if the table width
or height exceeds the container.width or container.height.

ihtml.active Display interactive HTML table
The option for displaying an interactive version of an HTML table (rather than
an otherwise ’static’ table). This enables the use of controls for pagination,
global search, filtering, and sorting. The individual features are controlled by the
other table.* options. By default, the pagination (ihtml.use_pagination)
and sorting (ihtml.use_sorting) features are enabled. The ihtml.active
option, however, is FALSE by default.

ihtml.use_pagination, ihtml.use_pagination_info

Use pagination

290 grp_options

For interactive HTML output, the option for using pagination controls (below
the table body) can be controlled with ihtml.use_pagination. By default, this
is TRUE and it will allow the use to page through table content. The informational
display text regarding the current page can be set with ihtml.use_pagination_info
(which is TRUE by default).

ihtml.use_sorting

Provide column sorting controls
For interactive HTML output, the option to provide controls for sorting column
values. By default, this is TRUE.

ihtml.use_search

Provide a global search field
For interactive HTML output, an option that places a search field for globally
filtering rows to the requested content. By default, this is FALSE.

ihtml.use_filters

Display filtering fields
For interactive HTML output, this places search fields below each column header
and allows for filtering by column. By default, this is FALSE.

ihtml.use_resizers

Allow column resizing
For interactive HTML output, this allows for interactive resizing of columns. By
default, this is FALSE.

ihtml.use_highlight

Enable row highlighting on hover
For interactive HTML output, this highlights individual rows upon hover. By
default, this is FALSE.

ihtml.use_compact_mode

Use compact mode
For interactive HTML output, an option to reduce vertical padding and thus
make the table consume less vertical space. By default, this is FALSE.

ihtml.use_text_wrapping

Use text wrapping
For interactive HTML output, an option to control text wrapping. By default
(TRUE), text will be wrapped to multiple lines; if FALSE, text will be truncated to
a single line.

ihtml.use_page_size_select, ihtml.page_size_default, ihtml.page_size_values

Change page size properties
For interactive HTML output, ihtml.use_page_size_select provides the op-
tion to display a dropdown menu for the number of rows to show per page of
data. By default, this is the vector c(10, 25, 50, 100) which corresponds to
options for 10, 25, 50, and 100 rows of data per page. To modify these page-size
options, provide a numeric vector to ihtml.page_size_values. The default
page size (initially set as 10) can be modified with ihtml.page_size_default
and this works whether or not ihtml.use_page_size_select is set to TRUE.

ihtml.pagination_type

Change pagination mode

grp_options 291

For interactive HTML output and when using pagination, one of three options
for presentation pagination controls. The default is "numbers", where a series
of page-number buttons is presented along with ’previous’ and ’next’ buttons.
The "jump" option provides an input field with a stepper for the page number.
With "simple", only the ’previous’ and ’next’ buttons are displayed.

page.orientation

Set RTF page orientation
For RTF output, this provides an two options for page orientation: "portrait"
(the default) and "landscape".

page.numbering Enable RTF page numbering
Within RTF output, should page numbering be displayed? By default, this is set
to FALSE but if TRUE then page numbering text will be added to the document
header.

page.header.use_tbl_headings

Place table headings in RTF page header
If TRUE then RTF output tables will migrate all table headings (including the
table title and all column labels) to the page header. This page header content
will repeat across pages. By default, this is FALSE.

page.footer.use_tbl_notes

Place table footer in RTF page footer
If TRUE then RTF output tables will migrate all table footer content (this includes
footnotes and source notes) to the page footer. This page footer content will
repeat across pages. By default, this is FALSE.

page.width, page.height

Set RTF page dimensions
The page width and height in the standard portrait orientation. This is for RTF
table output and the default values (in inches) are 8.5in and 11.0in.

page.margin.left, page.margin.right, page.margin.top, page.margin.bottom

Set RTF page margins
For RTF table output, these options correspond to the left, right, top, and bottom
page margins. The default values for each of these is 1.0in.

page.header.height, page.footer.height

Set RTF page header and footer distances
The heights of the page header and footer for RTF table outputs. Default values
for both are 0.5in.

Value

An object of class gt_group.

Function ID

14-8

Function Introduced

v0.9.0 (Mar 31, 2023)

292 grp_pull

See Also

Other table group functions: grp_add(), grp_clone(), grp_pull(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_pull Pull out a gt table from a gt_group container object

Description

Should you have a gt_group object, created through use of the gt_group() function, you may
have a need to extract a gt table from that container. The grp_pull() function makes this possible,
returning a gt_tbl object. The only thing you need to provide is the index value for the gt table
within the gt_group object.

Usage

grp_pull(data, which)

Arguments

data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

which The table to pull from the group
scalar<numeric|integer> // required
A single index value denoting which gt_tbl table should be obtained from the
gt_group object.

Value

An object of class gt_tbl.

Function ID

14-3

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_clone(), grp_options(), grp_replace(), grp_rm(),
gt_group(), gt_split()

grp_replace 293

grp_replace Replace one or more gt tables in a gt_group container object

Description

The gt_group() function can be used to create a container for multiple gt tables. In some circum-
stances, you might want to replace a specific gt_tbl object (or multiple) with a different one. This
can be done with the grp_replace() function. The important thing is that the number of gt tables
provided must equal the number of indices for tables present in the gt_group object.

Usage

grp_replace(.data, ..., .list = list2(...), .which)

Arguments

.data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

... One or more gt table objects
obj:<gt_tbl> // required (or, use ...)
One or more gt table (gt_tbl) objects, typically generated via the gt() function.

.list Alternative to ...
<list of multiple expressions> // (or, use ...)
Allows for the use of a list as an input alternative to

.which The tables to replace
vector<numeric|integer> // default: NULL (optional)
A vector of index values denoting which gt tables should be replaced inside of
the gt_group object.

Value

An object of class gt_group.

Function ID

14-6

Function Introduced

v0.9.0 (Mar 31, 2023)

294 grp_rm

See Also

Other table group functions: grp_add(), grp_clone(), grp_options(), grp_pull(), grp_rm(),
gt_group(), gt_split()

grp_rm Remove one or more gt tables from a gt_group container object

Description

A gt_group object, created through use of the gt_group() function, can hold a multiple of gt
tables. However, you might want to delete one or more gt_tbl objects table from that container.
With grp_rm(), this is possible and safe to perform. What’s returned is a gt_group object with
the specified gt_tbl objects gone. The only thing you need to provide is the index value for the gt
table within the gt_group object.

Usage

grp_rm(data, which)

Arguments

data The gt table group object
obj:<gt_group> // required
This is a gt_group container object. It is typically generated through use of
the gt_group() function along with one or more gt_tbl objects, or, made by
splitting a gt table with gt_split().

which The table to remove from the group
scalar<numeric|integer> // required
A single index value denoting which gt_tbl table should be removed from the
gt_group object.

Value

An object of class gt_group.

Function ID

14-7

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_clone(), grp_options(), grp_pull(), grp_replace(),
gt_group(), gt_split()

gt 295

gt Create a gt table object

Description

The gt() function creates a gt table object when provided with table data. Using this function is
the first step in a typical gt workflow. Once we have the gt table object, we can perform styling
transformations before rendering to a display table of various formats.

Usage

gt(
data,
rowname_col = "rowname",
groupname_col = dplyr::group_vars(data),
process_md = FALSE,
caption = NULL,
rownames_to_stub = FALSE,
row_group_as_column = FALSE,
auto_align = TRUE,
id = NULL,
locale = NULL,
row_group.sep = getOption("gt.row_group.sep", " - ")

)

Arguments

data Input data table
obj:<data.frame>|obj:<tbl_df> // required
A data.frame object or a tibble (tbl_df).

rowname_col Column for row names/labels from data
scalar<character> // default: NULL (optional)
The column name in the input data table to use as row labels to be placed in
the table stub. If the rownames_to_stub option is TRUE then any column name
provided to rowname_col will be ignored.

groupname_col Column for group names/labels from data
scalar<character> // default: NULL (optional)
The column name in the input data table to use as group labels for generation
of row groups. If the input data table has the grouped_df class (through use
of the dplyr::group_by() function or associated group_by*() functions) then
any input here is ignored.

process_md Process Markdown in rowname_col and groupname_col
scalar<logical> // default: FALSE
Should the contents of the rowname_col and groupname_col be interpreted as
Markdown? By default this won’t happen.

296 gt

caption Table caption text
scalar<character> // default: NULL (optional)
An optional table caption to use for cross-referencing in R Markdown, Quarto,
or bookdown.

rownames_to_stub

Use data frame row labels in the stub
scalar<logical> // default: FALSE
An option to take rownames from the input data table (should they be available)
as row labels in the display table stub.

row_group_as_column

Mode for displaying row group labels in the stub
scalar<logical> // default: FALSE
An option that alters the display of row group labels. By default this is FALSE
and row group labels will appear in dedicated rows above their respective groups
of rows. If TRUE row group labels will occupy a secondary column in the table
stub.

auto_align Automatic alignment of column values and labels
scalar<logical> // default: TRUE
Optionally have column data be aligned depending on the content contained
in each column of the input data. Internally, this calls cols_align(align =
"auto") for all columns.

id The table ID
scalar<character> // default: NULL (optional)
By default (with NULL) this will be a random, ten-letter ID as generated by using
the random_id() function. A custom table ID can be used be providing a single-
length character vector.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be set as the default locale for all functions
that take a locale argument. Examples include "en" for English (United States)
and "fr" for French (France). We can use the info_locales() function as a
useful reference for all of the locales that are supported.

row_group.sep Separator text for multiple row group labels
scalar<character> // default: getOption("gt.row_group.sep", " - ")

The separator to use between consecutive group names (a possibility when pro-
viding data as a grouped_df with multiple groups) in the displayed row group
label.

Details

There are a few data ingest options we can consider at this stage. We can choose to create a table
stub containing row labels through the use of the rowname_col argument. Further to this, stub
row groups can be created with the groupname_col argument. Both arguments take the name of
a column in the input table data. Typically, the data in the groupname_col column will consist of
categorical text whereas the data in the rowname_col column will contain unique labels (could be
unique across the entire table or unique within the different row groups).

gt 297

Row groups can also be created by passing a grouped_df to gt() by using the dplyr::group_by()
function on the table data. In this way, two or more columns of categorical data can be used to
make row groups. The row_group.sep argument allows for control in how the row group labels
will appear in the display table.

Value

An object of class gt_tbl.

Examples

Let’s use the exibble dataset for the next few examples, we’ll learn how to make simple gt tables
with the gt() function. The most basic thing to do is to just use gt() with the dataset as the input.

exibble |> gt()

This dataset has the row and group columns. The former contains unique values that are ideal for
labeling rows, and this often happens in what is called the ’stub’ (a reserved area that serves to label
rows). With the gt() function, we can immediately place the contents of the row column into the
stub column. To do this, we use the rowname_col argument with the name of the column to use in
quotes.

exibble |> gt(rowname_col = "row")

This sets up a table with a stub, the row labels are placed within the stub column, and a vertical
dividing line has been placed on the right-hand side.

The group column can be used to divide the rows into discrete groups. Within that column, we see
repetitions of the values grp_a and grp_b. These serve both as ID values and the initial label for
the groups. With the groupname_col argument in gt(), we can set up the row groups immediately
upon creation of the table.

exibble |>
gt(
rowname_col = "row",
groupname_col = "group"

)

If you’d rather perform the set up of row groups later (i.e., not in the gt() call), this is possible with
use of the tab_row_group() function (and row_group_order() can help with the arrangement of
row groups).

One more thing to consider with row groups is their layout. By default, row group labels reside in
separate rows the appear above the group. However, we can use the row_group_as_column = TRUE
option to put the row group labels within a secondary column within the table stub.

exibble |>
gt(
rowname_col = "row",
groupname_col = "group",
row_group_as_column = TRUE

)

298 gt

This could be done later if need be, and using tab_options(row_group.as_column = TRUE) would
be the way to do it outside of the gt() call.

Some datasets have rownames built in; mtcars famously has the car model names as the rownames.
To use those rownames as row labels in the stub, the rownames_to_stub = TRUE option will prove
to be useful.

head(mtcars, 10) |> gt(rownames_to_stub = TRUE)

By default, values in the body of a gt table (and their column labels) are automatically aligned.
The alignment is governed by the types of values in a column. If you’d like to disable this form of
auto-alignment, the auto_align = FALSE option can be taken.

exibble |> gt(rowname_col = "row", auto_align = FALSE)

What you’ll get from that is center-alignment of all table body values and all column labels. Note
that row labels in the the stub are still left-aligned; and auto_align has no effect on alignment
within the table stub.

However which way you generate the initial gt table object, you can use it with a huge variety of
functions in the package to further customize the presentation. Formatting body cells is commonly
done with the family of formatting functions (e.g., fmt_number(), fmt_date(), etc.). The package
supports formatting with internationalization (’i18n’ features) and so locale-aware functions come
with a locale argument. To avoid having to use that argument repeatedly, the gt() function has its
own locale argument. Setting a locale in that will make it available globally. Here’s an example
of how that works in practice when setting locale = "fr" in gt() and using formatting functions:

exibble |>
gt(
rowname_col = "row",
groupname_col = "group",
locale = "fr"

) |>
fmt_number() |>
fmt_date(
columns = date,
date_style = "yMEd"

) |>
fmt_datetime(
columns = datetime,
format = "EEEE, MMMM d, y",
locale = "en"

)

In this example, the fmt_number() and fmt_date() functions understand that the locale for this
table is "fr" (French), so the appropriate formatting for that locale is apparent in the num, currency,
and date columns. However in the fmt_datetime() call, we explicitly use the "en" (English)
locale. This overrides the "fr" default set for this table and the end result is dates formatted with
the English locale in the datetime column.

gtcars 299

Function ID

1-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table creation functions: gt_preview()

gtcars Deluxe automobiles from the 2014-2017 period

Description

Expensive and fast cars. Not your father’s mtcars. Each row describes a car of a certain make,
model, year, and trim. Basic specifications such as horsepower, torque, EPA MPG ratings, type of
drivetrain, and transmission characteristics are provided. The country of origin for the car manu-
facturer is also given.

Usage

gtcars

Format

A tibble with 47 rows and 15 variables:

mfr The name of the car manufacturer.

model The car’s model name.

year The car’s model year.

trim A short description of the car model’s trim.

bdy_style An identifier of the car’s body style, which is either "coupe", "convertible", "sedan",
or "hatchback".

hp, hp_rpm The car’s horsepower and the associated RPM level.

trq, trq_rpm The car’s torque and the associated RPM level.

mpg_c, mpg_h The miles per gallon fuel efficiency rating for city and highway driving.

drivetrain The car’s drivetrain which, for this dataset, is either "rwd" (Rear Wheel Drive) or "awd"
(All Wheel Drive).

trsmn An encoding of the transmission type, where the number part is the number of gears. The
car could have automatic transmission ("a"), manual transmission ("m"), an option to switch
between both types ("am"), or, direct drive ("dd")

ctry_origin The country name for where the vehicle manufacturer is headquartered.

msrp Manufacturer’s suggested retail price in U.S. dollars (USD).

300 gtcars

Details

All of the gtcars have something else in common (aside from the high asking prices): they are
all grand tourer vehicles. These are proper GT cars that blend pure driving thrills with a level of
comfort that is more expected from a fine limousine (e.g., a Rolls-Royce Phantom EWB). You’ll
find that, with these cars, comfort is emphasized over all-out performance. Nevertheless, the driving
experience should also mean motoring at speed, doing so in style and safety.

Examples

Here is a glimpse at the data available in gtcars.

dplyr::glimpse(gtcars)
#> Rows: 47
#> Columns: 15
#> $ mfr <chr> "Ford", "Ferrari", "Ferrari", "Ferrari", "Ferrari", "Ferra~
#> $ model <chr> "GT", "458 Speciale", "458 Spider", "458 Italia", "488 GTB~
#> $ year <dbl> 2017, 2015, 2015, 2014, 2016, 2015, 2017, 2015, 2015, 2015~
#> $ trim <chr> "Base Coupe", "Base Coupe", "Base", "Base Coupe", "Base Co~
#> $ bdy_style <chr> "coupe", "coupe", "convertible", "coupe", "coupe", "conver~
#> $ hp <dbl> 647, 597, 562, 562, 661, 553, 680, 652, 731, 949, 573, 545~
#> $ hp_rpm <dbl> 6250, 9000, 9000, 9000, 8000, 7500, 8250, 8000, 8250, 9000~
#> $ trq <dbl> 550, 398, 398, 398, 561, 557, 514, 504, 509, 664, 476, 436~
#> $ trq_rpm <dbl> 5900, 6000, 6000, 6000, 3000, 4750, 5750, 6000, 6000, 6750~
#> $ mpg_c <dbl> 11, 13, 13, 13, 15, 16, 12, 11, 11, 12, 21, 16, 11, 16, 12~
#> $ mpg_h <dbl> 18, 17, 17, 17, 22, 23, 17, 16, 16, 16, 22, 22, 18, 20, 20~
#> $ drivetrain <chr> "rwd", "rwd", "rwd", "rwd", "rwd", "rwd", "awd", "awd", "r~
#> $ trsmn <chr> "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a", "7a"~
#> $ ctry_origin <chr> "United States", "Italy", "Italy", "Italy", "Italy", "Ital~
#> $ msrp <dbl> 447000, 291744, 263553, 233509, 245400, 198973, 298000, 29~

Dataset ID and Badge

DATA-3

Dataset Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other datasets: constants, countrypops, exibble, illness, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

gtsave 301

gtsave Save a gt table as a file

Description

The gtsave() function makes it easy to save a gt table to a file. The function guesses the file type
by the extension provided in the output filename, producing either an HTML, PDF, PNG, LaTeX,
or RTF file.

Usage

gtsave(data, filename, path = NULL, ...)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

filename Output filename
scalar<character> // required
The file name to create on disk. Ensure that an extension compatible with the
output types is provided (.html, .tex, .ltx, .rtf, .docx). If a custom save
function is provided then the file extension is disregarded.

path Output path
scalar<character> // default: NULL (optional)
An optional path to which the file should be saved (combined with filename).

... Additional options
<named arguments>

All other options passed to the appropriate internal saving function.

Details

Output filenames with either the .html or .htm extensions will produce an HTML document. In
this case, we can pass a TRUE or FALSE value to the inline_css option to obtain an HTML docu-
ment with inlined CSS styles (the default is FALSE). More details on CSS inlining are available at
as_raw_html(). We can pass values to arguments in htmltools::save_html() through the
Those arguments are either background or libdir, please refer to the htmltools documentation for
more details on the use of these arguments.

If the output filename is expressed with the .rtf extension then an RTF file will be generated. In
this case, there is an option that can be passed through ...: page_numbering. This controls RTF
document page numbering and, by default, page numbering is not enabled (i.e., page_numbering =
"none").

We can create an image file based on the HTML version of the gt table. With the filename extension
.png, we get a PNG image file. A PDF document can be generated by using the .pdf extension.

302 gtsave

This process is facilitated by the webshot2 package, so, this package needs to be installed before
attempting to save any table as an image file. There is the option of passing values to the underlying
webshot2::webshot() function through Some of the more useful arguments for PNG saving
are zoom (defaults to a scale level of 2) and expand (adds whitespace pixels around the cropped
table image, and has a default value of 5), and selector (the default value is "table"). There are
several more options available so have a look at the webshot2 documentation for further details.

If the output filename extension is either of .tex, .ltx, or .rnw, a LaTeX document is produced.
An output filename of .rtf will generate an RTF document. The LaTeX and RTF saving functions
don’t have any options to pass to

If the output filename extension is .docx, a Word document file is produced. This process is facil-
itated by the rmarkdown package, so this package needs to be installed before attempting to save
any table as a .docx document.

Value

The file name (invisibly) if the export process is successful.

Examples

Using a small subset of the gtcars dataset, we can create a gt table with row labels. We’ll add a
stubhead label with the tab_stubhead() function to describe what is in the stub.

tab_1 <-
gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:5) |>
gt(rowname_col = "model") |>
tab_stubhead(label = "car")

Export the gt table to an HTML file with inlined CSS (which is necessary for including the table as
part of an HTML email) using gtsave() and the inline_css = TRUE option.

tab_1 |> gtsave(filename = "tab_1.html", inline_css = TRUE)

By leaving out the inline_css option, we get a more conventional HTML file with embedded CSS
styles.

tab_1 |> gtsave(filename = "tab_1.html")

Saving as a PNG file results in a cropped image of an HTML table. The amount of whitespace can
be set with the expand option.

tab_1 |> gtsave("tab_1.png", expand = 10)

Any use of the .tex, .ltx, or .rnw will result in the output of a LaTeX document.

tab_1 |> gtsave("tab_1.tex")

gt_group 303

With the .rtf extension, we’ll get an RTF document.

tab_1 |> gtsave("tab_1.rtf")

With the .docx extension, we’ll get a word/docx document.

tab_1 |> gtsave("tab_1.docx")

Function ID

13-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table export functions: as_latex(), as_raw_html(), as_rtf(), as_word(), extract_body(),
extract_cells(), extract_summary()

gt_group Create a gt_group container for holding multiple gt table objects

Description

The gt_group() function creates a container for storage of multiple gt tables. This type of object
allows for flexibility in printing multiple tables in different output formats. For example, if printing
multiple tables in a paginated output environment (e.g., RTF, Word, etc.), each gt table can be
printed independently and table separation (usually a page break) occurs between each of those.

Usage

gt_group(..., .list = list2(...), .use_grp_opts = FALSE)

Arguments

... One or more gt table data objects
obj:<gt_tbl> // (optional)
One or more gt table (gt_tbl) objects, typically generated via the gt() function.

.list Alternative to ...
<list of multiple expressions> // (or, use ...)
Allows for the use of a list as an input alternative to

.use_grp_opts Apply options to all contained tables?
scalar<logical> // default: FALSE
Should options specified in the gt_group object be applied to all contained gt
tables? By default this is FALSE.

304 gt_latex_dependencies

Value

An object of class gt_group.

Function ID

14-1

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_clone(), grp_options(), grp_pull(), grp_replace(),
grp_rm(), gt_split()

gt_latex_dependencies Get the LaTeX dependencies required for a gt table

Description

When working with Rnw (Sweave) files or otherwise writing LaTeX code, including a gt ta-
ble can be problematic if we don’t have knowledge of the LaTeX dependencies. For the most
part, these dependencies are the LaTeX packages that are required for rendering a gt table. The
gt_latex_dependencies() function provides an object that can be used to provide the LaTeX in
an Rnw file, allowing gt tables to work and not yield errors due to missing packages.

Usage

gt_latex_dependencies()

Details

Here is an example Rnw document that shows how the gt_latex_dependencies() can be used in
conjunction with a gt table:

%!sweave=knitr

\documentclass{article}

<<echo=FALSE>>=
library(gt)
@

<<results='asis', echo=FALSE>>=
gt_latex_dependencies()
@

gt_output 305

\begin{document}

<<results='asis', echo=FALSE>>=
gt(exibble)
@

\end{document}

Value

An object of class knit_asis.

Function ID

8-29

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), html(), md(), nanoplot_options(),
pct(), px(), random_id(), stub(), system_fonts()

gt_output Create a gt display table output element for Shiny

Description

Using gt_output() we can render a reactive gt table, a process initiated by using the render_gt()
function in the server component of a Shiny app. The gt_output() call is to be used in the Shiny
ui component, the position and context wherein this call is made determines the where the gt table
is rendered on the app page. It’s important to note that the ID given during the render_gt() call
is needed as the outputId in gt_output() (e.g., server: output$<id> <- render_gt(...); ui:
gt_output(outputId = "<id>").

We need to ensure that we have the shiny package installed first. This is easily by using install.packages("shiny").
More information on creating Shiny apps can be found on the Shiny website.

Usage

gt_output(outputId)

https://shiny.posit.co

306 gt_output

Arguments

outputId Shiny output ID
scalar<character> // required
An output variable from which to read the table.

Value

An object of class shiny.tag.

Examples

Here is a Shiny app (contained within a single file) that (1) prepares a gt table, (2) sets up the ui
with gt_output(), and (3) sets up the server with a render_gt() that uses the gt_tbl object as
the input expression.

library(shiny)

gt_tbl <-
gtcars |>
gt() |>
fmt_currency(columns = msrp, decimals = 0) |>
cols_hide(columns = -c(mfr, model, year, mpg_c, msrp)) |>
cols_label_with(columns = everything(), fn = toupper) |>
data_color(columns = msrp, method = "numeric", palette = "viridis") |>
sub_missing() |>
opt_interactive(use_compact_mode = TRUE)

ui <- fluidPage(
gt_output(outputId = "table")

)

server <- function(input, output, session) {
output$table <- render_gt(expr = gt_tbl)

}

shinyApp(ui = ui, server = server)

Function ID

12-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other Shiny functions: render_gt()

gt_preview 307

gt_preview Generate a special gt table for previewing a dataset

Description

Sometimes you may want to see just a small portion of your input data. We can use gt_preview()
in place of gt() to get the first x rows of data and the last y rows of data (which can be set by the
top_n and bottom_n arguments). It’s not advised to use additional gt functions to further modify
the output of gt_preview(). Furthermore, you cannot pass a gt object to gt_preview().

Usage

gt_preview(data, top_n = 5, bottom_n = 1, incl_rownums = TRUE)

Arguments

data Input data table
obj:<data.frame>|obj:<tbl_df> // required
A data.frame object or a tibble (tbl_df).

top_n Top n rows to display
scalar<numeric|integer> // default: 5

The top_n value will be used as the number of rows from the top of the table to
display. The default, 5, will show the first five rows of the table.

bottom_n Bottom n rows to display
scalar<numeric|integer> // default: 1

The bottom_n value will be used as the number of rows from the bottom of the
table to display. The default, 1, will show the final row of the table.

incl_rownums Display row numbers
scalar<logical> // default: TRUE

An option to include the row numbers for data in the table stub.

Details

By default, the output table will include row numbers in a stub (including a range of row numbers
for the omitted rows). This row numbering option can be deactivated by setting incl_rownums to
FALSE.

Value

An object of class gt_tbl.

308 gt_split

Examples

With three columns from the gtcars dataset, let’s create a gt table preview with the gt_preview()
function. You’ll get only the first five rows and the last row.

gtcars |>
dplyr::select(mfr, model, year) |>
gt_preview()

Function ID

1-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table creation functions: gt()

gt_split Split a table into a group of tables (a gt_group)

Description

With a gt table, you can split it into multiple tables and get that collection in a gt_group object.
This function is useful for those cases where you want to section up a table in a specific way and
print those smaller tables across multiple pages (in RTF and Word outputs, primarily via gtsave()),
or, with breaks between them when the output context is HTML.

Usage

gt_split(data, row_every_n = NULL, row_slice_i = NULL, col_slice_at = NULL)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

row_every_n Split at every n rows
scalar<numeric|integer> // default: NULL (optional)
A directive to split at every n number of rows. This argument expects a single
numerical value.

gt_split 309

row_slice_i Row-slicing indices
vector<numeric|integer> // default: NULL (optional)
An argument for splitting at specific row indices. Here, we expect either a vector
of index values or a function that evaluates to a numeric vector.

col_slice_at Column-slicing locations
<column-targeting expression> // default: NULL (optional)
Any columns where vertical splitting across should occur. The splits occur to the
right of the resolved column names. Can either be a series of column names pro-
vided in c(), a vector of column indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything().

Value

An object of class gt_group.

Examples

Use a subset of the gtcars dataset to create a gt table. Format the msrp column to display numbers
as currency values, set column widths with cols_width(), and split the table at every five rows
with gt_split(). This creates a gt_group object containing two tables. Printing this object yields
two tables separated by a line break.

gtcars |>
dplyr::slice_head(n = 10) |>
dplyr::select(mfr, model, year, msrp) |>
gt() |>
fmt_currency(columns = msrp) |>
cols_width(
year ~ px(80),
everything() ~ px(150)

) |>
gt_split(row_every_n = 5)

Use a smaller subset of the gtcars dataset to create a gt table. Format the msrp column to display
numbers as currency values, set the table width with tab_options() and split the table at the model
column This creates a gt_group object again containing two tables but this time we get a vertical
split. Printing this object yields two tables of the same width.

gtcars |>
dplyr::slice_head(n = 5) |>
dplyr::select(mfr, model, year, msrp) |>
gt() |>
fmt_currency(columns = msrp) |>
tab_options(table.width = px(400)) |>
gt_split(col_slice_at = "model")

310 html

Function ID

14-2

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table group functions: grp_add(), grp_clone(), grp_options(), grp_pull(), grp_replace(),
grp_rm(), gt_group()

html Interpret input text as HTML-formatted text

Description

For certain pieces of text (like in column labels or table headings) we may want to express them as
raw HTML. In fact, with HTML, anything goes so it can be much more than just text. The html()
function will guard the input HTML against escaping, so, your HTML tags will come through as
HTML when rendered... to HTML.

Usage

html(text, ...)

Arguments

text HTML text
scalar<character> // required
The text that is understood to be HTML text, which is to be preserved in the
HTML output context.

... Optional parameters for htmltools::HTML()
<multiple expressions> // (optional)

The htmltools::HTML() function contains ... and anything provided here will
be passed to that internal function call.

Value

A character object of class html. It’s tagged as an HTML fragment that is not to be sanitized.

illness 311

Examples

Use the exibble dataset to create a gt table. When adding a title through the tab_header() func-
tion, we’ll use the html() helper to signify to gt that we’re using HTML formatting.

exibble |>
dplyr::select(currency, char) |>
gt() |>
tab_header(title = html("HTML"))

Function ID

8-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
md(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

illness Lab tests for one suffering from an illness

Description

A dataset with artificial daily lab data for a patient with Yellow Fever (YF). The table comprises lab-
oratory findings for the patient from day 3 of illness onset until day 9 (after which the patient died).
YF viral DNA was found in serum samples from day 3, where the viral load reached 14,000 copies
per mL. Several medical interventions were taken to help the patient, including the administration
of fresh frozen plasma, platelets, red cells, and coagulation factor VIII. The patient also received
advanced support treatment in the form of mechanical ventilation and plasmapheresis. Though
the patient’s temperature remained stable during their illness, unfortunately, the patient’s condition
did not improve. On days 7 and 8, the patient’s health declined further, with symptoms such as
nosebleeds, gastrointestinal bleeding, and hematoma.

Usage

illness

312 illness

Format

A tibble with 39 rows and 11 variables:

test The name of the test.

units The measurement units for the test.

day_3,day_4,day_5,day_6,day_7,day_8,day_9 Measurement values associated with each test ad-
ministered from days 3 to 9. An NA value indicates that the test could not be performed that
day.

norm_l,norm_u Lower and upper bounds for the normal range associated with the test.

Details

The various tests are identified in the test column. The following listing provides the full names
of any abbreviations seen in that column.

• "WBC": white blood cells.

• "RBC": red blood cells.

• "Hb": hemoglobin.

• "PLT": platelets.

• "ALT": alanine aminotransferase.

• "AST": aspartate aminotransferase.

• "TBIL": total bilirubin.

• "DBIL": direct bilirubin.

• "NH3": hydrogen nitride.

• "PT": prothrombin time.

• "APTT": activated partial thromboplastin time.

• "PTA": prothrombin time activity.

• "DD": D-dimer.

• "FDP": fibrinogen degradation products.

• "LDH": lactate dehydrogenase.

• "HBDH": hydroxybutyrate dehydrogenase.

• "CK": creatine kinase.

• "CKMB": the MB fraction of creatine kinase.

• "BNP": B-type natriuetic peptide.

• "MYO": myohemoglobin.

• "TnI": troponin inhibitory.

• "CREA": creatinine.

• "BUN": blood urea nitrogen.

• "AMY": amylase.

• "LPS": lipase.

illness 313

• "K": kalium.

• "Na": sodium.

• "Cl": chlorine.

• "Ca": calcium.

• "P": phosphorus.

• "Lac": lactate, blood.

• "CRP": c-reactive protein.

• "PCT": procalcitonin.

• "IL-6": interleukin-6.

• "CD3+CD4+": CD4+T lymphocytes.

• "CD3+CD8+": CD8+T lymphocytes.

Examples

Here is a glimpse at the data available in illness.

dplyr::glimpse(illness)
#> Rows: 39
#> Columns: 11
#> $ test <chr> "Viral load", "WBC", "Neutrophils", "RBC", "Hb", "PLT", "ALT", ~
#> $ units <chr> "copies per mL", "x10^9 / L", "x10^9 / L", "x10^12 / L", "g / L~
#> $ day_3 <dbl> 12000.000, 5.260, 4.870, 5.720, 153.000, 67.000, 12835.000, 236~
#> $ day_4 <dbl> 4200.000, 4.260, 4.720, 5.980, 135.000, 38.600, 12632.000, 2136~
#> $ day_5 <dbl> 1600.000, 9.920, 7.920, 4.230, 126.000, 27.400, 6426.700, 14730~
#> $ day_6 <dbl> 830.000, 10.490, 18.210, 4.830, 115.000, 26.200, 4263.100, 8691~
#> $ day_7 <dbl> 760.000, 24.770, 22.080, 4.120, 75.000, 74.100, 1623.700, 2189.~
#> $ day_8 <dbl> 520.000, 30.260, 27.170, 2.680, 87.000, 36.200, 672.600, 1145.0~
#> $ day_9 <dbl> 250.000, 19.030, 16.590, 3.320, 95.000, 25.600, 512.400, 782.50~
#> $ norm_l <dbl> NA, 4.0, 2.0, 4.0, 120.0, 100.0, 9.0, 15.0, 0.0, 0.0, 10.0, 9.4~
#> $ norm_u <dbl> NA, 10.000, 8.000, 5.500, 160.000, 300.000, 50.000, 40.000, 18.~

Dataset ID and Badge

DATA-10

Dataset Introduced

v0.10.0 (October 7, 2023)

See Also

Other datasets: constants, countrypops, exibble, gtcars, metro, pizzaplace, rx_addv, rx_adsl,
sp500, sza, towny

314 info_currencies

info_currencies View a table with info on supported currencies

Description

The fmt_currency() function lets us format numeric values as currencies. The table generated by
the info_currencies() function provides a quick reference to all the available currencies. The
currency identifiers are provided (name, 3-letter currency code, and 3-digit currency code) along
with the each currency’s exponent value (number of digits of the currency subunits). A formatted
example is provided (based on the value of 49.95) to demonstrate the default formatting of each
currency.

Usage

info_currencies(type = c("code", "symbol"), begins_with = NULL)

Arguments

type Type of currency
singl-kw:[code|symbol] // default: "code"
The type of currency information provided. Can either be code where currency
information corresponding to 3-letter currency codes is provided, or symbol
where currency info for common currency names (e.g., dollar, pound, yen, etc.)
is returned.

begins_with Show currencies beginning with a specific letter
scalar<character> // default: NULL (optional)
Providing a single letter will filter currencies to only those that begin with that
letter in their currency code. The default (NULL) will produce a table with all
currencies displayed. This option only constrains the information table where
type == "code".

Details

There are 172 currencies, which can lead to a verbose display table. To make this presentation more
focused on retrieval, we can provide an initial letter corresponding to the 3-letter currency code to
begins_with. This will filter currencies in the info table to just the set beginning with the supplied
letter.

Value

An object of class gt_tbl.

Examples

Get a table of info on all of the currencies where the three-letter code begins with an "h".

info_currencies(begins_with = "h")

info_date_style 315

Get a table of info on all of the common currency name/symbols that can be used with fmt_currency().

info_currencies(type = "symbol")

Function ID

11-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other information functions: info_date_style(), info_flags(), info_google_fonts(), info_icons(),
info_locales(), info_paletteer(), info_time_style()

info_date_style View a table with info on date styles

Description

The fmt_date() function lets us format date-based values in a convenient manner using preset
styles. The table generated by the info_date_style() function provides a quick reference to all
styles, with associated format names and example outputs using a fixed date (2000-02-29).

Usage

info_date_style()

Value

An object of class gt_tbl.

Examples

Get a table of info on the different date-formatting styles (which are used by supplying a number
code to the fmt_date() function).

info_date_style()

Function ID

11-1

Function Introduced

v0.2.0.5 (March 31, 2020)

316 info_flags

See Also

Other information functions: info_currencies(), info_flags(), info_google_fonts(), info_icons(),
info_locales(), info_paletteer(), info_time_style()

info_flags View a table with all available flags for fmt_flag()

Description

The fmt_flag() function can be used to render flag icons within body cells that have 2-letter coun-
try codes. There are a lot of countries, so, the info_flags() function can be helpful in showing all
of the valid and supported country codes along with their flag icons.

Usage

info_flags()

Value

An object of class gt_tbl.

Examples

Get a table of info on all the available flag icons.

info_flags()

Function ID

11-7

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other information functions: info_currencies(), info_date_style(), info_google_fonts(),
info_icons(), info_locales(), info_paletteer(), info_time_style()

info_google_fonts 317

info_google_fonts View a table on recommended Google Fonts

Description

The google_font() helper function can be used wherever a font name should be specified. There
are two instances where this helper can be used: the name argument in opt_table_font() (for
setting a table font) and in that of cell_text() (used with tab_style()). Because there is an
overwhelming number of fonts available in the Google Fonts catalog, the info_google_fonts()
provides a table with a set of helpful font recommendations. These fonts look great in the different
parts of a gt table. Why? For the most part they are suitable for body text, having large counters,
large x-height, reasonably low contrast, and open apertures. These font features all make for high
legibility at smaller sizes.

Usage

info_google_fonts()

Value

An object of class gt_tbl.

Examples

Get a table of info on some of the recommended Google Fonts for tables.

info_google_fonts()

Function ID

11-6

Function Introduced

v0.2.2 (August 5, 2020)

See Also

Other information functions: info_currencies(), info_date_style(), info_flags(), info_icons(),
info_locales(), info_paletteer(), info_time_style()

318 info_icons

info_icons View a table with all available Font Awesome icons for fmt_icon()

Description

The fmt_icon() function can be used to render Font Awesome icons within body cells that reference
the icon names. Further to this, the text transformation functions (e.g., text_case_match()) allow
for the insertion of these icons as replacement text (so long as you use the fa() function from the
fontawesome package). Because there is a very large number of icons available to use in Font
Awesome, info_icons() can be used to provide us with a table that lists all the icons along with
their short and full names (either can be used with fmt_icon()).

Usage

info_icons()

Value

An object of class gt_tbl.

Examples

Get a table of info on all the available Font Awesome icons.

info_icons()

Function ID

11-8

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other information functions: info_currencies(), info_date_style(), info_flags(), info_google_fonts(),
info_locales(), info_paletteer(), info_time_style()

info_locales 319

info_locales View a table with info on supported locales

Description

Many of the fmt_*() functions have a locale argument that makes locale-based formatting easier.
The table generated by the info_locales() function provides a quick reference to all the available
locales. The locale identifiers are provided (base locale ID, common display name) along with the
each locale’s group and decimal separator marks. A formatted numeric example is provided (based
on the value of 11027) to demonstrate the default formatting of each locale.

Usage

info_locales(begins_with = NULL)

Arguments

begins_with Show locales beginning with a specific letter
scalar<character> // default: NULL (optional)
Providing a single letter will filter locales to only those that begin with that
letter in their locale ID. The default (NULL) will produce a table with all locales
displayed

Details

There are 712 locales, which means that a very long display table is provided by default. To trim
down the output table size, we can provide an initial letter corresponding to the base locale ID to
begins_with. This will filter locales in the info table to just the set that begins with the supplied
letter.

Value

An object of class gt_tbl.

Examples

Get a table of info on all of the locales where the base locale ID begins with a "v".

info_locales(begins_with = "v")

Function ID

11-4

Function Introduced

v0.2.0.5 (March 31, 2020)

320 info_paletteer

See Also

Other information functions: info_currencies(), info_date_style(), info_flags(), info_google_fonts(),
info_icons(), info_paletteer(), info_time_style()

info_paletteer View a table with info on color palettes

Description

While the data_color() function allows us to flexibly color data cells in our gt table, the harder
part of this process is discovering and choosing color palettes that are suitable for the table out-
put. We can make this process much easier in two ways: (1) by using the paletteer package,
which makes a wide range of palettes from various R packages readily available, and (2) calling the
info_paletteer() function to give us an information table that serves as a quick reference for all
of the discrete color palettes available in paletteer.

Usage

info_paletteer(color_pkgs = NULL)

Arguments

color_pkgs Filter to specific color packages
vector<character> // default: NULL (optional)
A vector of color packages that determines which sets of palettes should be
displayed in the information table. If this is NULL (the default) then all of the
discrete palettes from all of the color packages represented in paletteer will be
displayed.

Details

The palettes displayed are organized by package and by palette name. These values are required
when obtaining a palette (as a vector of hexadecimal colors), from the the paletteer::paletteer_d()
function. Once we are familiar with the names of the color palette packages (e.g., RColorBrewer,
ggthemes, wesanderson), we can narrow down the content of this information table by supplying
a vector of such package names to color_pkgs.

Colors from the following color packages (all supported by paletteer) are shown by default with
info_paletteer():

• awtools, 5 palettes

• dichromat, 17 palettes

• dutchmasters, 6 palettes

• ggpomological, 2 palettes

• ggsci, 42 palettes

• ggthemes, 31 palettes

info_paletteer 321

• ghibli, 27 palettes

• grDevices, 1 palette

• jcolors, 13 palettes

• LaCroixColoR, 21 palettes

• NineteenEightyR, 12 palettes

• nord, 16 palettes

• ochRe, 16 palettes

• palettetown, 389 palettes

• pals, 8 palettes

• Polychrome, 7 palettes

• quickpalette, 17 palettes

• rcartocolor, 34 palettes

• RColorBrewer, 35 palettes

• Redmonder, 41 palettes

• wesanderson, 19 palettes

• yarrr, 21 palettes

Value

An object of class gt_tbl.

Examples

Get a table of info on just the "ggthemes" color palette (easily accessible from the paletteer pack-
age).

info_paletteer(color_pkgs = "ggthemes")

Function ID

11-5

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other information functions: info_currencies(), info_date_style(), info_flags(), info_google_fonts(),
info_icons(), info_locales(), info_time_style()

322 info_time_style

info_time_style View a table with info on time styles

Description

The fmt_time() function lets us format time-based values in a convenient manner using preset
styles. The table generated by the info_time_style() function provides a quick reference to all
styles, with associated format names and example outputs using a fixed time (14:35).

Usage

info_time_style()

Value

An object of class gt_tbl.

Examples

Get a table of info on the different time-formatting styles (which are used by supplying a number
code to the fmt_time() function).

info_time_style()

Function ID

11-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other information functions: info_currencies(), info_date_style(), info_flags(), info_google_fonts(),
info_icons(), info_locales(), info_paletteer()

local_image 323

local_image Helper function for adding a local image

Description

We can flexibly add a local image (i.e., an image residing on disk) inside of a table with local_image()
function. The function provides a convenient way to generate an HTML fragment using an on-disk
PNG or SVG. Because this function is currently HTML-based, it is only useful for HTML table
output. To use this function inside of data cells, it is recommended that the text_transform()
function is used. With that function, we can specify which data cells to target and then include a
local_image() call within the required user-defined function (for the fn argument). If we want
to include an image in other places (e.g., in the header, within footnote text, etc.) we need to use
local_image() within the html() helper function.

By itself, the function creates an HTML image tag with an image URI embedded within. We can
easily experiment with a local PNG or SVG image that’s available in the gt package using the
test_image() function. Using that, the call local_image(file = test_image(type = "png"))
evaluates to:
<img src=<data URI> style=\"height:30px;\">

where a height of 30px is a default height chosen to work well within the heights of most table rows.

Usage

local_image(filename, height = 30)

Arguments

filename Path to image file
scalar<character> // required
A local path to an image file on disk.

height Height of image
scalar<numeric|integer> // default: 30
The absolute height of the image in the table cell (in "px" units). By default,
this is set to "30px".

Value

A character object with an HTML fragment that can be placed inside of a cell.

Examples

Create a tibble that contains heights of an image in pixels (one column as a string, the other as
numerical values), then, create a gt table. Use the text_transform() function to insert a local test
image (PNG) image with the various sizes.

324 md

dplyr::tibble(
pixels = px(seq(10, 35, 5)),
image = seq(10, 35, 5)

) |>
gt() |>
text_transform(
locations = cells_body(columns = image),
fn = function(x) {
local_image(
filename = test_image(type = "png"),
height = as.numeric(x)

)
}

)

Function ID

9-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other image addition functions: ggplot_image(), test_image(), web_image()

md Interpret input text as Markdown-formatted text

Description

Markdown text can be used in certain places in a gt table, and this is wherever new text is defined
(e.g., footnotes, source notes, the table title, etc.). Using Markdown is advantageous for styling text
since it will be rendered correctly to the the output format of the gt table. There is also the html()
helper that allows you use HTML exclusively (for tables expressly meant for HTML output) but
md() allows for both; you get to use Markdown plus any HTML fragments at the same time.

Usage

md(text)

Arguments

text Markdown text
scalar<character> // required
The text that is understood to contain Markdown formatting.

metro 325

Value

A character object of class from_markdown. It’s tagged as being Markdown text and it will undergo
conversion to the desired output context.

Examples

Use the exibble dataset to create a gt table. When adding a title through the tab_header() func-
tion, we’ll use the md() helper to signify to gt that we’re using Markdown formatting.

exibble |>
dplyr::select(currency, char) |>
gt() |>
tab_header(title = md("Using *Markdown*"))

Function ID

8-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), nanoplot_options(), pct(), px(), random_id(), stub(), system_fonts()

metro The stations of the Paris Metro

Description

A dataset with information on all 308 Paris Metro stations as of February 2023. Each record rep-
resents a station, describing which Metro lines are serviced by the station, which other connections
are available, and annual passenger volumes. Basic location information is provided for each station
in terms where they reside on a municipal level, and, through latitude/longitude coordinates.

The system has 16 lines (numbered from 1 to 14, with two additional lines: 3bis and 7bis) and covers
over 200 kilometers of track. The Metro runs on standard gauge tracks (1,435 mm) and operates
using a variety of rolling stock, including rubber-tired trains and steel-wheeled trains (which are far
more common).

The Metro is operated by the RATP, which also operates other transit systems in the region, in-
cluding buses, trams, and the RER. The RER is an important component of the region’s transit

326 metro

infrastructure, and several RER stations have connectivity with the Metro. This integration allows
passengers to transfer between those two systems seamlessly. The Metro also has connections to
the Transilien rail network, tramway stations, several major train stations (e.g., Gare du Nord, Gare
de l’Est, etc.), and many bus lines.

Usage

metro

Format

A tibble with 308 rows and 11 variables:

name The name of the station.

caption In some cases, a station will have a caption that might describe a nearby place of interest.
This is NA if there isn’t a caption for the station name.

lines All Metro lines associated with the station. This is a character-based, comma-separated
series of line names.

connect_rer Station connections with the RER. The RER system has five lines (A, B, C, D, and E)
with 257 stations and several interchanges with the Metro.

connect_tram Connections with tramway lines. This system has twelve lines in operation (T1, T2,
T3a, T3b, T4, T5, T6, T7, T8, T9, T11, and T13) with 235 stations.

connect_transilien Connections with Transilien lines. This system has eight lines in operation (H,
J, K, L, N, P, R, and U).

connect_other Other connections with transportation infrastructure such as regional, intercity,
night, and high-speed trains (typically at railway stations).

latitude, longitude The location of the station, given as latitude and longitude values in decimal
degrees.

location The arrondissement of Paris or municipality in which the station resides. For some stations
located at borders, the grouping of locations will be presented as a comma-separated series

passengers The total number of Metro station entries during 2021. Some of the newest stations in
the Metro system do not have this data, thus they show NA values.

Examples

Here is a glimpse at the data available in metro.

dplyr::glimpse(metro)
#> Rows: 308
#> Columns: 11
#> $ name <chr> "Argentine", "Bastille", "Bérault", "Champs-Élysées~
#> $ caption <chr> NA, NA, NA, "Grand Palais", NA, NA, NA, NA, NA, NA,~
#> $ lines <chr> "1", "1, 5, 8", "1", "1, 13", "1, 2, 6", "1", "1, 4~
#> $ connect_rer <chr> NA, NA, NA, NA, "A", NA, "A, B, D", NA, NA, NA, "A,~
#> $ connect_tramway <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ connect_transilien <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "R", NA, NA~
#> $ connect_other <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "TGV, TGV L~

nanoplot_options 327

#> $ passengers <int> 2079212, 8069243, 2106827, 1909005, 4291663, 361773~
#> $ latitude <dbl> 48.87528, 48.85308, 48.84528, 48.86750, 48.87389, 4~
#> $ longitude <dbl> 2.290000, 2.369077, 2.428333, 2.313500, 2.295000, 2~
#> $ location <chr> "Paris 16th, Paris 17th", "Paris 4th, Paris 11th, P~

Dataset ID and Badge

DATA-8

Dataset Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, pizzaplace, rx_addv,
rx_adsl, sp500, sza, towny

nanoplot_options Supply nanoplot options to cols_nanoplot()

Description

When using cols_nanoplot(), the defaults for the generated nanoplots can be modified with
nanoplot_options() within the options argument.

Usage

nanoplot_options(
data_point_radius = NULL,
data_point_stroke_color = NULL,
data_point_stroke_width = NULL,
data_point_fill_color = NULL,
data_line_type = NULL,
data_line_stroke_color = NULL,
data_line_stroke_width = NULL,
data_area_fill_color = NULL,
data_bar_stroke_color = NULL,
data_bar_stroke_width = NULL,
data_bar_fill_color = NULL,
data_bar_negative_stroke_color = NULL,
data_bar_negative_stroke_width = NULL,
data_bar_negative_fill_color = NULL,
reference_line_color = NULL,
reference_area_fill_color = NULL,
vertical_guide_stroke_color = NULL,
vertical_guide_stroke_width = NULL,
show_data_points = NULL,

328 nanoplot_options

show_data_line = NULL,
show_data_area = NULL,
show_reference_line = NULL,
show_reference_area = NULL,
show_vertical_guides = NULL,
show_y_axis_guide = NULL,
interactive_data_values = NULL,
y_val_fmt_fn = NULL,
y_axis_fmt_fn = NULL,
y_ref_line_fmt_fn = NULL,
currency = NULL

)

Arguments

data_point_radius

Radius of data points
scalar<numeric>|vector<numeric> // default: NULL (optional)
Th data_point_radius option lets you set the radius for each of the data points.
By default this is set to 10. Individual radius values can be set by using a vector
of numeric values; however, the vector provided must match the number of data
points.

data_point_stroke_color

Color of data points
scalar<character>|vector<character> // default: NULL (optional)
The default stroke color of the data points is "#FFFFFF" ("white"). This works
well when there is a visible data line combined with data points with a darker fill
color. The stroke color can be modified with data_point_stroke_color for all
data points by supplying a single color value. With a vector of colors, each data
point’s stroke color can be changed (ensure that the vector length matches the
number of data points).

data_point_stroke_width

Width of surrounding line on data points
scalar<numeric>|vector<numeric> // default: NULL (optional)
The width of the outside stroke for the data points can be modified with the
data_point_stroke_width option. By default, a value of 4 (as in ’4px’) is
used.

data_point_fill_color

Fill color for data points
scalar<character>|vector<character> // default: NULL (optional)
By default, all data points have a fill color of "#FF0000" ("red"). This can be
changed for all data points by providing a different color to data_point_fill_color.
And, a vector of different colors can be supplied so long as the length is equal
to the number of data points; the fill color values will be applied in order of left
to right.

data_line_type Type of data line: curved or straight
scalar<character> // default: NULL (optional)

nanoplot_options 329

This can accept either "curved" or "straight". Curved lines are recommended
when the nanoplot has less than 30 points and data points are evenly spaced. In
most other cases, straight lines might present better.

data_line_stroke_color

Color of the data line
scalar<character> // default: NULL (optional)
The color of the data line can be modified from its default "#4682B4" ("steelblue")
color by supplying a color to the data_line_stroke_color option.

data_line_stroke_width

Width of the data line
scalar<numeric> // default: NULL (optional)
The width of the connecting data line can be modified with the data_line_stroke_width
option. By default, a value of 4 (as in ’4px’) is used.

data_area_fill_color

Fill color for the data-point-bounded area
scalar<character> // default: NULL (optional)
The fill color for the area that bounds the data points in line plot. The de-
fault is "#FF0000" ("red") but can be changed by providing a color value to
data_area_fill_color.

data_bar_stroke_color

Color of a data bar’s outside line
scalar<character> // default: NULL (optional)
The color of the stroke used for the data bars can be modified from its default
"#3290CC" color by supplying a color to the data_bar_stroke_color option.

data_bar_stroke_width

Width of a data bar’s outside line
scalar<numeric> // default: NULL (optional)
The width of the stroke used for the data bars can be modified with the data_bar_stroke_width
option. By default, a value of 4 (as in ’4px’) is used.

data_bar_fill_color

Fill color for data bars
scalar<character>|vector<character> // default: NULL (optional)
By default, all data bars have a fill color of "#3FB5FF". This can be changed
for all data bars by providing a different color to data_bar_fill_color. And,
a vector of different colors can be supplied so long as the length is equal to the
number of data bars; the fill color values will be applied in order of left to right.

data_bar_negative_stroke_color

Stroke color for negative values
scalar<character> // default: NULL (optional)
The color of the stroke used for the data bars that have negative values. The
default color is "#CC3243" but this can be changed by supplying a color value
to the data_bar_negative_stroke_color option.

data_bar_negative_stroke_width

Stroke width for negative values
scalar<numeric> // default: NULL (optional)

330 nanoplot_options

The width of the stroke used for negative value data bars. This has the same
default as data_bar_stroke_width with a value of 4 (as in ’4px’). This can be
changed by giving a numeric value to the data_bar_negative_stroke_width
option.

data_bar_negative_fill_color

Fill color for negative values
scalar<character>|vector<character> // default: NULL (optional)
By default, all negative data bars have a fill color of "#D75A68". This can how-
ever be changed by providing a color value to the data_bar_negative_fill_color
option.

reference_line_color

Color for the reference line
scalar<character> // default: NULL (optional)
The reference line will have a color of "#75A8B0" if it is set to appear. This color
can be changed by providing a single color value to reference_line_color.

reference_area_fill_color

Fill color for the reference area
scalar<character> // default: NULL (optional)
If a reference area has been defined and is visible it has by default a fill color of
"#A6E6F2". This can be modified by declaring a color value in the reference_area_fill_color
option.

vertical_guide_stroke_color

Color of vertical guides
scalar<character> // default: NULL (optional)
Vertical guides appear when hovering in the vicinity of data points. Their default
color is "#911EB4" (a strong magenta color) and a fill opacity value of 0.4 is
automatically applied to this. However, the base color can be changed with the
vertical_guide_stroke_color option.

vertical_guide_stroke_width

Line widths for vertical guides
scalar<numeric> // default: NULL (optional)
The vertical guide’s stroke width, by default, is relatively large at 12 (this is
’12px’). This is modifiable by setting a different value with the vertical_guide_stroke_width
option.

show_data_points

Should the data points be shown?
scalar<logical> // default: NULL (optional)
By default, all data points in a nanoplot are shown but this layer can be hidden
by setting show_data_points to FALSE.

show_data_line Should a data line be shown?
scalar<logical> // default: NULL (optional)
The data line connects data points together and it is shown by default. This data
line layer can be hidden by setting show_data_line to FALSE.

show_data_area Should a data-point-bounded area be shown?
scalar<logical> // default: NULL (optional)
The data area layer is adjacent to the data points and the data line. It is shown
by default but can be hidden with show_data_area = FALSE.

nanoplot_options 331

show_reference_line

Should a reference line be shown?
scalar<logical> // default: NULL (optional)
The layer with a horizontal reference line appears underneath that of the data
points and the data line. Like vertical guides, hovering over a reference will
show its value. The reference line (if available) is shown by default but can be
hidden by setting show_reference_line to FALSE.

show_reference_area

Should a reference area be shown?
scalar<logical> // default: NULL (optional)
The reference area appears at the very bottom of the layer stack, if it is available
(i.e., defined in cols_nanoplot()). It will be shown in the default case but can
be hidden by using show_reference_area = FALSE.

show_vertical_guides

Should there be vertical guides?
scalar<logical> // default: NULL (optional)
Vertical guides appear when hovering over data points. This hidden layer is
active by default but can be deactivated by using show_vertical_guides =
FALSE.

show_y_axis_guide

Should there be a y-axis guide?
scalar<logical> // default: NULL (optional)
The y-axis guide will appear when hovering over the far left side of a nanoplot.
This hidden layer is active by default but can be deactivated by using show_y_axis_guide
= FALSE.

interactive_data_values

Should data values be interactively shown?
scalar<logical> // default: NULL (optional)
By default, numeric data values will be shown only when the user interacts with
certain regions of a nanoplot. This is because the values may be numerous (i.e.,
clutter the display when all are visible) and it can be argued that the values
themselves are secondary to the presentation. However, for some types of plots
(like horizontal bar plots), a persistent display of values alongside the plot marks
may be desirable. By setting interactive_data_values = FALSE we can opt
for always displaying the data values alongside the plot components.

y_val_fmt_fn, y_axis_fmt_fn, y_ref_line_fmt_fn

Custom formatting for y values
function // default: NULL (optional)
If providing a function to y_val_fmt_fn, y_axis_fmt_fn, or y_ref_line_fmt_fn
then customized formatting of the y values associated with the data points/bars,
the y-axis labels, and the reference line can be performed.

currency Define values as currencies of a specific type
scalar<character>|obj:<gt_currency> // default: NULL (optional)
If the values are to be displayed as currency values, supply either: (1) a 3-letter
currency code (e.g., "USD" for U.S. Dollars, "EUR" for the Euro currency), (2)
a common currency name (e.g., "dollar", "pound", "yen", etc.), or (3) an
invocation of the currency() helper function for specifying a custom currency

332 opt_align_table_header

(where the string could vary across output contexts). Use info_currencies()
to get an information table with all of the valid currency codes, and examples of
each, for the first two cases.

Value

A list object of class nanoplot_options.

Function ID

8-7

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), pct(), px(), random_id(), stub(), system_fonts()

opt_align_table_header

Option to align the table header

Description

By default, a table header added to a gt table has center alignment for both the title and the subtitle
elements. This function allows us to easily set the horizontal alignment of the title and subtitle to
the left or right by using the "align" argument. This function serves as a convenient shortcut for
<gt_tbl> |> tab_options(heading.align = <align>).

Usage

opt_align_table_header(data, align = c("left", "center", "right"))

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

opt_align_table_header 333

align Header alignment
singl-kw:[left|center|right] // default: "left"

The alignment of the title and subtitle elements in the table header. Options are
"left" (the default), "center", or "right".

Value

An object of class gt_tbl.

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions
like summary_rows(), grand_summary_rows(), and more). Following that, we’ll align the header
contents (consisting of the title and the subtitle) to the left with the opt_align_table_header()
function.

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_align_table_header(align = "left")

Function ID

10-6

Function Introduced

v0.2.0.5 (March 31, 2020)

334 opt_all_caps

See Also

Other table option functions: opt_all_caps(), opt_css(), opt_footnote_marks(), opt_footnote_spec(),
opt_horizontal_padding(), opt_interactive(), opt_row_striping(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_all_caps Option to use all caps in select table locations

Description

Sometimes an all-capitalized look is suitable for a table. With the opt_all_caps() function, we
can transform characters in the column labels, the stub, and in all row groups in this way (and there’s
control over which of these locations are transformed).

This function serves as a convenient shortcut for <gt_tbl> |> tab_options(<location>.text_transform = "uppercase", <location>.font.size = pct(80), <location>.font.weight = "bolder")
(for all locations selected).

Usage

opt_all_caps(
data,
all_caps = TRUE,
locations = c("column_labels", "stub", "row_group")

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

all_caps Use all-caps transformation
scalar<logical> // default: TRUE
A logical value to indicate whether the text transformation to all caps should be
performed (TRUE, the default) or reset to default values (FALSE) for the locations
targeted.

locations Locations to target
mult-kw:[column_labels|stub|row_group] // default: c("column_labels",
"stub", "row_group")

Which locations should undergo this text transformation? By default it includes
all of the "column_labels", the "stub", and the "row_group" locations. How-
ever, we could just choose one or two of those.

Value

An object of class gt_tbl.

opt_css 335

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions like
summary_rows(), grand_summary_rows(), and more). Following that, we’ll ensure that all text in
the column labels, the stub, and in all row groups is transformed to all caps using opt_all_caps().

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_all_caps()

Function ID

10-9

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_font(), opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_css Option to add custom CSS for the table

336 opt_css

Description

The opt_css() function makes it possible to add CSS to a gt table. This CSS will be added after the
compiled CSS that gt generates automatically when the object is transformed to an HTML output
table. You can supply css as a vector of lines or as a single string.

Usage

opt_css(data, css, add = TRUE, allow_duplicates = FALSE)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

css CSS declarations
scalar<character> // required
The CSS to include as part of the rendered table’s <style> element.

add Add to existing CSS
scalar<logical> // default: TRUE
If TRUE, the default, the CSS is added to any already-defined CSS (typically
from previous calls of opt_table_font(), opt_css(), or, directly setting CSS
the table.additional_css value in tab_options()). If this is set to FALSE,
the CSS provided here will replace any previously-stored CSS.

allow_duplicates

Allow for CSS duplication
scalar<logical> // default: FALSE
When this is FALSE (the default), the CSS provided here won’t be added (pro-
vided that add = TRUE) if it is seen in the already-defined CSS.

Value

An object of class gt_tbl.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). Through use of the opt_css() function, we can insert CSS rulesets as as
string. We need to ensure that the the table ID is set explicitly (we’ve done so here with the ID
value of "one", setting it in the gt() function).

exibble |>
dplyr::select(num, currency) |>
gt(id = "one") |>
fmt_currency(
columns = currency,
currency = "HKD"

opt_footnote_marks 337

) |>
fmt_scientific(columns = num) |>
opt_css(
css = "
#one .gt_table {
background-color: skyblue;

}
#one .gt_row {
padding: 20px 30px;

}
#one .gt_col_heading {
text-align: center !important;

}
"

)

Function ID

10-13

Function Introduced

v0.2.2 (August 5, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_font(), opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_footnote_marks Option to modify the set of footnote marks

Description

Alter the footnote marks for any footnotes that may be present in the table. Either a vector of marks
can be provided (including Unicode characters), or, a specific keyword could be used to signify a
preset sequence. This function serves as a shortcut for using tab_options(footnotes.marks =
{marks})

Usage

opt_footnote_marks(data, marks = "numbers")

338 opt_footnote_marks

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

marks Sequence of footnote marks
vector<character> // default: "numbers"
Either a character vector of length greater than 1 (that will represent the series of
marks) or a single keyword that represents a preset sequence of marks. The valid
keywords are: "numbers" (for numeric marks), "letters" and "LETTERS" (for
lowercase and uppercase alphabetic marks), "standard" (for a traditional set
of four symbol marks), and "extended" (which adds two more symbols to the
standard set).

Value

An object of class gt_tbl.

Specification of footnote marks

We can supply a vector that will represent the series of marks. The series of footnote marks is
recycled when its usage goes beyond the length of the set. At each cycle, the marks are simply
doubled, tripled, and so on (e.g., * -> ** -> ***). The option exists for providing keywords for
certain types of footnote marks. The keywords are:

• "numbers": numeric marks, they begin from 1 and these marks are not subject to recycling
behavior

• "letters": minuscule alphabetic marks, internally uses the letters vector which contains
26 lowercase letters of the Roman alphabet

• "LETTERS": majuscule alphabetic marks, using the LETTERS vector which has 26 uppercase
letters of the Roman alphabet

• "standard": symbolic marks, four symbols in total

• "extended": symbolic marks, extends the standard set by adding two more symbols, making
six

The symbolic marks are the: (1) Asterisk, (2) Dagger, (3) Double Dagger, (4) Section Sign, (5)
Double Vertical Line, and (6) Paragraph Sign; the "standard" set has the first four, "extended"
contains all.

Examples

Use a summarized version of the sza dataset to create a gt table, adding three footnotes (with three
calls of tab_footnote()). We can modify the footnote marks to use with the opt_footnote_marks()
function. With the keyword "standard" we get four commonly-used typographic marks.

sza |>
dplyr::filter(latitude == 30) |>

opt_footnote_marks 339

dplyr::group_by(tst) |>
dplyr::summarize(
SZA.Max = if (
all(is.na(sza))) {
NA

} else {
max(sza, na.rm = TRUE)

},
SZA.Min = if (
all(is.na(sza))) {
NA

} else {
min(sza, na.rm = TRUE)

},
.groups = "drop"

) |>
gt(rowname_col = "tst") |>
tab_spanner_delim(delim = ".") |>
sub_missing(
columns = everything(),
missing_text = "90+"

) |>
tab_stubhead(label = "TST") |>
tab_footnote(
footnote = "True solar time.",
locations = cells_stubhead()

) |>
tab_footnote(
footnote = "Solar zenith angle.",
locations = cells_column_spanners(
spanners = "spanner-SZA.Max"

)
) |>
tab_footnote(
footnote = "The Lowest SZA.",
locations = cells_stub(rows = "1200")

) |>
opt_footnote_marks(marks = "standard")

Function ID

10-3

Function Introduced

v0.2.0.5 (March 31, 2020)

340 opt_footnote_spec

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_spec(),
opt_horizontal_padding(), opt_interactive(), opt_row_striping(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_footnote_spec Option to specify the formatting of footnote marks

Description

Modify the way footnote marks are formatted. This can be performed for those footnote marks
that alight to the targeted text in cells in various locations in the table or the footnote marks
that appear in the table footer. A simple specification string can be provided for either or both
types of marks in opt_footnote_spec() . This function serves as a shortcut for using either of
tab_options(footnotes.spec_ref = {spec}) or tab_options(footnotes.spec_ftr = {spec}).

Usage

opt_footnote_spec(data, spec_ref = NULL, spec_ftr = NULL)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

spec_ref, spec_ftr

Specifications for formatting of footnote marks
scalar<character> // default: NULL (optional)
Specification of the footnote marks when behaving as footnote references and
as marks in the footer section of the table. This is a string containing spec
characters. The default is the spec string "^i", which is superscript text set in
italics.

Value

An object of class gt_tbl.

Specification rules for the formatting of footnote marks

A footnote spec consists of a string containing control characters for formatting. Not every type of
formatting makes sense for footnote marks so the specification is purposefully constrained to the
following:

• as superscript text (with the "^" control character) or regular-sized text residing on the baseline

• bold text (with "b"), italicized text (with "i"), or unstyled text (don’t use either of the "b" or
"i" control characters)

opt_footnote_spec 341

• enclosure in parentheses (use "(" / ")") or square brackets (with "[" / "]")
• a period following the mark (using "."); this is most commonly used in the table footer

With the aforementioned control characters we could, for instance, format the footnote marks to be
superscript text in bold type with "^b". We might want the marks in the footer to be regular-sized
text in parentheses, so the spec could be either "()" or "(x)" (you can optionally use "x" as a
helpful placeholder for the marks).

Examples

Use a modified version of sp500 the dataset to create a gt table with row labels. We’ll add two
footnotes using the tab_footnote() function. We can call opt_footnote_spec() to specify that
the marks of the footnote reference should be superscripts in bold, and, the marks in the footer
section should be enclosed in parentheses.

sp500 |>
dplyr::filter(date >= "1987-10-14" & date <= "1987-10-25") |>
dplyr::select(date, open, close, volume) |>
dplyr::mutate(difference = close - open) |>
dplyr::mutate(change = (close - open) / open) |>
dplyr::mutate(day = vec_fmt_datetime(date, format = "E")) |>
dplyr::arrange(-dplyr::row_number()) |>
gt(rowname_col = "date") |>
fmt_currency() |>
fmt_number(columns = volume, suffixing = TRUE) |>
fmt_percent(columns = change) |>
cols_move_to_start(columns = day) |>
cols_width(
stub() ~ px(130),
day ~ px(50),
everything() ~ px(100)

) |>
tab_footnote(
footnote = "Commerce report on trade deficit.",
locations = cells_stub(rows = 1)

) |>
tab_footnote(
footnote = "Black Monday market crash, representing the greatest
one-day percentage decline in U.S. stock market history.",
locations = cells_body(columns = change, rows = change < -0.15)

) |>
opt_footnote_spec(spec_ref = "^xb", spec_ftr = "(x)")

Function ID

10-4

Function Introduced

v0.9.0 (Mar 31, 2023)

342 opt_horizontal_padding

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_horizontal_padding(), opt_interactive(), opt_row_striping(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_horizontal_padding

Option to expand or contract horizontal padding

Description

Increase or decrease the horizontal padding throughout all locations of a gt table by use of a scale
factor, which here is defined by a real number between 0 and 3. This function serves as a shortcut
for setting the following eight options in tab_options():

• heading.padding.horizontal

• column_labels.padding.horizontal

• data_row.padding.horizontal

• row_group.padding.horizontal

• summary_row.padding.horizontal

• grand_summary_row.padding.horizontal

• footnotes.padding.horizontal

• source_notes.padding.horizontal

Usage

opt_horizontal_padding(data, scale = 1)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

scale Scale factor
scalar<numeric|integer>(0>=val>=3) // default: 1
A scale factor by which the horizontal padding will be adjusted. Must be a
number between 0 and 3.

Value

An object of class gt_tbl.

opt_horizontal_padding 343

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions like
summary_rows(), grand_summary_rows(), and more). Following that, we’ll increase the amount
of horizontal padding across the entire table with opt_horizontal_padding(). Using a scale
value of 3 (up from the default of 1) means the the horizontal space will be greatly increased,
resulting in a more spacious table.

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_horizontal_padding(scale = 3)

Function ID

10-8

Function Introduced

v0.4.0 (February 15, 2022)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_interactive(), opt_row_striping(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

344 opt_interactive

opt_interactive Option to put interactive elements in an HTML table

Description

By default, a gt table rendered as HTML will essentially be a ’static’ table. However, we can make
it ’interactive’ and configure those interactive HTML options through the opt_interactive()
function. Making an HTML table interactive entails the enabling of controls for pagination, global
search, filtering, sorting, and more.

This function serves as a shortcut for setting the following options in tab_options():

• ihtml.active

• ihtml.use_pagination

• ihtml.use_pagination_info

• ihtml.use_sorting

• ihtml.use_search

• ihtml.use_filters

• ihtml.use_resizers

• ihtml.use_highlight

• ihtml.use_compact_mode

• ihtml.use_page_size_select

• ihtml.page_size_default

• ihtml.page_size_values

• ihtml.pagination_type

Usage

opt_interactive(
data,
active = TRUE,
use_pagination = TRUE,
use_pagination_info = TRUE,
use_sorting = TRUE,
use_search = FALSE,
use_filters = FALSE,
use_resizers = FALSE,
use_highlight = FALSE,
use_compact_mode = FALSE,
use_text_wrapping = TRUE,
use_page_size_select = FALSE,
page_size_default = 10,
page_size_values = c(10, 25, 50, 100),
pagination_type = c("numbers", "jump", "simple")

)

opt_interactive 345

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

active Display interactive HTML table
scalar<logical> // default: TRUE
The active option will either enable or disable interactive features for an HTML
table. The individual features of an interactive HTML table are controlled by the
other options.

use_pagination Display pagination controls
scalar<logical> // default: TRUE
This is the option for using pagination controls (below the table body). By
default, this is TRUE and it will allow the use to page through table content.

use_pagination_info

Display pagination info
scalar<logical> // default: TRUE
If use_pagination is TRUE then the use_pagination_info option can be used
to display informational text regarding the current page view (this is set to TRUE
by default).

use_sorting Provide column sorting controls
scalar<logical> // default: TRUE
This option provides controls for sorting column values. By default, this is TRUE.

use_search Provide a global search field
scalar<logical> // default: FALSE
The use_search option places a search field for globally filtering rows to the
requested content. By default, this is FALSE.

use_filters Display filtering fields
scalar<logical> // default: FALSE
The use_filters option places search fields below each column header and
allows for filtering by column. By default, this is FALSE.

use_resizers Allow column resizing
scalar<logical> // default: FALSE
This option allows for the interactive resizing of columns. By default, this is
FALSE.

use_highlight Enable row highlighting on hover
scalar<logical> // default: FALSE
The use_highlight option highlights individual rows upon hover. By default,
this is FALSE.

use_compact_mode

Use compact mode
scalar<logical> // default: FALSE
To reduce vertical padding and thus make the table consume less vertical space
the use_compact_mode option can be used. By default, this is FALSE.

346 opt_interactive

use_text_wrapping

Use text wrapping
scalar<logical> // default: TRUE
The use_text_wrapping option controls whether text wrapping occurs through-
out the table. This is TRUE by default and with that text will be wrapped to
multiple lines. If FALSE, text will be truncated to a single line.

use_page_size_select

Allow for page size selection
scalar<logical> // default: FALSE
The use_page_size_select option lets us display a dropdown menu for the
number of rows to show per page of data.

page_size_default

Change the default page size
scalar<numeric|integer> // default: 10
The default page size (initially set as 10) can be modified with page_size_default
and this works whether or not use_page_size_select is set to TRUE.

page_size_values

Set of page-size values
vector<numeric|integer> // default: c(10, 25, 50, 100)

By default, this is the vector c(10, 25, 50, 100) which corresponds to options
for 10, 25, 50, and 100 rows of data per page. To modify these page-size options,
provide a numeric vector to page_size_values.

pagination_type

Change pagination mode
scalar<character> // default: "numbers"
When using pagination the pagination_type option lets us select between one
of three options for the layout of pagination controls. The default is "numbers",
where a series of page-number buttons is presented along with ’previous’ and
’next’ buttons. The "jump" option provides an input field with a stepper for
the page number. With "simple", only the ’previous’ and ’next’ buttons are
displayed.

Value

An object of class gt_tbl.

Examples

Use select columns from the towny dataset to create a gt table with a header (through tab_header())
and a source note (through tab_source_note()). Next, we will add interactive HTML features
(and otherwise activate interactive HTML mode) through opt_interactive(). It’ll just be the
default set of interactive options.

towny |>
dplyr::select(name, census_div, starts_with("population")) |>
gt() |>
fmt_integer() |>
cols_label_with(fn = function(x) sub("population_", "", x)) |>

opt_interactive 347

cols_width(
name ~ px(200),
census_div ~ px(200)

) |>
tab_header(
title = "Populations of Municipalities",
subtitle = "Census values from 1996 to 2021."

) |>
tab_source_note(source_note = md("Data taken from the `towny` dataset.")) |>
opt_interactive()

Interactive tables can have styled body cells. Here, we use the gtcars dataset to create an interactive
gt table. Using tab_style() and data_color() we can flexibly style body cells throughout the
table.

gtcars |>
gt() |>
cols_width(everything() ~ px(130)) |>
tab_style(
style = cell_fill(color = "gray95"),
locations = cells_body(columns = c(mfr, model))

) |>
data_color(
columns = c(starts_with("hp"), starts_with("trq")),
method = "numeric",
palette = "viridis"

) |>
cols_hide(columns = trim) |>
opt_interactive()

Function ID

10-2

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_row_striping(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

348 opt_row_striping

opt_row_striping Option to add or remove row striping

Description

By default, a gt table does not have row striping enabled. However, this function allows us to easily
enable or disable striped rows in the table body. This function serves as a convenient shortcut for
<gt_tbl> |> tab_options(row.striping.include_table_body = TRUE|FALSE).

Usage

opt_row_striping(data, row_striping = TRUE)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

row_striping Use alternating row stripes
scalar<logical> // default: TRUE
A logical value to indicate whether row striping should be added or removed.

Value

An object of class gt_tbl.

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions
like summary_rows(), grand_summary_rows(), and more). Following that, we’ll add row striping
to every second row with the opt_row_striping() function.

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",

opt_stylize 349

locations = cells_body(columns = 1, rows = 1)
) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_row_striping()

Function ID

10-5

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_stylize(), opt_table_font(),
opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_stylize Stylize your table with a colorful look

Description

With opt_stylize() you can quickly style your gt table with a carefully curated set of background
colors, line colors, and line styles. There are six styles to choose from and they largely vary in
the extent of coloring applied to different table locations. Some have table borders applied, some
apply darker colors to the table stub and summary sections, and, some even have vertical lines. In
addition to choosing a style preset, there are six color variations that each use a range of five
color tints. Each of the color tints have been fine-tuned to maximize the contrast between text and
its background. There are 36 combinations of style and color to choose from.

Usage

opt_stylize(data, style = 1, color = "blue", add_row_striping = TRUE)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

350 opt_stylize

style Table style
scalar<numeric|integer>(1>=val>=6) // default: 1
Six numbered styles are available. Simply provide a number from 1 (the default)
to 6 to choose a distinct look.

color Color variation
scalar<character> // default: "blue"
There are six color variations: "blue", "cyan", "pink", "green", "red", and
"gray".

add_row_striping

Allow row striping
scalar<logical> // default: TRUE
An option to enable row striping in the table body for the style chosen.

Value

an object of class gt_tbl.

Examples

Use exibble to create a gt table with a number of table parts added. Then, use the opt_stylize()
function to give the table some additional style (using the "cyan" color variation and style number
6).

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_stylize(style = 6, color = "cyan")

Function ID

10-1

opt_table_font 351

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_table_font(), opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_table_font Options to define font choices for the entire table

Description

The opt_table_font() function makes it possible to define fonts used for an entire gt table. Any
font names supplied in font will (by default, with add = TRUE) be placed before the names present
in the existing font stack (i.e., they will take precedence). You can choose to base the font stack on
those provided by system_fonts() by providing a valid keyword for a themed set and optionally
prepending font values to that.

Take note that you could still have entirely different fonts in specific locations of the table. For that
you would need to use tab_style() or tab_style_body() in conjunction with the cell_text()
helper function.

Usage

opt_table_font(
data,
font = NULL,
stack = NULL,
weight = NULL,
style = NULL,
add = TRUE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

font Default table fonts
vector<character>|list|obj:<font_css> // default: NULL (optional)
One or more font names available as system or web fonts. These can be com-
bined with a c() or a list(). To choose fonts from the Google Fonts service,
we can call the google_font() helper function.

352 opt_table_font

stack Name of font stack
scalar<character> // default: NULL (optional)
A name that is representative of a font stack (obtained via internally via the
system_fonts() helper function). If provided, this new stack will replace any
defined fonts and any font values will be prepended.

weight Text weight
scalar<character|numeric|integer> // default: NULL (optional)
Option to set the weight of the font. Can be a text-based keyword such as
"normal", "bold", "lighter", "bolder", or, a numeric value between 1 and
1000, inclusive. Please note that typefaces have varying support for the numeric
mapping of weight.

style Text style
scalar<character> // default: NULL (optional)
An option to modify the text style. Can be one of either "normal", "italic",
or "oblique".

add Add to existing fonts
scalar<logical> // default: TRUE
Should fonts be added to the beginning of any already-defined fonts for the
table? By default, this is TRUE and is recommended since those fonts already
present can serve as fallbacks when everything specified in font is not available.
If a stack is provided, then add will automatically set to FALSE.

Value

An object of class gt_tbl.

Possibilities for the font argument

We have the option to supply one or more font names for the font argument. They can be enclosed
in c() or a list(). You can generate this list or vector with a combination of font names, and
you can freely use the google_font(), default_fonts(), and system_fonts() functions to help
compose your font family.

Possibilities for the stack argument

There are several themed font stacks available via the system_fonts() helper function. That
function can be used to generate all or a segment of a vector supplied to the font argument.
However, using the stack argument with one of the 15 keywords for the font stacks available
in system_fonts(), we could be sure that the typeface class will work across multiple computer
systems. Any of the following keywords can be used:

• "system-ui"

• "transitional"

• "old-style"

• "humanist"

• "geometric-humanist"

• "classical-humanist"

opt_table_font 353

• "neo-grotesque"

• "monospace-slab-serif"

• "monospace-code"

• "industrial"

• "rounded-sans"

• "slab-serif"

• "antique"

• "didone"

• "handwritten"

Examples

Use a subset of the sp500 dataset to create a small gt table. We’ll use the fmt_currency() function
to display a dollar sign for the first row of monetary values. Then, set a larger font size for the table
and use the "Merriweather" font (from Google Fonts, via google_font()) with two system font
fallbacks ("Cochin" and the generic "serif").

sp500 |>
dplyr::slice(1:10) |>
dplyr::select(-volume, -adj_close) |>
gt() |>
fmt_currency(
rows = 1,
use_seps = FALSE

) |>
opt_table_font(
font = list(
google_font(name = "Merriweather"),
"Cochin", "serif"

)
)

Use the sza dataset to create an eleven-row table, two-column table. Within opt_table_font(),
use the stack argument to define the use of the "rounded-sans" font stack. This sets up a family
of fonts with rounded, curved letterforms that should be locally available in different computing
environments.

sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
!is.na(sza)

) |>
dplyr::select(-latitude, -month) |>
gt() |>
opt_table_font(stack = "rounded-sans") |>
opt_all_caps()

354 opt_table_lines

Function ID

10-12

Function Introduced

v0.2.2 (August 5, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_lines(), opt_table_outline(), opt_vertical_padding()

opt_table_lines Option to set table lines to different extents

Description

The opt_table_lines() function sets table lines in one of three possible ways: (1) all possible
table lines drawn ("all"), (2) no table lines at all ("none"), and (3) resetting to the default line
styles ("default"). This is great if you want to start off with lots of lines and subtract just a few
of them with tab_options() or tab_style(). Or, use it to start with a completely lineless table,
adding individual lines as needed.

Usage

opt_table_lines(data, extent = c("all", "none", "default"))

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

extent Extent of lines added
singl-kw:[all|none|default] // default: "all"
The extent to which lines will be visible in the table. Options are "all", "none",
or "default".

Value

An object of class gt_tbl.

opt_table_lines 355

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using func-
tions like summary_rows(), grand_summary_rows(), and more). Following that, we’ll use the
opt_table_lines() function to generate lines everywhere there can possibly be lines (the default
for the extent argument is "all").

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_table_lines()

Function ID

10-10

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_font(), opt_table_outline(), opt_vertical_padding()

356 opt_table_outline

opt_table_outline Option to wrap an outline around the entire table

Description

This function puts an outline of consistent style, width, and color around the entire table. It’ll
write over any existing outside lines so long as the width is larger that of the existing lines. The
default value of style ("solid") will draw a solid outline, whereas a value of "none" will remove
any present outline.

Usage

opt_table_outline(data, style = "solid", width = px(3), color = "#D3D3D3")

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

style Outline style property
scalar<character> // default: "solid"
The style property for the table outline. By default, this is "solid". If "none" is
used then the outline is removed and any values provided for width and color
will be ignored (i.e., not set).

width Outline width value
scalar<character> // default: px(3)
The width property for the table outline. By default, this is px(3) (or, "3px").

color Color of outline
scalar<character> // default: "#D3D3D3"
The color of the table outline. By default, this is "#D3D3D3".

Value

An object of class gt_tbl.

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions
like summary_rows(), grand_summary_rows(), and more). Following that, let’s make it so that
we have an outline wrap around the entire table by using the opt_table_outline() function.

tab_1 <-
exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(

opt_vertical_padding 357

groups = "grp_a",
columns = c(num, currency),
fns = c("min", "max")

) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_table_outline()

tab_1

Remove the table outline with the style = "none" option.

tab_1 |> opt_table_outline(style = "none")

Function ID

10-11

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_font(), opt_table_lines(), opt_vertical_padding()

opt_vertical_padding Option to expand or contract vertical padding

358 opt_vertical_padding

Description

Increase or decrease the vertical padding throughout all locations of a gt table by use of a scale
factor, which here is defined by a real number between 0 and 3. This function serves as a shortcut
for setting the following eight options in tab_options():

• heading.padding

• column_labels.padding

• data_row.padding

• row_group.padding

• summary_row.padding

• grand_summary_row.padding

• footnotes.padding

• source_notes.padding

Usage

opt_vertical_padding(data, scale = 1)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

scale Scale factor
scalar<numeric|integer>(0>=val>=3) // default: 1
A scale factor by which the vertical padding will be adjusted. Must be a number
between 0 and 3.

Value

An object of class gt_tbl.

Examples

Use the exibble dataset to create a gt table with a number of table parts added (using functions like
summary_rows(), grand_summary_rows(), and more). Following that, we’ll lessen the amount of
vertical padding across the entire table with opt_vertical_padding(). Using a scale value of
0.25 (down from the default of 1) means the the vertical space will be greatly reduced, resulting in
a more compact table.

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
summary_rows(
groups = "grp_a",
columns = c(num, currency),

pct 359

fns = c("min", "max")
) |>
grand_summary_rows(
columns = currency,
fns = total ~ sum(., na.rm = TRUE)

) |>
tab_source_note(source_note = "This is a source note.") |>
tab_footnote(
footnote = "This is a footnote.",
locations = cells_body(columns = 1, rows = 1)

) |>
tab_header(
title = "The title of the table",
subtitle = "The table's subtitle"

) |>
opt_vertical_padding(scale = 0.25)

Function ID

10-7

Function Introduced

v0.4.0 (February 15, 2022)

See Also

Other table option functions: opt_align_table_header(), opt_all_caps(), opt_css(), opt_footnote_marks(),
opt_footnote_spec(), opt_horizontal_padding(), opt_interactive(), opt_row_striping(),
opt_stylize(), opt_table_font(), opt_table_lines(), opt_table_outline()

pct Helper for providing a numeric value as percentage

Description

A percentage value acts as a length value that is relative to an initial state. For instance an 80 percent
value for something will size the target to 80 percent the size of its ’previous’ value. This type of
sizing is useful for sizing up or down a length value with an intuitive measure. This helper function
can be used for the setting of font sizes (e.g., in cell_text()) and altering the thicknesses of lines
(e.g., in cell_borders()). Should a more exact definition of size be required, the analogous helper
function pct() will be more useful.

Usage

pct(x)

360 pct

Arguments

x Numeric value in percent
scalar<numeric|integer> // required
The numeric value to format as a string percentage for some tab_options()
arguments that can take percentage values (e.g., table.width).

Value

A character vector with a single value in percentage units.

Examples

Use the exibble dataset to create a gt table. Inside of the cell_text() call (which is itself inside
of tab_style()), we’ll use the pct() helper function to define the font size for the column labels
as a percentage value.

exibble |>
gt() |>
tab_style(
style = cell_text(size = pct(75)),
locations = cells_column_labels()

)

Function ID

8-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), px(), random_id(), stub(), system_fonts()

pizzaplace 361

pizzaplace A year of pizza sales from a pizza place

Description

A synthetic dataset that describes pizza sales for a pizza place somewhere in the US. While the
contents are artificial, the ingredients used to make the pizzas are far from it. There are 32 different
pizzas that fall into 4 different categories: "classic" (classic pizzas: ’You probably had one like it
before, but never like this!’), "chicken" (pizzas with chicken as a major ingredient: ’Try the South-
west Chicken Pizza! You’ll love it!’), "supreme" (pizzas that try a little harder: ’My Soppressata
pizza uses only the finest salami from my personal salumist!’), and, "veggie" (pizzas without any
meats whatsoever: ’My Five Cheese pizza has so many cheeses, I can only offer it in Large Size!’).

Usage

pizzaplace

Format

A tibble with 49,574 rows and 7 variables:

id The ID for the order, which consists of one or more pizzas at a given date and time.

date A character representation of the order date, expressed in the ISO 8601 date format (’YYYY-
MM-DD’).

time A character representation of the order time, expressed as a 24-hour time the ISO 8601
extended time format (’hh:mm:ss’).

name The short name for the pizza.

size The size of the pizza, which can either be "S", "M", "L", "XL" (rare!), or "XXL" (even rarer!);
most pizzas are available in the "S", "M", and "L" sizes but exceptions apply.

type The category or type of pizza, which can either be "classic", "chicken", "supreme", or
"veggie".

price The price of the pizza and the amount that it sold for (in USD).

Details

Each pizza in the dataset is identified by a short name. The following listings provide the full names
of each pizza and their main ingredients.

Classic Pizzas:

• "classic_dlx": The Classic Deluxe Pizza (Pepperoni, Mushrooms, Red Onions, Red Pep-
pers, Bacon)

• "big_meat": The Big Meat Pizza (Bacon, Pepperoni, Italian Sausage, Chorizo Sausage)

• "pepperoni": The Pepperoni Pizza (Mozzarella Cheese, Pepperoni)

• "hawaiian": The Hawaiian Pizza (Sliced Ham, Pineapple, Mozzarella Cheese)

362 pizzaplace

• "pep_msh_pep": The Pepperoni, Mushroom, and Peppers Pizza (Pepperoni, Mushrooms, and
Green Peppers)

• "ital_cpcllo": The Italian Capocollo Pizza (Capocollo, Red Peppers, Tomatoes, Goat Cheese,
Garlic, Oregano)

• "napolitana": The Napolitana Pizza (Tomatoes, Anchovies, Green Olives, Red Onions, Gar-
lic)

• "the_greek": The Greek Pizza (Kalamata Olives, Feta Cheese, Tomatoes, Garlic, Beef
Chuck Roast, Red Onions)

Chicken Pizzas:

• "thai_ckn": The Thai Chicken Pizza (Chicken, Pineapple, Tomatoes, Red Peppers, Thai
Sweet Chilli Sauce)

• "bbq_ckn": The Barbecue Chicken Pizza (Barbecued Chicken, Red Peppers, Green Peppers,
Tomatoes, Red Onions, Barbecue Sauce)

• "southw_ckn": The Southwest Chicken Pizza (Chicken, Tomatoes, Red Peppers, Red Onions,
Jalapeno Peppers, Corn, Cilantro, Chipotle Sauce)

• "cali_ckn": The California Chicken Pizza (Chicken, Artichoke, Spinach, Garlic, Jalapeno
Peppers, Fontina Cheese, Gouda Cheese)

• "ckn_pesto": The Chicken Pesto Pizza (Chicken, Tomatoes, Red Peppers, Spinach, Garlic,
Pesto Sauce)

• "ckn_alfredo": The Chicken Alfredo Pizza (Chicken, Red Onions, Red Peppers, Mush-
rooms, Asiago Cheese, Alfredo Sauce)

Supreme Pizzas:

• "brie_carre": The Brie Carre Pizza (Brie Carre Cheese, Prosciutto, Caramelized Onions,
Pears, Thyme, Garlic)

• "calabrese": The Calabrese Pizza (‘Nduja Salami, Pancetta, Tomatoes, Red Onions, Frig-
gitello Peppers, Garlic)

• "soppressata": The Soppressata Pizza (Soppressata Salami, Fontina Cheese, Mozzarella
Cheese, Mushrooms, Garlic)

• "sicilian": The Sicilian Pizza (Coarse Sicilian Salami, Tomatoes, Green Olives, Luganega
Sausage, Onions, Garlic)

• "ital_supr": The Italian Supreme Pizza (Calabrese Salami, Capocollo, Tomatoes, Red
Onions, Green Olives, Garlic)

• "peppr_salami": The Pepper Salami Pizza (Genoa Salami, Capocollo, Pepperoni, Tomatoes,
Asiago Cheese, Garlic)

• "prsc_argla": The Prosciutto and Arugula Pizza (Prosciutto di San Daniele, Arugula, Moz-
zarella Cheese)

• "spinach_supr": The Spinach Supreme Pizza (Spinach, Red Onions, Pepperoni, Tomatoes,
Artichokes, Kalamata Olives, Garlic, Asiago Cheese)

• "spicy_ital": The Spicy Italian Pizza (Capocollo, Tomatoes, Goat Cheese, Artichokes,
Peperoncini verdi, Garlic)

Vegetable Pizzas

pizzaplace 363

• "mexicana": The Mexicana Pizza (Tomatoes, Red Peppers, Jalapeno Peppers, Red Onions,
Cilantro, Corn, Chipotle Sauce, Garlic)

• "four_cheese": The Four Cheese Pizza (Ricotta Cheese, Gorgonzola Piccante Cheese, Moz-
zarella Cheese, Parmigiano Reggiano Cheese, Garlic)

• "five_cheese": The Five Cheese Pizza (Mozzarella Cheese, Provolone Cheese, Smoked
Gouda Cheese, Romano Cheese, Blue Cheese, Garlic)

• "spin_pesto": The Spinach Pesto Pizza (Spinach, Artichokes, Tomatoes, Sun-dried Toma-
toes, Garlic, Pesto Sauce)

• "veggie_veg": The Vegetables + Vegetables Pizza (Mushrooms, Tomatoes, Red Peppers,
Green Peppers, Red Onions, Zucchini, Spinach, Garlic)

• "green_garden": The Green Garden Pizza (Spinach, Mushrooms, Tomatoes, Green Olives,
Feta Cheese)

• "mediterraneo": The Mediterranean Pizza (Spinach, Artichokes, Kalamata Olives, Sun-
dried Tomatoes, Feta Cheese, Plum Tomatoes, Red Onions)

• "spinach_fet": The Spinach and Feta Pizza (Spinach, Mushrooms, Red Onions, Feta Cheese,
Garlic)

• "ital_veggie": The Italian Vegetables Pizza (Eggplant, Artichokes, Tomatoes, Zucchini,
Red Peppers, Garlic, Pesto Sauce)

Examples

Here is a glimpse at the pizza data available in pizzaplace.

dplyr::glimpse(pizzaplace)
#> Rows: 49,574
#> Columns: 7
#> $ id <chr> "2015-000001", "2015-000002", "2015-000002", "2015-000002", "201~
#> $ date <chr> "2015-01-01", "2015-01-01", "2015-01-01", "2015-01-01", "2015-01~
#> $ time <chr> "11:38:36", "11:57:40", "11:57:40", "11:57:40", "11:57:40", "11:~
#> $ name <chr> "hawaiian", "classic_dlx", "mexicana", "thai_ckn", "five_cheese"~
#> $ size <chr> "M", "M", "M", "L", "L", "L", "L", "M", "M", "M", "S", "S", "S",~
#> $ type <chr> "classic", "classic", "veggie", "chicken", "veggie", "supreme", ~
#> $ price <dbl> 13.25, 16.00, 16.00, 20.75, 18.50, 20.75, 20.75, 16.50, 16.50, 1~

Dataset ID and Badge

DATA-5

Dataset Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, rx_addv, rx_adsl,
sp500, sza, towny

364 px

px Helper for providing a numeric value as pixels value

Description

For certain parameters, a length value is required. Examples include the setting of font sizes (e.g.,
in cell_text()) and thicknesses of lines (e.g., in cell_borders()). Setting a length in pixels with
px() allows for an absolute definition of size as opposed to the analogous helper function pct().

Usage

px(x)

Arguments

x Numeric length in pixels
scalar<numeric|integer> // required
The numeric value to format as a string (e.g., "12px") for some tab_options()
arguments that can take values as units of pixels (e.g., table.font.size).

Value

A character vector with a single value in pixel units.

Examples

Use the exibble dataset to create a gt table. Inside of the cell_text() call (which is itself inside
of tab_style()), we’ll use the px() helper function to define the font size for the column labels in
units of pixels.

exibble |>
gt() |>
tab_style(
style = cell_text(size = px(20)),
locations = cells_column_labels()

)

Function ID

8-3

Function Introduced

v0.2.0.5 (March 31, 2020)

random_id 365

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), random_id(), stub(), system_fonts()

random_id Helper for creating a random id for a gt table

Description

The random_id() helper function can be used to create a random, character-based ID value argu-
ment of variable length (the default is 10 letters).

Usage

random_id(n = 10)

Arguments

n Number of letters
scalar<numeric|integer> // default: 10
The n argument defines the number of lowercase letters to use for the random
ID.

Value

A character vector containing a single, random ID.

Function ID

8-27

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), stub(), system_fonts()

366 render_gt

render_gt A gt display table render function for use in Shiny

Description

With render_gt() we can create a reactive gt table that works wonderfully once assigned to an
output slot (with gt_output()). This function is to be used within Shiny’s server() component.
We have some options for controlling the size of the container holding the gt table. The width
and height arguments allow for sizing the container, and the align argument allows us to align
the table within the container (some other fine-grained options for positioning are available in the
tab_options() function).

We need to ensure that we have the shiny package installed first. This is easily by using install.packages("shiny").
More information on creating Shiny apps can be found on the Shiny website.

Usage

render_gt(
expr,
width = NULL,
height = NULL,
align = NULL,
env = parent.frame(),
quoted = FALSE,
outputArgs = list()

)

Arguments

expr Expression
<expression>|obj:<data.frame>|obj:<tbl_df>

An expression that creates a gt table object. For sake of convenience, a data
frame or tibble can be used here (it will be automatically introduced to gt()
with its default options).

width, height Dimensions of table container
scalar<numeric|integer|character> // default: NULL (optional)
The width and height of the table’s container. Either can be specified as a single-
length character vector with units of pixels or as a percentage. If provided as
a single-length numeric vector, it is assumed that the value is given in units of
pixels. The px() and pct() helper functions can also be used to pass in numeric
values and obtain values as pixel or percent units.

align Table alignment
scalar<character> // default: NULL (optional)
The alignment of the table in its container. If NULL, the table will be center-
aligned. Valid options for this are: "center", "left", and "right".

https://shiny.posit.co

render_gt 367

env Evaluation environment
<environment> // default: parent.frame()
The environment in which to evaluate the expr.

quoted Option to quote() expr
scalar<logical> // default: FALSE
Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

outputArgs Output arguments
list // default: list()
A list of arguments to be passed through to the implicit call to gt_output()
when render_gt() is used in an interactive R Markdown document.

Value

An object of class shiny.render.function.

Examples

Here is a Shiny app (contained within a single file) that (1) prepares a gt table, (2) sets up the ui
with gt_output(), and (3) sets up the server with a render_gt() that uses the gt_tbl object as
the input expression.

library(shiny)

gt_tbl <-
gtcars |>
gt() |>
fmt_currency(columns = msrp, decimals = 0) |>
cols_hide(columns = -c(mfr, model, year, mpg_c, msrp)) |>
cols_label_with(columns = everything(), fn = toupper) |>
data_color(columns = msrp, method = "numeric", palette = "viridis") |>
sub_missing() |>
opt_interactive(use_compact_mode = TRUE)

ui <- fluidPage(
gt_output(outputId = "table")

)

server <- function(input, output, session) {
output$table <- render_gt(expr = gt_tbl)

}

shinyApp(ui = ui, server = server)

Function ID

12-1

368 rm_caption

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other Shiny functions: gt_output()

rm_caption Remove the table caption

Description

We can easily remove the caption text from a gt table with rm_caption(). The caption may exist
if it were set through the gt() caption argument or via tab_caption().

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that the table not have a caption at all. This function is safe to
use even if there is no table caption set in the input gt_tbl object.

Usage

rm_caption(data)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

Value

An object of class gt_tbl.

Examples

Use a portion of the gtcars dataset to create a gt table. We’ll add a header part with the tab_header()
function, and, a caption will also be added via the tab_caption() function.

gt_tbl <-
gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>

rm_footnotes 369

tab_caption(caption = md("**gt** table example."))

gt_tbl

If you decide that you don’t want the caption in the gt_tbl object, it can be removed with the
rm_caption() function.

rm_caption(data = gt_tbl)

Function ID

7-6

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_footnotes(), rm_header(), rm_source_notes(), rm_spanners(),
rm_stubhead()

rm_footnotes Remove table footnotes

Description

If you have one or more footnotes that ought to be removed, the rm_footnotes() function allows
for such a selective removal. The table footer is an optional table part that is positioned below the
table body, containing areas for both the footnotes and source notes.

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that some or all of the footnotes be removed. This function is
safe to use even if there are no footnotes in the input gt_tbl object so long as select helpers (such
as the default everything()) are used instead of explicit integer values.

Usage

rm_footnotes(data, footnotes = everything())

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

370 rm_footnotes

footnotes Footnotes to remove
scalar<numeric|integer>|everything() // default: everything()
A specification of which footnotes should be removed. The footnotes to be
removed can be given as a vector of integer values (they are stored as integer
positions, in order of creation, starting at 1). A select helper can also be used
and, by default, this is everything() (whereby all footnotes will be removed).

Value

An object of class gt_tbl.

Examples

Use a subset of the sza dataset to create a gt table. Color the sza column using the data_color()
function, then, use tab_footnote() twice to add two footnotes (each one targeting a different
column label).

gt_tbl <-
sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
!is.na(sza)

) |>
dplyr::select(-latitude, -month) |>
gt() |>
data_color(
columns = sza,
palette = c("white", "yellow", "navyblue"),
domain = c(0, 90)

) |>
tab_footnote(
footnote = "Color indicates height of sun.",
locations = cells_column_labels(
columns = sza

)
) |>
tab_footnote(
footnote = "
The true solar time at the given latitude
and date (first of month) for which the
solar zenith angle is calculated.
",
locations = cells_column_labels(
columns = tst

)
) |>
cols_width(everything() ~ px(150))

rm_header 371

gt_tbl

If you decide that you don’t want the footnotes in the gt_tbl object, they can be removed with the
rm_footnotes() function.

rm_footnotes(data = gt_tbl)

Individual footnotes can be selectively removed. Footnotes are identified by their index values. To
remove the footnote concerning true solar time (footnote 2, since it was supplied to gt after the other
footnote) we would give the correct index value to footnotes.

rm_footnotes(data = gt_tbl, footnotes = 2)

Function ID

7-4

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_caption(), rm_header(), rm_source_notes(), rm_spanners(),
rm_stubhead()

rm_header Remove the table header

Description

We can remove the table header from a gt table quite easily with rm_header(). The table header is
an optional table part (positioned above the column labels) that can be added through the tab_header().

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that the table not contain a header. This function is safe to use
even if there is no header part in the input gt_tbl object.

Usage

rm_header(data)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

372 rm_source_notes

Value

An object of class gt_tbl.

Examples

Let’s use a subset of the gtcars dataset to create a gt table. A header part can be added with the
tab_header() function; with that, we get a title and a subtitle for the table.

gt_tbl <-
gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

)

gt_tbl

If you decide that you don’t want the header in the gt_tbl object, it can be removed with the
rm_header() function.

rm_header(data = gt_tbl)

Function ID

7-1

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_caption(), rm_footnotes(), rm_source_notes(), rm_spanners(),
rm_stubhead()

rm_source_notes Remove table source notes

rm_source_notes 373

Description

If you have one or more source notes that ought to be removed, the rm_source_notes() function
allows for such a selective removal. The table footer is an optional table part that is positioned
below the table body, containing areas for both the source notes and footnotes.

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that some or all of the source notes be removed. This function
is safe to use even if there are no source notes in the input gt_tbl object so long as select helpers
(such as the default everything()) are used instead of explicit integer values.

Usage

rm_source_notes(data, source_notes = everything())

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

source_notes Source notes to remove
scalar<numeric|integer>|everything() // default: everything()
A specification of which source notes should be removed. The source notes
to be removed can be given as a vector of integer values (they are stored as
integer positions, in order of creation, starting at 1). A select helper can also
be used and, by default, this is everything() (whereby all source notes will be
removed).

Value

An object of class gt_tbl.

Examples

Use a subset of the gtcars dataset to create a gt table. The tab_source_note() function is used
to add a source note to the table footer that cites the data source (or, it could just be arbitrary text).
We’ll use the function twice, in effect adding two source notes to the footer.

gt_tbl <-
gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_source_note(source_note = "Data from the 'edmunds.com' site.") |>
tab_source_note(source_note = "Showing only the first five rows.") |>
cols_width(everything() ~ px(120))

gt_tbl

374 rm_spanners

If you decide that you don’t want the source notes in the gt_tbl object, they can be removed with
the rm_source_notes() function.

rm_source_notes(data = gt_tbl)

Individual source notes can be selectively removed. Source notes are identified by their index
values. To remove the source note concerning the extent of the data (source note 2, since it was
supplied to gt after the other source note) we would give the correct index value to source_notes.

rm_source_notes(data = gt_tbl, source_notes = 2)

Function ID

7-5

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_caption(), rm_footnotes(), rm_header(), rm_spanners(),
rm_stubhead()

rm_spanners Remove column spanner labels

Description

If you would like to remove column spanner labels then the rm_spanners() function can make
this possible. Column spanner labels appear above the column labels and can occupy several levels
via stacking either though tab_spanner() or tab_spanner_delim(). Spanner column labels are
distinguishable and accessible by their ID values.

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that some or all of the column spanner labels be removed. This
function is safe to use even if there are no column spanner labels in the input gt_tbl object so long
as select helpers (such as the default everything()) are used instead of explicit ID values.

Usage

rm_spanners(data, spanners = everything(), levels = NULL)

rm_spanners 375

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

spanners Spanners to remove
<spanner-targeting expression> // default: everything()
A specification of which spanner column labels should be removed. Those to be
removed can be given as a vector of spanner ID values (every spanner column la-
bel has one, either set by the user or by gt when using tab_spanner_delim()).
A select helper can also be used and, by default, this is everything() (whereby
all spanner column labels will be removed).

levels Spanner levels to remove
scalar<numeric|integer> // default: NULL (optional)
Instead of removing spanner column labels by ID values, entire levels of span-
ners can instead be removed. Supply a numeric vector of level values (the first
level is 1) and, if they are present, they will be removed. Any input given to
level will mean that spanners is ignored.

Value

An object of class gt_tbl.

Examples

Use a portion of the gtcars dataset to create a gt table. With the tab_spanner() function, we can
group several related columns together under a spanner column. In this example, that is done with
several calls of tab_spanner() in order to create two levels of spanner column labels.

gt_tbl <-
gtcars |>
dplyr::select(
-mfr, -trim, bdy_style, drivetrain,
-drivetrain, -trsmn, -ctry_origin

) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_spanner(label = "HP", columns = c(hp, hp_rpm)) |>
tab_spanner(label = "Torque", columns = c(trq, trq_rpm)) |>
tab_spanner(label = "MPG", columns = c(mpg_c, mpg_h)) |>
tab_spanner(
label = "Performance",
columns = c(
hp, hp_rpm, trq, trq_rpm,
mpg_c, mpg_h

)
)

376 rm_stubhead

gt_tbl

If you decide that you don’t want any of the spanners in the gt_tbl object, they can all be removed
with the rm_spanners() function.

rm_spanners(data = gt_tbl)

Individual spanner column labels can be removed by ID value. In all the above uses of tab_spanner(),
the label value is the ID value (you can alternately set a different ID value though the id argument).
Let’s remove the "HP" and "MPG" spanner column labels with rm_spanners().

rm_spanners(data = gt_tbl, spanners = c("HP", "MPG"))

We can also remove spanner column labels by level with rm_spanners(). Provide a vector of one
or more values greater than or equal to 1 (the first level starts there). In the next example, we’ll
remove the first level of spanner column labels. Any levels not being removed will collapse down
accordingly.

rm_spanners(data = gt_tbl, levels = 1)

Function ID

7-3

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_caption(), rm_footnotes(), rm_header(), rm_source_notes(),
rm_stubhead()

rm_stubhead Remove the stubhead label

Description

We can easily remove the stubhead label from a gt table with rm_stubhead(). The stubhead loca-
tion only exists if there is a table stub and the text in that cell is added through the tab_stubhead()
function.

This function for removal is useful if you have received a gt table (perhaps through an API that
returns gt objects) but would prefer that the table not contain any content in the stubhead. This
function is safe to use even if there is no stubhead label in the input gt_tbl object.

rm_stubhead 377

Usage

rm_stubhead(data)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

Value

An object of class gt_tbl.

Examples

Using the gtcars datset, we’ll create a gt table. With the tab_stubhead() function, it’s possible
to add a stubhead label. This appears in the top-left and can be used to describe what is in the stub.

gt_tbl <-
gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:5) |>
gt(rowname_col = "model") |>
tab_stubhead(label = "car")

gt_tbl

If you decide that you don’t want the stubhead label in the gt_tbl object, it can be removed with
the rm_stubhead() function.

rm_stubhead(data = gt_tbl)

Function ID

7-2

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part removal functions: rm_caption(), rm_footnotes(), rm_header(), rm_source_notes(),
rm_spanners()

378 rows_add

rows_add Add one or more rows to a gt table

Description

It’s possible to add new rows to your table with rows_add() by supplying the new row data through
name-value pairs or two-sided formula expressions. The new rows are added to the bottom of
the table by default but can be added internally though by using either the .before or .after
arguments. If entirely empty rows need to be added, the .n_empty option provides a means to
specify the number of blank (i.e., all NA) rows to be inserted into the table.

Usage

rows_add(
.data,
...,
.list = list2(...),
.before = NULL,
.after = NULL,
.n_empty = NULL

)

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Cell data assignments
<multiple expressions> // (or, use .list)
Expressions for the assignment of cell values to the new rows by column name
in .data. Name-value pairs, in the form of <column> = <value vector> will
work, so long as the <column> value exists in the table. Two-sided formulas
with column-resolving expressions (e.g, <expr> ~ <value vector>) can also
be used, where the left-hand side corresponds to selections of columns. Col-
umn names should be enclosed in c() and select helpers like starts_with(),
ends_with(), contains(), matches(), one_of(), and everything() can be
used in the LHS. The length of the longest vector in <value vector> deter-
mines how many new rows will be added. Single values in <value vector>
will be repeated down in cases where there are multiple rows to be added.

.list Alternative to ...
<list of multiple expressions> // (or, use ...)
Allows for the use of a list as an input alternative to

.before, .after

Row used as anchor
<row-targeting expression> // default: NULL (optional)

rows_add 379

A single row-resolving expression or row index an be given to either .before
or .after. The row specifies where the new rows should be positioned among
the existing rows in the input data table. While select helper functions such as
starts_with() and ends_with() can be used for row targeting, it’s recom-
mended that a single row name or index be used. This is to ensure that exactly
one row is provided to either of these arguments (otherwise, the function will be
stopped). If nothing is provided for either argument then any new rows will be
placed at the bottom of the table.

.n_empty Number of empty rows to add
scalar<numeric|integer>(val>=0) // default: NULL (optional)
An option to add empty rows in lieu of rows containing data that would other-
wise be supplied to ... or .list. If the option is taken, provide an integer value
here.

Value

An object of class gt_tbl.

Targeting the row for insertion with .before or .after

The targeting of a row for insertion is done through the .before or .after arguments (only one of
these options should be be used). This can be done in a variety of ways. If a stub is present, then
we potentially have row identifiers. This is the ideal method to use for establishing a row target.
We can use tidyselect-style expressions to target a row. It’s also possible to use row indices (e.g.,
c(3, 5, 6)) though these index values must correspond to the row numbers of the input data (the
indices won’t necessarily match those of rearranged rows if row groups are present). One more type
of expression is possible, an expression that takes column values (can involve any of the available
columns in the table) and returns a logical vector.

Examples

Let’s make a simple gt table with the exibble dataset, using the row column for labels in the stub.
We’ll add a single row to the bottom of the table with rows_add(). With name-value pairs, it’s
possible to add values for the new body cells that correspond to columns available in the table. For
any columns that are missed, the related body cells will receive NA values.

exibble |>
gt(rowname_col = "row") |>
rows_add(
row = "row_9",
num = 9.999E7,
char = "ilama",
fctr = "nine",
group = "grp_b"

)

If you wanted to place a row somewhere in the middle of the table, we can use either of the .before
or .after arguments in rows_add():

380 rows_add

exibble |>
gt(rowname_col = "row") |>
rows_add(
row = "row_4.5",
num = 9.923E3,
char = "elderberry",
fctr = "eighty",
group = "grp_a",
.after = "row_4"

)

Putting a row at the beginning requires the use of the .before argument. We can use an index value
for the row as in .before = 1 for maximum easiness:

exibble |>
gt(rowname_col = "row") |>
rows_add(
row = "row_0",
num = 0,
char = "apple",
fctr = "zero",
group = "grp_a",
.before = 1

)

Again with exibble, we can create an example where we insert ’spacer’ rows. These are rows
without any content and merely serve to add extra vertical space to the table in specific locations.
In this case, we’ll have a stub with row names and row groups (set up in the gt() call). The two
rows being added will occupy the bottom row of each group. The only data defined for the two
rows involves values for the row and group columns. It’s important that the data for group uses the
group names already present in the data ("grp_a" and "grp_b"). The corresponding values for row
will be "row_a_end" and "row_b_end", these will be used later expressions for targeting the rows.
Here’s the code needed to generate spacer rows at the end of each row group:

exibble |>
gt(rowname_col = "row", groupname_col = "group") |>
rows_add(
row = c("row_a_end", "row_b_end"),
group = c("grp_a", "grp_b")

) |>
tab_style(
style = cell_borders(sides = "top", style = "hidden"),
locations = list(
cells_body(rows = ends_with("end")),
cells_stub(rows = ends_with("end"))

)
) |>
sub_missing(missing_text = "") |>

rows_add 381

text_case_when(
grepl("end", x) ~ "",
.locations = cells_stub()

) |>
opt_vertical_padding(scale = 0.5)

All missing values were substituted with an empty string (""), and that was done by using the
sub_missing() function. We removed the top border of the new rows with a call to tab_style(),
targeting those rows where the row labels end with "end". Finally, we get rid of the row labels with
the use of the text_case_when() function, using a similar strategy of targeting the name of the
row label.

Another application is starting from nothing (really just the definition of columns) and building up a
table using several invocations of rows_add(). This might be useful in interactive or programmatic
applications. Here’s an example where two columns are defined with dplyr’s tibble() function
(and no rows are present initially); with two calls of rows_add(), two separate rows are added.

dplyr::tibble(
time = lubridate::POSIXct(),
event = character(0)

) |>
gt() |>
rows_add(
time = lubridate::ymd_hms("2022-01-23 12:36:10"),
event = "start"

) |>
rows_add(
time = lubridate::ymd_hms("2022-01-23 13:41:26"),
event = "completed"

)

It’s possible to use formula syntax in rows_add() to perform column resolution along with attach-
ing values for new rows. If we wanted to use an equivalent value for multiple cells in a new row, a
valid input would be in the form of <expr> ~ <value vector>. In the following example, we cre-
ate a simple table with six columns (the rendered gt table displays four columns and a stub column
since the group column is used for row group labels). Let’s add a single row where some of the cell
values added correspond to columns are resolved on the LHS of the formula expressions:

dplyr::tibble(
group = c("Group A", "Group B", "Group B"),
id = c("WG-025360", "WG-025361", "WG-025362"),
a = c(1, 6, 2),
b = c(2, 6, 2),
quantity_x = c(83.58, 282.71, 92.20),
quantity_y = c(36.82, 282.71, 87.34)

) |>
gt(rowname_col = "id", groupname_col = "group") |>
rows_add(
starts_with("gr") ~ "Group A",

382 rows_add

id = "WG-025363",
c(a, b) ~ 5,
starts_with("quantity") ~ 72.63

)

We can see that using starts_with("gr") yields a successful match to the group column with the
tangible result being an addition of a row to the "Group A" group (the added row is the second one
in the rendered gt table). Through the use of c(a, b), it was possible to add the value 5 to both the
a and b columns. A similar approach was taken with adding the 72.63 value to the quantity_x
and quantity_y columns though we used the starts_with("quantity") expression to get gt to
resolve those two columns.

You can start with an empty table (i.e., no columns and no rows) and add one or more rows to it.
In the completely empty table scenario, where you would use something like dplyr::tibble() or
data.frame() with gt(), the first rows_add() could have rows of arbitrary width. In other words,
you get to generate table columns (and rows) with a completely empty table via rows_add(). Here’s
an example of that:

gt(dplyr::tibble()) |>
rows_add(
msrp = c(29.95, 49.95, 79.95),
item = c("Klax", "Rez", "Ys"),
type = c("A", "B", "X")

) |>
rows_add(
msrp = 14.95,
item = "D",
type = "Z"

)

In the above, three columns and three rows were generated. The second usage of rows_add() had
to use of a subset of those columns (all three were used to create a complete, new row).

We can also start with a virtually empty table: one that has columns but no actual rows. With this
type of multi-column, zero-row table, one needs to use a subset of the columns when generating
new rows through rows_add().

dplyr::tibble(
msrp = numeric(0),
item = character(0),
type = character(0)

) |>
gt() |>
rows_add(
msrp = c(29.95, 49.95, 79.95, 14.95),
item = c("Klax", "Rez", "Ys", "D"),
type = c("A", "B", "X", "Z")

) |>
cols_add(
genre = c("puzzle", "action", "RPG", "adventure")

row_group_order 383

) |>
fmt_currency() |>
cols_move_to_end(columns = msrp)

Function ID

6-4

Function Introduced

v0.10.0 (October 7, 2023)

See Also

Other row addition/modification functions: grand_summary_rows(), row_group_order(), summary_rows()

row_group_order Modify the ordering of any row groups

Description

We can modify the display order of any row groups in a gt object with the row_group_order()
function. The groups argument takes a vector of row group ID values. After this function is
invoked, the row groups will adhere to this revised ordering. It isn’t necessary to provide all row ID
values in groups, rather, what is provided will assume the specified ordering at the top of the table
and the remaining row groups will follow in their original ordering.

Usage

row_group_order(data, groups)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

groups Specification of row group IDs
vector<character> // required
A character vector of row group ID values corresponding to the revised ordering.
While this vector must contain valid group ID values, it is not required to have
all of the row group IDs within it; any omitted values will be added to the end
while preserving the original ordering.

Value

An object of class gt_tbl.

384 rx_addv

Examples

Let’s use exibble to create a gt table with a stub and with row groups. We can modify the order of
the row groups with row_group_order(), specifying the new ordering in groups.

exibble |>
dplyr::select(char, currency, row, group) |>
gt(
rowname_col = "row",
groupname_col = "group"

) |>
row_group_order(groups = c("grp_b", "grp_a"))

Function ID

6-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other row addition/modification functions: grand_summary_rows(), rows_add(), summary_rows()

rx_addv An ADDV-flavored clinical trial toy dataset

Description

This tibble contains artificial protocol deviation data for 180 subjects in the Intent-to-Treat (ITT)
population of the GT01 study. The dataset contains the usual parameters (PARAM, PARAMCD) for an
addv. There is summary parameter (PARCAT1 == "OVERALL") for each subject of the GT01 ITT-
population, indicating whether or not at least one major protocol deviation (PD) occurred through-
out the course of the study for the respective subject. Individual records for protocol deviations per
subject exist, indicating which specific type of PD occurred. The additional flag CRIT1FL, shows
whether a PD was related to COVID-19 or not.

Although the data was intentionally created to mimic a typical clinical trial dataset following the
CDISC format, it might not strictly comply with CDISC ADaM rules. The intent is to showcase the
workflow for clinical table creation rather than creating a fully CDISC-compliant ADaM dataset.

Usage

rx_addv

rx_addv 385

Format

A tibble with 291 rows and 20 variables:

STUDYID, STUDYIDN The unique study identifier and its numeric version.

USUBJID The unique subject identifier.

TRTA, TRTAN The study intervention and its numeric version, which is either "Placebo" (1),
"Drug 1" (2), or NA (3), missing for screen failures).

ITTFL Intent-to-Treat (ITT) population flag, where "Y" indicates a subject belongs to the ITT
population and "N" indicates a subject is not in the ITT population.

AGE The age of a subject at baseline in years.

AAGEGR1 The analysis age group, indicating if a subject was strictly younger than 40 years at
baseline or older.

SEX Sex of a subject. Can be either "Male", "Female" or "Undifferentiated".

ETHNIC Ethnicity of a subject. Can be either "Hispanic or Latino", "Not Hispanic or Latino"
or missing ("").

BLBMI Body Mass Index (BMI) of a subject at baseline in kg/m2.

DVTERM The Protocol Deviation Term.

PARAMCD, PARAM The Parameter Code and decoded parameter description for the protocol
deviation.

PARCAT1 Parameter category. Can be "OVERALL" for derived PD summaries or "PROTOCOL
DEVIATION" for individual PDs.

DVCAT Category for PD, indicating whether the PD is a major one or not.

ACAT1 Analysis category 1. Only populated for individual PDs, not for summary scores. High
level category for PDs.

AVAL Analysis Value. Either 0 or 1.

CRIT1, CRIT1FL Analysis Criterion 1 and analysis criterion 1 flag, indicating whether PD is
related to COVID-19 or not.

Examples

Here is a glimpse at the data available in rx_addv.

dplyr::glimpse(rx_addv)
#> Rows: 291
#> Columns: 20
#> $ STUDYID <chr> "GT01", "GT01", "GT01", "GT01", "GT01", "GT01", "GT01", "GT01~
#> $ STUDYIDN <chr> "4001", "4001", "4001", "4001", "4001", "4001", "4001", "4001~
#> $ USUBJID <chr> "GT1001", "GT1002", "GT1002", "GT1003", "GT1003", "GT1003", "~
#> $ TRTA <fct> Placebo, Placebo, Placebo, Placebo, Placebo, Placebo, Placebo~
#> $ TRTAN <dbl> 1, 1~
#> $ ITTFL <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "~
#> $ AGE <int> 41, 39, 39, 38, 38, 38, 45, 45, 35, 35, 35, 35, 35, 42, 35, 3~
#> $ AAGEGR1 <fct> >=40, <40, <40, <40, <40, <40, >=40, >=40, <40, <40, <40, <40~
#> $ SEX <fct> Male, Female, Female, Male, Male, Male, Male, Male, Female, F~

386 rx_adsl

#> $ ETHNIC <fct> Not Hispanic or Latino, Not Hispanic or Latino, Not Hispanic ~
#> $ BLBMI <dbl> 33.35073, 30.45862, 30.45862, 22.85986, 22.85986, 22.85986, 2~
#> $ DVTERM <chr> "", "", "Lab values not taken at month 3", "", "{gt} Question~
#> $ PARAMCD <fct> PDANYM, PDANYM, PDEV02, PDANYM, PDEV01, PDEV02, PDANYM, PDEV0~
#> $ PARAM <fct> At least one major Protocol Deviation, At least one major Pro~
#> $ PARCAT1 <chr> "OVERALL", "OVERALL", "PROTOCOL DEVIATION", "OVERALL", "PROTO~
#> $ DVCAT <chr> "", "", "Major", "", "Major", "Major", "", "Major", "", "", "~
#> $ ACAT1 <chr> "", "", "Study Procedures Criteria Deviations", "", "Study Pr~
#> $ AVAL <dbl> 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1~
#> $ CRIT1 <chr> "COVID-19 Related", "COVID-19 Related", "COVID-19 Related", "~
#> $ CRIT1FL <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "Y", "N", "N", "~

Dataset ID and Badge

DATA-12

Dataset Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_adsl,
sp500, sza, towny

rx_adsl An ADSL-flavored clinical trial toy dataset

Description

This tibble contains artificial data for 182 subjects of the GT01 study. Each row corresponds to
demographic characteristics of a single trial participant. Two out of 182 study participants were
screen failures and thus not treated, the rest of the study population was randomized with a 1:1
ratio to receive either "Placebo" (as comparator) or "Drug 1". The dataset entails subject level
demographics such as age, age group, sex, ethnicity, and body mass index (BMI) at baseline, as
well as an event flag, indicating whether the subject experienced a specific event throughout the
course of the study or not.

Although the data was intentionally created to mimic a typical clinical trial dataset following the
CDISC format, it might not strictly comply with CDISC ADaM rules. The intent is to showcase the
workflow for clinical table creation rather than creating a fully CDISC-compliant ADaM dataset.

Usage

rx_adsl

rx_adsl 387

Format

A tibble with 182 rows and 14 variables:

STUDYID, STUDYIDN The unique study identifier and its numeric version.

USUBJID The unique subject identifier.

TRTA, TRTAN The study intervention and its numeric version, which is either "Placebo" (1),
"Drug 1" (2) or NA (3), missing for screen failures).

ITTFL Intent-to-Treat (ITT) population flag, where "Y" indicates a subject belongs to the ITT
population and "N" indicates a subject is not in the ITT population.

RANDFL Randomization flag, where "Y" indicates a subject was randomized to receive either
"Placebo" or "Drug 1" and "N" indicates a subject was not randomized at all.

SCRFREAS The reason for screen failure. This is either missing ("") for non-screen failure sub-
jects or indicates the reason for screen failure

AGE The age of a subject at baseline in years.

AAGEGR1 The analysis age group, indicating if a subject was strictly younger than 40 years at
baseline or older.

SEX Sex of a subject. Can be either "Male", "Female" or "Undifferentiated".

ETHNIC Ethnicity of a subject. Can be either "Hispanic or Latino", "Not Hispanic or Latino"
or missing ("").

BLBMI Body Mass Index (BMI) of a subject at baseline in kg/m2.

EVNTFL Event Flag. Indicates whether the subject experienced a specific event during the course
of the study or not. Can be either "Y" (if if the subject had the event) or "N".

Examples

Here is a glimpse at the data available in rx_adsl.

dplyr::glimpse(rx_adsl)
#> Rows: 182
#> Columns: 14
#> $ STUDYID <chr> "GT01", "GT01", "GT01", "GT01", "GT01", "GT01", "GT01", "GT01~
#> $ STUDYIDN <chr> "4001", "4001", "4001", "4001", "4001", "4001", "4001", "4001~
#> $ USUBJID <chr> "GT1000", "GT1001", "GT1002", "GT1003", "GT1004", "GT1005", "~
#> $ TRTA <fct> NA, Placebo, Placebo, Placebo, Placebo, Placebo, Placebo, Pla~
#> $ TRTAN <dbl> 3, 1~
#> $ ITTFL <chr> "N", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "~
#> $ RANDFL <chr> "N", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "~
#> $ SCRFREAS <chr> "WITHDRAWAL BY SUBJECT", "", "", "", "", "", "", "", "", "", ~
#> $ AGE <int> 37, 41, 39, 38, 45, 35, 42, 35, 42, 38, 48, 36, 46, 34, 44, 4~
#> $ AAGEGR1 <fct> <40, >=40, <40, <40, >=40, <40, >=40, <40, >=40, <40, >=40, <~
#> $ SEX <fct> Male, Male, Female, Male, Male, Female, Female, Male, Male, F~
#> $ ETHNIC <fct> Hispanic or Latino, Not Hispanic or Latino, Not Hispanic or L~
#> $ BLBMI <dbl> 33.76723, 33.35073, 30.45862, 22.85986, 23.89713, 29.09856, 2~
#> $ EVNTFL <chr> "", "Y", "Y", "N", "Y", "Y", "N", "N", "N", "N", "N", "N", "Y~

388 sp500

Dataset ID and Badge

DATA-11

Dataset Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv,
sp500, sza, towny

sp500 Daily S&P 500 Index data from 1950 to 2015

Description

This dataset provides daily price indicators for the S&P 500 index from the beginning of 1950 to
the end of 2015. The index includes 500 leading companies and captures about 80 percent coverage
of available market capitalization.

Usage

sp500

Format

A tibble with 16,607 rows and 7 variables:

date The date expressed as Date values.
open, high, low, close The day’s opening, high, low, and closing prices in USD. The close price

is adjusted for splits.
volume The number of trades for the given date.
adj_close The close price adjusted for both dividends and splits.

Examples

Here is a glimpse at the data available in sp500.

dplyr::glimpse(sp500)
#> Rows: 16,607
#> Columns: 7
#> $ date <date> 2015-12-31, 2015-12-30, 2015-12-29, 2015-12-28, 2015-12-24,~
#> $ open <dbl> 2060.59, 2077.34, 2060.54, 2057.77, 2063.52, 2042.20, 2023.1~
#> $ high <dbl> 2062.54, 2077.34, 2081.56, 2057.77, 2067.36, 2064.73, 2042.7~
#> $ low <dbl> 2043.62, 2061.97, 2060.54, 2044.20, 2058.73, 2042.20, 2020.4~
#> $ close <dbl> 2043.94, 2063.36, 2078.36, 2056.50, 2060.99, 2064.29, 2038.9~
#> $ volume <dbl> 2655330000, 2367430000, 2542000000, 2492510000, 1411860000, ~
#> $ adj_close <dbl> 2043.94, 2063.36, 2078.36, 2056.50, 2060.99, 2064.29, 2038.9~

stub 389

Dataset ID and Badge

DATA-4

Dataset Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv,
rx_adsl, sza, towny

stub Select helper for targeting the stub column

Description

Should you need to target only the stub column for formatting or other operations, the stub() select
helper can be used. This obviates the need to use the name of the column that was selected as the
stub column.

Usage

stub()

Value

A character vector of class "stub_column".

Examples

Create a tibble that has a row column (values from 1 to 6), a group column, and a vals column
(containing the same values as in row).

tbl <-
dplyr::tibble(
row = 1:6,
group = c(rep("Group A", 3), rep("Group B", 3)),
vals = 1:6

)

Create a gt table with a two-column stub (incorporating the row and group columns in that). Format
the row labels of the stub with fmt_roman() to obtain Roman numerals in the stub; we’re selecting
the stub column here with the stub() select helper.

tbl |>
gt(rowname_col = "row", groupname_col = "group") |>
fmt_roman(columns = stub()) |>
tab_options(row_group.as_column = TRUE)

390 sub_large_vals

Function ID

8-10

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),
cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), system_fonts()

sub_large_vals Substitute large values in the table body

Description

Wherever there are numerical data that are very large in value, replacement text may be better
for explanatory purposes. The sub_large_vals() function allows for this replacement through
specification of a threshold, a large_pattern, and the sign (positive or negative) of the values to
be considered.

Usage

sub_large_vals(
data,
columns = everything(),
rows = everything(),
threshold = 1e+12,
large_pattern = ">={x}",
sign = "+"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

sub_large_vals 391

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which substitution operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

threshold Threshold value
scalar<numeric|integer> // default: 1E12
The threshold value with which values should be considered large enough for
replacement.

large_pattern Pattern specification for large values
scalar<character> // default: ">={x}"
The pattern text to be used in place of the suitably large values in the rendered
table.

sign Consider positive or negative values?
scalar<character> // default: "+"
The sign of the numbers to be considered in the replacement. By default, we
only consider positive values ("+"). The other option ("-") can be used to con-
sider only negative values.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given substitution function will be skipped over. So it’s safe to select all

392 sub_large_vals

columns with a particular substitution function (only those values that can be substituted will be),
but, you may not want that. One strategy is to work on the bulk of cell values with one substitution
function and then constrain the columns for later passes with other types of substitution (the last
operation done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base the substitution on values in the column or another column, or, you’d like
to use a more complex predicate expression.

Examples

Let’s generate a simple, single-column tibble that contains an assortment of values that could po-
tentially undergo some substitution.

tbl <- dplyr::tibble(num = c(0, NA, 10^(8:14)))

tbl
#> # A tibble: 9 x 1
#> num
#> <dbl>
#> 1 0
#> 2 NA
#> 3 1e 8
#> 4 1e 9
#> 5 1e10
#> 6 1e11
#> 7 1e12
#> 8 1e13
#> 9 1e14

The tbl object contains a variety of larger numbers and some might be larger enough to reformat
with a threshold value. With sub_large_vals() we can do just that:

tbl |>
gt() |>
fmt_number(columns = num) |>
sub_large_vals()

Large negative values can also be handled but they are handled specially by the sign parameter.
Setting that to "-" will format only the large values that are negative. Notice that with the default
large_pattern value of ">={x}" the ">=" is automatically changed to "<=".

sub_missing 393

tbl |>
dplyr::mutate(num = -num) |>
gt() |>
fmt_number(columns = num) |>
sub_large_vals(sign = "-")

You don’t have to settle with the default threshold value or the default replacement pattern (in
large_pattern). This can be changed and the "{x}" in large_pattern (which uses the threshold
value) can even be omitted.

tbl |>
gt() |>
fmt_number(columns = num) |>
sub_large_vals(
threshold = 5E10,
large_pattern = "hugemongous"

)

Function ID

3-30

Function Introduced

v0.6.0 (May 24, 2022)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_missing(), sub_small_vals(), sub_values(),
sub_zero()

sub_missing Substitute missing values in the table body

Description

Wherever there is missing data (i.e., NA values) customizable content may present better than the
standard NA text that would otherwise appear. The sub_missing() function allows for this replace-
ment through its missing_text argument (where an em dash serves as the default).

394 sub_missing

Usage

sub_missing(
data,
columns = everything(),
rows = everything(),
missing_text = "---"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which substitution operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

missing_text Replacement text for NA values
scalar<character> // default: "---"
The text to be used in place of NA values in the rendered table. We can optionally
use the md() and html() functions to style the text as Markdown or to retain
HTML elements in the text.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

sub_missing 395

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given substitution function will be skipped over. So it’s safe to select all
columns with a particular substitution function (only those values that can be substituted will be),
but, you may not want that. One strategy is to work on the bulk of cell values with one substitution
function and then constrain the columns for later passes with other types of substitution (the last
operation done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base the substitution on values in the column or another column, or, you’d like
to use a more complex predicate expression.

Examples

Use select columns from the exibble dataset to create a gt table. The NA values in different columns
(here, we are using column indices in columns) will be given two variations of replacement text with
two separate calls of sub_missing().

exibble |>
dplyr::select(-row, -group) |>
gt() |>
sub_missing(
columns = 1:2,
missing_text = "missing"

) |>
sub_missing(
columns = 4:7,
missing_text = "nothing"

)

Function ID

3-27

Function Introduced

v0.6.0 (May 24, 2022)

396 sub_small_vals

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_small_vals(), sub_values(),
sub_zero()

sub_small_vals Substitute small values in the table body

Description

Wherever there is numerical data that are very small in value, replacement text may be better for
explanatory purposes. The sub_small_vals() function allows for this replacement through spec-
ification of a threshold, a small_pattern, and the sign of the values to be considered. The
substitution will occur for those values found to be between 0 and the threshold value. This is
possible for small positive and small negative values (this can be explicitly set by the sign option).
Note that the interval does not include the 0 or the threshold value. Should you need to include
zero values, use the sub_zero() function.

Usage

sub_small_vals(
data,
columns = everything(),
rows = everything(),
threshold = 0.01,
small_pattern = if (sign == "+") "<{x}" else md("<*abs*(-{x})"),
sign = "+"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which substitution operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

sub_small_vals 397

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

threshold Threshold value
scalar<numeric|integer> // default: 0.01
The threshold value with which values should be considered small enough for
replacement.

small_pattern Pattern specification for small values
scalar<character> // default: if (sign == "+") "<{x}" else md("<*abs*(-{x})")

The pattern text to be used in place of the suitably small values in the rendered
table.

sign Consider positive or negative values?
scalar<character> // default: "+"
The sign of the numbers to be considered in the replacement. By default, we
only consider positive values ("+"). The other option ("-") can be used to con-
sider only negative values.

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given substitution function will be skipped over. So it’s safe to select all
columns with a particular substitution function (only those values that can be substituted will be),
but, you may not want that. One strategy is to work on the bulk of cell values with one substitution
function and then constrain the columns for later passes with other types of substitution (the last
operation done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used

398 sub_small_vals

much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base the substitution on values in the column or another column, or, you’d like
to use a more complex predicate expression.

Examples

Let’s generate a simple, single-column tibble that contains an assortment of values that could po-
tentially undergo some substitution.

tbl <- dplyr::tibble(num = c(10^(-4:2), 0, NA))

tbl
#> # A tibble: 9 x 1
#> num
#> <dbl>
#> 1 0.0001
#> 2 0.001
#> 3 0.01
#> 4 0.1
#> 5 1
#> 6 10
#> 7 100
#> 8 0
#> 9 NA

The tbl contains a variety of smaller numbers and some might be small enough to reformat with a
threshold value. With sub_small_vals() we can do just that:

tbl |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals()

Small and negative values can also be handled but they are handled specially by the sign parameter.
Setting that to "-" will format only the small, negative values.

tbl |>
dplyr::mutate(num = -num) |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals(sign = "-")

You don’t have to settle with the default threshold value or the default replacement pattern (in
small_pattern). This can be changed and the "{x}" in small_pattern (which uses the threshold
value) can even be omitted.

sub_values 399

tbl |>
gt() |>
fmt_number(columns = num) |>
sub_small_vals(
threshold = 0.0005,
small_pattern = "smol"

)

Function ID

3-29

Function Introduced

v0.6.0 (May 24, 2022)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_values(),
sub_zero()

sub_values Substitute targeted values in the table body

Description

Should you need to replace specific cell values with custom text, the sub_values() function can be
good choice. We can target cells for replacement though value, regex, and custom matching rules.

Usage

sub_values(
data,
columns = everything(),
rows = everything(),
values = NULL,
pattern = NULL,
fn = NULL,
replacement = NULL,
escape = TRUE

)

400 sub_values

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which substitution operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

values Values to match on
scalar<character|numeric|integer> // default: NULL (optional)
The specific value or values that should be replaced with a replacement value.
If pattern is also supplied then values will be ignored.

pattern Regex pattern to match with
scalar<character> // default: NULL (optional)
A regex pattern that can target solely those values in character-based columns.
If values is also supplied, pattern will take precedence.

fn Function to return logical values
<function> // default: NULL (optional)
A supplied function that operates on x (the data in a column) and should return
a logical vector that matches the length of x (i.e., number of rows in the input
table). If either of values or pattern is also supplied, fn will take precedence.

replacement Replacement value for matches
scalar<character|numeric|integer> // default: NULL (optional)
The replacement value for any cell values matched by either values or pattern.
Must be a character or numeric vector of length 1.

escape Text escaping
scalar<logical> // default: TRUE
An option to escape replacement text according to the final output format of the
table. For example, if a LaTeX table is to be generated then LaTeX escaping
would be performed on the replacements during rendering. By default this is set
to TRUE but setting to FALSE would be useful in the case where replacement text
is crafted for a specific output format in mind.

sub_values 401

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given substitution function will be skipped over. So it’s safe to select all
columns with a particular substitution function (only those values that can be substituted will be),
but, you may not want that. One strategy is to work on the bulk of cell values with one substitution
function and then constrain the columns for later passes with other types of substitution (the last
operation done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base the substitution on values in the column or another column, or, you’d like
to use a more complex predicate expression.

Examples

Let’s create an input table with three columns. This contains an assortment of values that could
potentially undergo some substitution via sub_values().

tbl <-
dplyr::tibble(
num_1 = c(-0.01, 74, NA, 0, 500, 0.001, 84.3),
int_1 = c(1L, -100000L, 800L, 5L, NA, 1L, -32L),
lett = LETTERS[1:7]

)

tbl
#> # A tibble: 7 x 3
#> num_1 int_1 lett
#> <dbl> <int> <chr>

402 sub_values

#> 1 -0.01 1 A
#> 2 74 -100000 B
#> 3 NA 800 C
#> 4 0 5 D
#> 5 500 NA E
#> 6 0.001 1 F
#> 7 84.3 -32 G

Values in the table body cells can be replaced by specifying which values should be replaced (in
values) and what the replacement value should be. It’s okay to search for numerical or character
values across all columns and the replacement value can also be of the numeric or character types.

tbl |>
gt() |>
sub_values(values = c(74, 500), replacement = 150) |>
sub_values(values = "B", replacement = "Bee") |>
sub_values(values = 800, replacement = "Eight hundred")

We can also use the pattern argument to target cell values for replacement in character-based
columns.

tbl |>
gt() |>
sub_values(pattern = "A|C|E", replacement = "Ace")

For the most flexibility, it’s best to use the fn argument. With that you need to ensure that the
function you provide will return a logical vector when invoked on a column of cell values, taken as
x (and, the length of that vector must match the length of x).

tbl |>
gt() |>
sub_values(
fn = function(x) x >= 0 & x < 50,
replacement = "Between 0 and 50"

)

Function ID

3-31

Function Introduced

v0.8.0 (November 16, 2022)

sub_zero 403

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_zero()

sub_zero Substitute zero values in the table body

Description

Wherever there is numerical data that are zero in value, replacement text may be better for ex-
planatory purposes. The sub_zero() function allows for this replacement through its zero_text
argument.

Usage

sub_zero(data, columns = everything(), rows = everything(), zero_text = "nil")

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which substitution operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

zero_text Replacement text for zero values
scalar<character> // default: "nil"
The text to be used in place of zero values in the rendered table. We can op-
tionally use the md() and html() functions to style the text as Markdown or to
retain HTML elements in the text.

404 sub_zero

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to target a subset of cells
contained in the resolved columns. We say resolved because aside from declaring column names
in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This
can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that
are incompatible with a given substitution function will be skipped over. So it’s safe to select all
columns with a particular substitution function (only those values that can be substituted will be),
but, you may not want that. One strategy is to work on the bulk of cell values with one substitution
function and then constrain the columns for later passes with other types of substitution (the last
operation done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector. This is
nice if you want to base the substitution on values in the column or another column, or, you’d like
to use a more complex predicate expression.

Examples

Let’s generate a simple, single-column tibble that contains an assortment of values that could po-
tentially undergo some substitution.

tbl <- dplyr::tibble(num = c(10^(-1:2), 0, 0, 10^(4:6)))

tbl
#> # A tibble: 9 x 1
#> num
#> <dbl>
#> 1 0.1
#> 2 1
#> 3 10
#> 4 100
#> 5 0

summary_rows 405

#> 6 0
#> 7 10000
#> 8 100000
#> 9 1000000

With this table, the zero values in will be given replacement text with a single call of sub_zero().

tbl |>
gt() |>
fmt_number(columns = num) |>
sub_zero()

Function ID

3-28

Function Introduced

v0.6.0 (May 24, 2022)

See Also

Other data formatting functions: data_color(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_currency(),
fmt_datetime(), fmt_date(), fmt_duration(), fmt_engineering(), fmt_flag(), fmt_fraction(),
fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_partsper(),
fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(),
fmt_time(), fmt_units(), fmt_url(), fmt(), sub_large_vals(), sub_missing(), sub_small_vals(),
sub_values()

summary_rows Add group-wise summary rows using aggregation functions

Description

Add summary rows to one or more row groups by using the table data and any suitable aggrega-
tion functions. Multiple summary rows can be added for selected groups via expressions given to
fns. You can selectively format the values in the resulting summary cells by use of formatting
expressions in fmt.

Usage

summary_rows(
data,
groups = everything(),
columns = everything(),
fns = NULL,
fmt = NULL,

406 summary_rows

side = c("bottom", "top"),
missing_text = "---",
formatter = NULL,
...

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

groups Specification of row group IDs
<row-group-targeting expression> // default: everything()
The row groups to which targeting operations are constrained. Can either be
a series of row group ID values provided in c() or a select helper function.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). By de-
fault this is set to everything(), which means that all available groups will
obtain summary rows.

columns Columns to target
<column-targeting expression> // default: everything()
The columns for which the summaries should be calculated. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().

fns Aggregation Expressions
<expression|list of expressions>

Functions used for aggregations. This can include base functions like mean,
min, max, median, sd, or sum or any other user-defined aggregation function.
Multiple functions, each of which would generate a different row, are to be
supplied within a list(). We can specify the functions by use of function names
in quotes (e.g., "sum"), as bare functions (e.g., sum), or in formula form (e.g.,
minimum ~ min(.)) where the LHS could be used to supply the summary row
label and ID values. More information on this can be found in the Aggregation
expressions for fns section.

fmt Formatting expressions
<expression|list of expressions>

Formatting expressions in formula form. The RHS of ~ should contain a format-
ting call (e.g., ~ fmt_number(., decimals = 3, use_seps = FALSE). Op-
tionally, the LHS could contain a group-targeting expression (e.g., "group_a"
~ fmt_number(.)). More information on this can be found in the Formatting
expressions for fmt section.

side Side used for placement of summary rows
singl-kw:[bottom|top] // default: "bottom"
Should the summary rows be placed at the "bottom" (the default) or the "top"
of the row group?

summary_rows 407

missing_text Replacement text for NA values
scalar<character> // default: "---"
The text to be used in place of NA values in summary cells with no data outputs.

formatter Deprecated Formatting function
<expression>

Deprecated, please use fmt instead. This was previously used as a way to input
a formatting function name, which could be any of the fmt_*() functions avail-
able in the package (e.g., fmt_number(), fmt_percent(), etc.), or a custom
function using fmt(). The options of a formatter can be accessed through

... Deprecated Formatting arguments
<Named arguments>

Deprecated (along with formatter) but otherwise used for argument values for
a formatting function supplied in formatter. For example, if using formatter
= fmt_number, options such as decimals = 1, use_seps = FALSE, and the like
can be used here.

Value

An object of class gt_tbl.

Using columns to target column data for aggregation

Targeting of column data for which aggregates should be generated is done through the columns
argument. We can declare column names in c() (with bare column names or names in quotes)
or we can use tidyselect-style expressions. This can be as basic as supplying a select helper like
starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns are selected (with the everything() default). This default may be not
what’s needed unless all columns can undergo useful aggregation by expressions supplied in fns.

Aggregation expressions for fns

There are a number of ways to express how an aggregation should work for each summary row.
In addition to that, we have the ability to pass important information such as the summary row ID
value and its label (the former necessary for targeting within tab_style() or tab_footnote() and
the latter used for display in the rendered table). Here are a number of instructive examples for how
to supply such expressions.

Double-sided formula with everything supplied:
We can be explicit and provide a double-sided formula (in the form <LHS> ~ <RHS>) that expresses
everything about a summary row. That is, it has an aggregation expression (where . represents
the data in the focused column). Here’s an example:
list(id = "minimum", label = "min") ~ min(., na.rm = TRUE)

The left side (the list) contains named elements that identify the id and label for the summary
row. The right side has an expression for obtaining a minimum value (dropping NA values in the
calculation).

408 summary_rows

The list() can be replaced with c() but the advantage of a list is allowing the use of the md()
and html() helper functions. The above example can be written as:
list(id = "minimum", label = md("**Minimum**")) ~ min(., na.rm = TRUE)

and we can have that label value interpreted as Markdown text.

Function names in quotes:
With fns = "min" we get the equivalent of the fuller expression:
list(id = "min", label = "min") ~ min(., na.rm = TRUE)

For sake of convenience, common aggregation functions with the na.rm argument will be rewrit-
ten with the na.rm = TRUE option. These functions are: "min", "max", "mean", "median", "sd",
and "sum".
Should you need to specify multiple aggregation functions in this way (giving you multiple sum-
mary rows), use c() or list().

RHS formula expressions:
With fns = ~ min(.) or fns = list(~ min(.)), gt will use the function name as the id and
label. The expansion of this shorthand to full form looks like this:
list(id = "min", label = "min") ~ min(.)

The RHS expression is kept as written and the name portion is both the id and the label.

Named vector or list with RHS formula expression:
Using fns = c(minimum = ~ min(.)) or fns = list(minimum = ~ min(.)) expands to this:
list(id = "minimum", label = "minimum") ~ min(.)

Unnamed vector or list with RHS formula expression:
With fns = c("minimum", "min") ~ min(.) or fns = list("minimum", "min") ~ min(.) the LHS
contains the label and id values and, importantly, the order is label first and id second. This
can be rewritten as:
list(id = "min", label = "minimum") ~ min(.)

If the vector or list is partially named, gt has enough to go on to disambiguate the unnamed
element. So with fns = c("minimum", label = "min") ~ min(.), "min" is indeed the label
and "minimum" is taken as the id value.

A fully named list with three specific elements:
We can avoid using a formula if we are satisfied with the default options of a function (except some
of those functions with the na.rm options, see above). Instead, a list with the named elements id,
label, and fn could be used. It can look like this:
fns = list(id = "mean_id", label = "average", fn = "mean")

which translates to
list(id = "mean_id", label = "average") ~ mean(., na.rm = TRUE)

Formatting expressions for fmt

Given that we are generating new data in a table, we might also want to take the opportunity to
format those new values right away. We can do this in the fmt argument, either with a single
expression or a number of them in a list.

summary_rows 409

Formatting cells across all groups:
We can supply a one-sided (RHS only) or two-sided expression (targeting groups) to fmt, and,
several can be provided in a list. The RHS will always contain an expression that uses a formatting
function (e.g., fmt_number(), fmt_currency(), etc.) and it must contain an initial . that stands
for the data object. If performing numeric formatting on all columns in the new summary rows, it
might look something like this:
fmt = ~ fmt_number(., decimals = 1, use_seps = FALSE)

We can use the columns and rows arguments that are available in every formatting function.
This allows us to format only a subset of columns or rows. Summary rows can be targeted by
using their ID values and these are settable within expressions given to fns (see the Aggregation
expressions for fns section for details on this). Here’s an example with hypothetical column and
row names:
fmt = ~ fmt_number(., columns = num, rows = "mean", decimals = 3)

Formatting cells in specific groups:
A two-sided expression is needed for targeting the formatting directives to specific summary row
groups. In this format, the LHS should contain an expression that resolves to a set of available
groups. We can use a single row group name in quotes, several of those in a vector, or a select
helper expression like starts_with() or matches().
In a situation where summary rows were generated across the row groups named "group_1",
"group_2", and "group_3", we could format all summary cells in "group_2" with the following:
fmt = "group_2" ~ fmt_number(., decimals = 1, use_seps = FALSE)

If you wanted to target the latter two groups, this can be done:
fmt = matches("2|3") ~ fmt_number(., decimals = 1, use_seps = FALSE)

Should you need to target a single cell, the LHS expression for group targeting could be paired
with single values for columns and rows on the RHS formatting expression. Like this:
fmt = "group_1" ~ fmt_number(., columns = num, rows = "mean")

Extraction of summary rows

Should we need to obtain the summary data for external purposes, the extract_summary() func-
tion can be used with a gt_tbl object where summary rows were added via summary_rows() or
grand_summary_rows().

Examples

Use a modified version of sp500 dataset to create a gt table with row groups and row labels. Create
the summary rows labeled min, max, and avg by row group (where each each row group is a week
number) with the summary_rows() function.

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <= "2015-01-16") |>
dplyr::arrange(date) |>
dplyr::mutate(week = paste0("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>
gt(
rowname_col = "date",

410 summary_rows

groupname_col = "week"
) |>
summary_rows(
fns = list(
"min",
"max",
list(label = "avg", fn = "mean")

),
fmt = ~ fmt_number(., use_seps = FALSE)

)

Using the countrypops dataset, let’s process that a bit before giving it to gt. We can create a sum-
mary rows with totals that appear at the top of each row group (with side = "top"). We can define
the aggregation with a list that contains parameters for the summary row label (md("**ALL**")), the
shared ID value of those rows across groups ("totals"), and the aggregation function (expressed
as "sum", which gt recognizes as the sum() function). To top it all off, we’ll add background fills
to the summary rows with tab_style().

countrypops |>
dplyr::filter(
country_code_2 %in% c("BR", "RU", "IN", "CN", "FR", "DE", "IT", "GB")

) |>
dplyr::filter(year %% 10 == 0) |>
dplyr::select(country_name, year, population) |>
tidyr::pivot_wider(names_from = year, values_from = population) |>
gt(rowname_col = "country_name") |>
tab_row_group(
label = md("*BRIC*"),
rows = c("Brazil", "Russian Federation", "India", "China"),
id = "bric"

) |>
tab_row_group(
label = md("*Big Four*"),
rows = c("France", "Germany", "Italy", "United Kingdom"),
id = "big4"

) |>
row_group_order(groups = c("bric", "big4")) |>
tab_stub_indent(rows = everything()) |>
tab_header(title = "Populations of the BRIC and Big Four Countries") |>
tab_spanner(columns = everything(), label = "Year") |>
fmt_number(n_sigfig = 3, suffixing = TRUE) |>
summary_rows(
fns = list(label = md("**ALL**"), id = "totals", fn = "sum"),
fmt = ~ fmt_number(., n_sigfig = 3, suffixing = TRUE),
side = "top"

) |>
tab_style(
locations = cells_summary(),
style = cell_fill(color = "lightblue" |> adjust_luminance(steps = +1))

system_fonts 411

)

Function ID

6-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other row addition/modification functions: grand_summary_rows(), row_group_order(), rows_add()

system_fonts Get a themed font stack that works well across systems

Description

A font stack can be obtained from system_fonts() using one or various keywords such as "system-ui",
"old-style", and "humanist" (there are 15 in total). These sets comprise a themed font family
that has been tested to work across a wide range of computer systems. This is useful when speci-
fying font values in the cell_text() function (itself used in the tab_style() function). If using
opt_table_font() we can invoke this function in its stack argument.

Usage

system_fonts(name)

Arguments

name Name of font stack
scalar<character> // required
The name of a font stack. Must be drawn from the set of "system-ui", "transitional",
"old-style", "humanist", "geometric-humanist", "classical-humanist",
"neo-grotesque", "monospace-slab-serif", "monospace-code", "industrial",
"rounded-sans", "slab-serif", "antique", "didone", and "handwritten".

Value

A character vector of font names.

412 system_fonts

The font stacks and the individual fonts used by platform

System UI ("system-ui"):

font-family: system-ui, sans-serif;

The operating system interface’s default typefaces are known as system UI fonts. They contain a
variety of font weights, are quite readable at small sizes, and are perfect for UI elements. These
typefaces serve as a great starting point for text in data tables and so this font stack is the default
for gt.

Transitional ("transitional"):

font-family: Charter, 'Bitstream Charter', 'Sitka Text', Cambria, serif;

The Enlightenment saw the development of transitional typefaces, which combine Old Style and
Modern typefaces. Times New Roman, a transitional typeface created for the Times of London
newspaper, is among the most well-known instances of this style.

Old Style ("old-style"):

font-family: 'Iowan Old Style', 'Palatino Linotype', 'URW Palladio L', P052, serif;

Old style typefaces were created during the Renaissance and are distinguished by diagonal stress,
a lack of contrast between thick and thin strokes, and rounded serifs. Garamond is among the
most well-known instances of an antique typeface.

Humanist ("humanist"):

font-family: Seravek, 'Gill Sans Nova', Ubuntu, Calibri, 'DejaVu Sans', source-sans-pro, sans-serif;

Low contrast between thick and thin strokes and organic, calligraphic forms are traits of human-
ist typefaces. These typefaces, which draw their inspiration from Renaissance calligraphy, are
frequently regarded as being more readable and easier to read than other sans serif typefaces.

Geometric Humanist ("geometric-humanist"):

font-family: Avenir, Montserrat, Corbel, 'URW Gothic', source-sans-pro, sans-serif;

Clean, geometric forms and consistent stroke widths are characteristics of geometric humanist
typefaces. These typefaces, which are frequently used for headlines and other display purposes,
are frequently thought to be contemporary and slick in appearance. A well-known example of this
classification is Futura.

Classical Humanist ("classical-humanist"):

font-family: Optima, Candara, 'Noto Sans', source-sans-pro, sans-serif;

The way the strokes gradually widen as they approach the stroke terminals without ending in a
serif is what distinguishes classical humanist typefaces. The stone carving on Renaissance-era
tombstones and classical Roman capitals served as inspiration for these typefaces.

Neo-Grotesque ("neo-grotesque"):

font-family: Inter, Roboto, 'Helvetica Neue', 'Arial Nova', 'Nimbus Sans', Arial, sans-serif;

system_fonts 413

Neo-grotesque typefaces are a form of sans serif that originated in the late 19th and early 20th
centuries. They are distinguished by their crisp, geometric shapes and regular stroke widths.
Helvetica is among the most well-known examples of a Neo-grotesque typeface.

Monospace Slab Serif ("monospace-slab-serif"):

font-family: 'Nimbus Mono PS', 'Courier New', monospace;

Monospace slab serif typefaces are distinguished by their fixed-width letters, which are the same
width irrespective of their shape, and their straightforward, geometric forms. For reports, tabular
work, and technical documentation, this technique is used to simulate typewriter output.

Monospace Code ("monospace-code"):

font-family: ui-monospace, 'Cascadia Code', 'Source Code Pro', Menlo, Consolas, 'DejaVu Sans Mono', monospace;

Specifically created for use in programming and other technical applications, monospace code
typefaces are used in these fields. These typefaces are distinguished by their clear, readable forms
and monospaced design, which ensures that all letters and characters are the same width.

Industrial ("industrial"):

font-family: Bahnschrift, 'DIN Alternate', 'Franklin Gothic Medium', 'Nimbus Sans Narrow', sans-serif-condensed, sans-serif;

The development of industrial typefaces began in the late 19th century and was greatly influenced
by the industrial and technological advancements of the time. Industrial typefaces are distin-
guished by their strong sans serif letterforms, straightforward appearance, and use of geometric
shapes and straight lines.

Rounded Sans ("rounded-sans"):

font-family: ui-rounded, 'Hiragino Maru Gothic ProN', Quicksand, Comfortaa, Manjari, 'Arial Rounded MT', 'Arial Rounded MT Bold', Calibri, source-sans-pro, sans-serif;

The rounded, curved letterforms that define rounded typefaces give them a softer, friendlier ap-
pearance. The typeface’s rounded edges give it a more natural and playful feel, making it appro-
priate for use in casual or kid-friendly designs. Since the 1950s, the rounded sans-serif design has
gained popularity and is still frequently used in branding, graphic design, and other fields.

Slab Serif ("slab-serif"):

font-family: Rockwell, 'Rockwell Nova', 'Roboto Slab', 'DejaVu Serif', 'Sitka Small', serif;

Slab Serif typefaces are distinguished by the thick, block-like serifs that appear at the ends of each
letterform. Typically, these serifs are unbracketed, which means that they do not have any curved
or tapered transitions to the letter’s main stroke.

Antique ("antique"):

font-family: Superclarendon, 'Bookman Old Style', 'URW Bookman', 'URW Bookman L', 'Georgia Pro', Georgia, serif;

Serif typefaces that were popular in the 19th century include antique typefaces, also referred to as
Egyptians. They are distinguished by their thick, uniform stroke weight and block-like serifs.

Didone ("didone"):

414 system_fonts

font-family: Didot, 'Bodoni MT', 'Noto Serif Display', 'URW Palladio L', P052, Sylfaen, serif;

Didone typefaces, also referred to as Modern typefaces, are distinguished by their vertical stress,
sharp contrast between thick and thin strokes, and hairline serifs without bracketing. The Didone
style first appeared in the late 18th century and became well-known in the early 19th century.

Handwritten ("handwritten"):

font-family: 'Segoe Print', 'Bradley Hand', Chilanka, TSCu_Comic, casual, cursive;

The appearance and feel of handwriting are replicated by handwritten typefaces. Although there
are a wide variety of handwriting styles, this font stack tends to use a more casual and common-
place style.

Examples

Use a subset of the sp500 dataset to create a gt table with 10 rows. For the date column and
the column labels, let’s use a different font stack (the "industrial" one). The system fonts used
in this particular stack are "Bahnschrift", "DIN Alternate", "Franklin Gothic Medium", and
"Nimbus Sans Narrow" (the generic "sans-serif-condensed" and "sans-serif" are used if the
aforementioned fonts aren’t available).

sp500 |>
dplyr::slice(1:10) |>
dplyr::select(-volume, -adj_close) |>
gt() |>
fmt_currency() |>
tab_style(
style = cell_text(
font = system_fonts(name = "industrial"),
size = px(18)

),
locations = list(
cells_body(columns = date),
cells_column_labels()

)
)

Function ID

8-32

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other helper functions: adjust_luminance(), cell_borders(), cell_fill(), cell_text(),
cells_body(), cells_column_labels(), cells_column_spanners(), cells_footnotes(), cells_grand_summary(),
cells_row_groups(), cells_source_notes(), cells_stub_grand_summary(), cells_stub_summary(),

sza 415

cells_stubhead(), cells_stub(), cells_summary(), cells_title(), currency(), default_fonts(),
define_units(), escape_latex(), from_column(), google_font(), gt_latex_dependencies(),
html(), md(), nanoplot_options(), pct(), px(), random_id(), stub()

sza Twice hourly solar zenith angles by month & latitude

Description

This dataset contains solar zenith angles (in degrees, with the range of 0-90) every half hour from
04:00 to 12:00, true solar time. This set of values is calculated on the first of every month for
4 different northern hemisphere latitudes. For determination of afternoon values, the presented
tabulated values are symmetric about noon.

Usage

sza

Format

A tibble with 816 rows and 4 variables:

latitude The latitude in decimal degrees for the observations.

month The measurement month. All calculations where conducted for the first day of each month.

tst The true solar time at the given latitude and date (first of month) for which the solar zenith
angle is calculated.

sza The solar zenith angle in degrees, where NAs indicate that sunrise hadn’t yet occurred by the
tst value.

Details

The solar zenith angle (SZA) is one measure that helps to describe the sun’s path across the sky. It’s
defined as the angle of the sun relative to a line perpendicular to the earth’s surface. It is useful to
calculate the SZA in relation to the true solar time. True solar time relates to the position of the sun
with respect to the observer, which is different depending on the exact longitude. For example, two
hours before the sun crosses the meridian (the highest point it would reach that day) corresponds
to a true solar time of 10 a.m. The SZA has a strong dependence on the observer’s latitude. For
example, at a latitude of 50 degrees N at the start of January, the noontime SZA is 73.0 but a
different observer at 20 degrees N would measure the noontime SZA to be 43.0 degrees.

Examples

Here is a glimpse at the data available in sza.

416 tab_caption

dplyr::glimpse(sza)
#> Rows: 816
#> Columns: 4
#> $ latitude <dbl> 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2~
#> $ month <fct> jan, jan, jan, jan, jan, jan, jan, jan, jan, jan, jan, jan, j~
#> $ tst <chr> "0400", "0430", "0500", "0530", "0600", "0630", "0700", "0730~
#> $ sza <dbl> NA, NA, NA, NA, NA, NA, 84.9, 78.7, 72.7, 66.1, 61.5, 56.5, 5~

Dataset ID and Badge

DATA-2

Dataset Introduced

v0.2.0.5 (March 31, 2020)

Source

Calculated Actinic Fluxes (290 - 700 nm) for Air Pollution Photochemistry Applications (Peterson,
1976), available at: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JA26.txt.

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv,
rx_adsl, sp500, towny

tab_caption Add a table caption

Description

Add a caption to a gt table, which is handled specially for a table within an R Markdown, Quarto, or
bookdown context. The addition of captions makes tables cross-referencing across the containing
document. The caption location (i.e., top, bottom, margin) is handled at the document level in each
of these system.

Usage

tab_caption(data, caption)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100JA26.txt

tab_footnote 417

caption Table caption text
scalar<character> // required
The table caption to use for cross-referencing in R Markdown, Quarto, or book-
down.

Value

An object of class gt_tbl.

Examples

With three columns from the gtcars dataset, let’s create a gt table. First, we’ll add a header part
with the tab_header() function. After that, a caption is added through use of tab_caption().

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

) |>
tab_caption(caption = md("**gt** table example."))

Function ID

2-9

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part creation/modification functions: tab_footnote(), tab_header(), tab_info(), tab_options(),
tab_row_group(), tab_source_note(), tab_spanner_delim(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

tab_footnote Add a table footnote

418 tab_footnote

Description

The tab_footnote() function can make it a painless process to add a footnote to a gt table. There
are commonly two components to a footnote: (1) a footnote mark that is attached to the targeted
cell content, and (2) the footnote text itself that is placed in the table’s footer area. Each unit of
footnote text in the footer is linked to an element of text or otherwise through the footnote mark.
The footnote system in gt presents footnotes in a way that matches the usual expectations, where:

1. footnote marks have a sequence, whether they are symbols, numbers, or letters

2. multiple footnotes can be applied to the same content (and marks are always presented in an
ordered fashion)

3. footnote text in the footer is never exactly repeated, gt reuses footnote marks where needed
throughout the table

4. footnote marks are ordered across the table in a consistent manner (left to right, top to bottom)

Each call of tab_footnote() will either add a different footnote to the footer or reuse existing
footnote text therein. One or more cells outside of the footer are targeted using the cells_*()
helper functions (e.g., cells_body(), cells_column_labels(), etc.). You can choose to not
attach a footnote mark by simply not specifying anything in the locations argument.

By default, gt will choose which side of the text to place the footnote mark via the placement =
"auto" option. You are, however, always free to choose the placement of the footnote mark (either
to the "left or "right" of the targeted cell content).

Usage

tab_footnote(
data,
footnote,
locations = NULL,
placement = c("auto", "right", "left")

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

footnote Footnote text
scalar<character> // required
The text to be used in the footnote. We can optionally use the md() and html()
functions to style the text as Markdown or to retain HTML elements in the foot-
note text.

locations Locations to target
<locations expressions> // default: NULL (optional)
The cell or set of cells to be associated with the footnote. Supplying any of the
cells_*() helper functions is a useful way to target the location cells that are
associated with the footnote text. These helper functions are: cells_title(),

tab_footnote 419

cells_stubhead(), cells_column_spanners(), cells_column_labels(), cells_row_groups(),
cells_stub(), cells_body(), cells_summary(), cells_grand_summary(),
cells_stub_summary(), and cells_stub_grand_summary(). Additionally,
we can enclose several cells_*() calls within a list() if we wish to link the
footnote text to different types of locations (e.g., body cells, row group labels,
the table title, etc.).

placement Placement of the footnote mark
singl-kw:[auto|right|left] // default: "auto"
Where to affix footnote marks to the table content. Two options for this are
"left or "right", where the placement is either to the absolute left or right of
the cell content. By default, however, this option is set to "auto" whereby gt
will choose a preferred left-or-right placement depending on the alignment of
the cell content.

Value

An object of class gt_tbl.

Formatting of footnote text and marks

There are several options for controlling the formatting of the footnotes, their marks, and related
typesetting in the footer. All of these options are available within the tab_options() function and
a subset of these are exposed in their own opt_*() functions.

Choosing the footnote marks:
We can modify the set of footnote marks with tab_options(..., footnotes.marks) or opt_footnote_marks(...,
). What that argument needs is a vector that will represent the series of marks. The series of foot-
note marks is recycled when its usage goes beyond the length of the set. At each cycle, the marks
are simply doubled, tripled, and so on (e.g., * -> ** -> ***). The option exists for providing
keywords for certain types of footnote marks. The keywords are:

• "numbers": numeric marks, they begin from 1 and these marks are not subject to recycling
behavior (this is the default)

• "letters": minuscule alphabetic marks, internally uses the letters vector which contains
26 lowercase letters of the Roman alphabet

• "LETTERS": majuscule alphabetic marks, using the LETTERS vector which has 26 uppercase
letters of the Roman alphabet

• "standard": symbolic marks, four symbols in total
• "extended": symbolic marks, extends the standard set by adding two more symbols, making

six

The symbolic marks are the: (1) Asterisk, (2) Dagger, (3) Double Dagger, (4) Section Sign, (5)
Double Vertical Line, and (6) Paragraph Sign; the "standard" set has the first four, "extended"
contains all.

Defining footnote typesetting specifications:
A footnote spec consists of a string containing control characters for formatting. They are sepa-
rately defined for footnote marks beside footnote text in the table footer (the 'spec_ftr') and for
marks beside the targeted cell content (the 'spec_ref').

420 tab_footnote

Not every type of formatting makes sense for footnote marks so the specification is purposefully
constrained to the following:

• as superscript text (with the "^" control character) or regular-sized text residing on the base-
line

• bold text (with "b"), italicized text (with "i"), or unstyled text (don’t use either of the "b" or
"i" control characters)

• enclosure in parentheses (use "(" / ")") or square brackets (with "[" / "]")
• a period following the mark (using "."); this is most commonly used in the table footer

With the aforementioned control characters we could, for instance, format the footnote marks to
be superscript text in bold type with "^b". We might want the marks in the footer to be regular-
sized text in parentheses, so the spec could be either "()" or "(x)" (you can optionally use "x"
as a helpful placeholder for the marks).
These options can be set either in a tab_options() call (with the footnotes.spec_ref and
footnotes.spec_ftr arguments) or with opt_footnote_spec() (using the spec_ref or spec_ftr
arguments).

Additional typesetting options for footnote text residing in the footer:
Within tab_options() there are two arguments that control the typesetting of footnotes. With
footnotes.multiline, we have a setting that determines whether each footnote will start on a
new line, or, whether they are combined into a single block of text. The default for this is TRUE,
but, if FALSE we can control the separator between consecutive footnotes with the footnotes.sep
argument. By default, this is set to a single space character (" ").

Examples

Using a subset of the sza dataset, let’s create a new gt table. The body cells in the sza column will
receive background color fills according to their data values (with the data_color() function).
After that, the use of tab_footnote() lets us add a footnote to the sza column label (explaining
what the color gradient signifies).

sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
!is.na(sza)

) |>
dplyr::select(-latitude, -month) |>
gt() |>
data_color(
columns = sza,
palette = c("white", "yellow", "navyblue"),
domain = c(0, 90)

) |>
tab_footnote(
footnote = "Color indicates the solar zenith angle.",
locations = cells_column_labels(columns = sza)

)

tab_footnote 421

Of course, we can add more than one footnote to the table, but, we have to use several calls of
tab_footnote(). This variation of the sza table has three footnotes: one on the "TST" column
label and two on the "SZA" column label (these were capitalized with opt_all_caps()). We will
ultimately have three calls of tab_footnote() and while the order of calls usually doesn’t matter,
it does have a subtle effect here since two footnotes are associated with the same text content (try
reversing the second and third calls and observe the effect in the footer).

sza |>
dplyr::filter(
latitude == 20 &
month == "jan" &
!is.na(sza)

) |>
dplyr::select(-latitude, -month) |>
gt() |>
opt_all_caps() |>
cols_align(align = "center") |>
cols_width(everything() ~ px(200)) |>
tab_footnote(
footnote = md("TST stands for *True Solar Time*."),
locations = cells_column_labels(columns = tst)

) |>
tab_footnote(
footnote = md("SZA stands for *Solar Zenith Angle*."),
locations = cells_column_labels(columns = sza)

) |>
tab_footnote(
footnote = "Higher Values indicate sun closer to horizon.",
locations = cells_column_labels(columns = sza)

) |>
tab_options(footnotes.multiline = FALSE)

Text in the footer (both from footnotes and also from source notes) tends to widen the table and, by
extension, all the columns within it. We can limit that by explicitly setting column width values,
which is what was done above with cols_width(). There can also be a correspondingly large
amount of vertical space taken up by the footer since footnotes will, by default, each start on a new
line. In the above example, we used tab_options(footnotes.multiline = FALSE) to make it so
that all footer text is contained in a single block of text.

Let’s move on to another footnote-laden table, this one based on the towny dataset. We have a header
part, with a title and a subtitle. We can choose which of these could be associated with a footnote
and in this case it is the "subtitle" (one of two options in the cells_title() helper function).
This table has a stub with row labels and some of those labels are associated with a footnote.
So long as row labels are unique, they can be easily used as row identifiers in cells_stub().
The third footnote is placed on the "Density" column label. Here, changing the order of the
tab_footnote() calls has no effect on the final table rendering.

towny |>
dplyr::filter(csd_type == "city") |>

422 tab_footnote

dplyr::arrange(desc(population_2021)) |>
dplyr::select(name, density_2021, population_2021) |>
dplyr::slice_head(n = 10) |>
gt(rowname_col = "name") |>
tab_header(
title = md("The 10 Largest Municipalities in `towny`"),
subtitle = "Population values taken from the 2021 census."

) |>
fmt_integer() |>
cols_label(
density_2021 = "Density",
population_2021 = "Population"

) |>
tab_footnote(
footnote = "Part of the Greater Toronto Area.",
locations = cells_stub(rows = c(
"Toronto", "Mississauga", "Brampton", "Markham", "Vaughan"

))
) |>
tab_footnote(
footnote = md("Density is in terms of persons per km^2^."),
locations = cells_column_labels(columns = density_2021)

) |>
tab_footnote(
footnote = "Census results made public on February 9, 2022.",
locations = cells_title(groups = "subtitle")

) |>
tab_source_note(source_note = md(
"Data taken from the `towny` dataset (in the **gt** package)."

)) |>
opt_footnote_marks(marks = "letters")

In the above table, we elected to change the footnote marks to letters instead of the default num-
bers (done through opt_footnote_marks()). A source note was also added; this was mainly to
demonstrate that source notes will be positioned beneath footnotes in the footer section.

For our final example, let’s make a relatively small table deriving from the sp500 dataset. The set
of tab_footnote() calls used here (four of them) have minor variations that allow for interesting
expressions of footnotes. Two of the footnotes target values in the body of the table (using the
cells_body() helper function to achieve this). On numeric values that right-aligned, gt will opt
to place the footnote on the left of the content so as to not disrupt the alignment. However, the
placement argument can be used to force the positioning of the footnote mark after the content.
We can also opt to include footnotes that have no associated footnote marks whatsoever. This is
done by not providing anything to locations. These ’markless’ footnotes will precede the other
footnotes in the footer section.

sp500 |>
dplyr::filter(date >= "2015-01-05" & date <="2015-01-10") |>
dplyr::select(-c(adj_close, volume, high, low)) |>

tab_footnote 423

dplyr::mutate(change = close - open) |>
dplyr::arrange(date) |>
gt() |>
tab_header(title = "S&P 500") |>
fmt_date(date_style = "m_day_year") |>
fmt_currency() |>
cols_width(everything() ~ px(150)) |>
tab_footnote(
footnote = "More red days than green in this period.",
locations = cells_column_labels(columns = change)

) |>
tab_footnote(
footnote = "Lowest opening value.",
locations = cells_body(columns = open, rows = 3),

) |>
tab_footnote(
footnote = "Devastating losses on this day.",
locations = cells_body(columns = change, rows = 1),
placement = "right"

) |>
tab_footnote(footnote = "All values in USD.") |>
opt_footnote_marks(marks = "LETTERS") |>
opt_footnote_spec(spec_ref = "i[x]", spec_ftr = "x.")

Aside from changing the footnote marks to consist of "LETTERS", we’ve also changed the way
the marks are formatted. In our use of opt_footnote_spec(), the spec_ref option governs the
footnote marks across the table. Here, we describe marks that are italicized and set between square
brackets (with "i[x]"). The spec_ftr argument is used for the footer representation of the footnote
marks. As described in the example with "x.", it is rendered as a footnote mark followed by a
period.

Function ID

2-7

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other part creation/modification functions: tab_caption(), tab_header(), tab_info(), tab_options(),
tab_row_group(), tab_source_note(), tab_spanner_delim(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

424 tab_header

tab_header Add a table header

Description

We can add a table header to the gt table with a title and even a subtitle using the tab_header()
function. A table header is an optional table part that is positioned just above the column labels
table part. We have the flexibility to use Markdown or HTML formatting for the header’s title and
subtitle with the md() and html() helper functions.

Usage

tab_header(data, title, subtitle = NULL, preheader = NULL)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

title Header title
scalar<character> // required
Text to be used in the table title. We can elect to use the md() and html() helper
functions to style the text as Markdown or to retain HTML elements in the text.

subtitle Header subtitle
scalar<character> // default: NULL (optional)
Text to be used in the table subtitle. We can elect to use the md() and html()
helper functions to style the text as Markdown or to retain HTML elements in
the text.

preheader RTF preheader text
vector<character> // default: NULL (optional)
Optional preheader content that is rendered above the table for RTF output. Can
be supplied as a vector of text.

Value

An object of class gt_tbl.

Examples

Let’s use a small portion of the gtcars dataset to create a gt table. A header part can be added to the
table with the tab_header() function. We’ll add a title and the optional subtitle as well. With the
md() helper function, we can make sure the Markdown formatting is interpreted and transformed.

tab_header 425

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = md("Data listing from **gtcars**"),
subtitle = md("`gtcars` is an R dataset")

)

If the table is intended solely as an HTML table, you could introduce your own HTML elements
into the header. You can even use the htmltools package to help arrange and generate the HTML.
Here’s an example of that, where two <div> elements are placed in a htmltools::tagList().

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title =
htmltools::tagList(
htmltools::tags$div(
style = htmltools::css(
`text-align` = "center"

),
htmltools::HTML(
web_image("https://www.r-project.org/logo/Rlogo.png")

)
),
htmltools::tags$div(
"Data listing from ",
htmltools::tags$strong("gtcars")

)
)

)

If using HTML but doing something far simpler, we can use the html() helper function to declare
that the text provided is HTML.

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_header(
title = html("Data listing from gtcars"),
subtitle = html("From gtcars")

)

Function ID

2-1

426 tab_info

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_info(), tab_options(),
tab_row_group(), tab_source_note(), tab_spanner_delim(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

tab_info Understand what’s been set inside of a gt table object

Description

It can become increasingly difficult to recall the ID values associated with different labels in a gt
table. Further to this, there are also situations where gt will generate ID values on your behalf (e.g.,
with tab_spanner_delim(), etc.) while ensuring that duplicate ID values aren’t produced. For the
latter case, it is impossible to know what those ID values are unless one were to carefully examine
to correct component of the gt_tbl object.

Because it’s so essential to know these ID values for targeting purposes (when styling with tab_style(),
adding footnote marks with tab_footnote(), etc.), the tab_info() function can help with all of
this. It summarizes (by location) all of the table’s ID values and their associated labels. The product
is an informational gt table, designed for easy retrieval of the necessary values.

Usage

tab_info(data)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

Value

An object of class gt_tbl.

Examples

Let’s use a portion of the gtcars dataset to create a gt table. We’ll use the tab_spanner() function
to group two columns together under a spanner column with the ID and label "performance".
Finally, we can use the tab_info() function in a separate, interactive statement so that we can
inspect a table that summarizes the ID values any associated label text for all parts of the table.

tab_options 427

gt_tbl <-
gtcars |>
dplyr::select(model, year, starts_with("hp"), msrp) |>
dplyr::slice(1:4) |>
gt(rowname_col = "model") |>
tab_spanner(
label = "performance",
columns = starts_with("hp")

)

gt_tbl |> tab_info()

Function ID

2-12

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(), tab_spanner(),
tab_stub_indent(), tab_stubhead(), tab_style_body(), tab_style()

tab_options Modify the table output options

Description

Modify the options available in a table. These options are named by the components, the subcom-
ponents, and the element that can adjusted.

Usage

tab_options(
data,
table.width = NULL,
table.layout = NULL,
table.align = NULL,
table.margin.left = NULL,
table.margin.right = NULL,
table.background.color = NULL,
table.additional_css = NULL,
table.font.names = NULL,
table.font.size = NULL,
table.font.weight = NULL,

428 tab_options

table.font.style = NULL,
table.font.color = NULL,
table.font.color.light = NULL,
table.border.top.style = NULL,
table.border.top.width = NULL,
table.border.top.color = NULL,
table.border.right.style = NULL,
table.border.right.width = NULL,
table.border.right.color = NULL,
table.border.bottom.style = NULL,
table.border.bottom.width = NULL,
table.border.bottom.color = NULL,
table.border.left.style = NULL,
table.border.left.width = NULL,
table.border.left.color = NULL,
heading.background.color = NULL,
heading.align = NULL,
heading.title.font.size = NULL,
heading.title.font.weight = NULL,
heading.subtitle.font.size = NULL,
heading.subtitle.font.weight = NULL,
heading.padding = NULL,
heading.padding.horizontal = NULL,
heading.border.bottom.style = NULL,
heading.border.bottom.width = NULL,
heading.border.bottom.color = NULL,
heading.border.lr.style = NULL,
heading.border.lr.width = NULL,
heading.border.lr.color = NULL,
column_labels.background.color = NULL,
column_labels.font.size = NULL,
column_labels.font.weight = NULL,
column_labels.text_transform = NULL,
column_labels.padding = NULL,
column_labels.padding.horizontal = NULL,
column_labels.vlines.style = NULL,
column_labels.vlines.width = NULL,
column_labels.vlines.color = NULL,
column_labels.border.top.style = NULL,
column_labels.border.top.width = NULL,
column_labels.border.top.color = NULL,
column_labels.border.bottom.style = NULL,
column_labels.border.bottom.width = NULL,
column_labels.border.bottom.color = NULL,
column_labels.border.lr.style = NULL,
column_labels.border.lr.width = NULL,
column_labels.border.lr.color = NULL,
column_labels.hidden = NULL,

tab_options 429

column_labels.units_pattern = NULL,
row_group.background.color = NULL,
row_group.font.size = NULL,
row_group.font.weight = NULL,
row_group.text_transform = NULL,
row_group.padding = NULL,
row_group.padding.horizontal = NULL,
row_group.border.top.style = NULL,
row_group.border.top.width = NULL,
row_group.border.top.color = NULL,
row_group.border.bottom.style = NULL,
row_group.border.bottom.width = NULL,
row_group.border.bottom.color = NULL,
row_group.border.left.style = NULL,
row_group.border.left.width = NULL,
row_group.border.left.color = NULL,
row_group.border.right.style = NULL,
row_group.border.right.width = NULL,
row_group.border.right.color = NULL,
row_group.default_label = NULL,
row_group.as_column = NULL,
table_body.hlines.style = NULL,
table_body.hlines.width = NULL,
table_body.hlines.color = NULL,
table_body.vlines.style = NULL,
table_body.vlines.width = NULL,
table_body.vlines.color = NULL,
table_body.border.top.style = NULL,
table_body.border.top.width = NULL,
table_body.border.top.color = NULL,
table_body.border.bottom.style = NULL,
table_body.border.bottom.width = NULL,
table_body.border.bottom.color = NULL,
stub.background.color = NULL,
stub.font.size = NULL,
stub.font.weight = NULL,
stub.text_transform = NULL,
stub.border.style = NULL,
stub.border.width = NULL,
stub.border.color = NULL,
stub.indent_length = NULL,
stub_row_group.font.size = NULL,
stub_row_group.font.weight = NULL,
stub_row_group.text_transform = NULL,
stub_row_group.border.style = NULL,
stub_row_group.border.width = NULL,
stub_row_group.border.color = NULL,
data_row.padding = NULL,

430 tab_options

data_row.padding.horizontal = NULL,
summary_row.background.color = NULL,
summary_row.text_transform = NULL,
summary_row.padding = NULL,
summary_row.padding.horizontal = NULL,
summary_row.border.style = NULL,
summary_row.border.width = NULL,
summary_row.border.color = NULL,
grand_summary_row.background.color = NULL,
grand_summary_row.text_transform = NULL,
grand_summary_row.padding = NULL,
grand_summary_row.padding.horizontal = NULL,
grand_summary_row.border.style = NULL,
grand_summary_row.border.width = NULL,
grand_summary_row.border.color = NULL,
footnotes.background.color = NULL,
footnotes.font.size = NULL,
footnotes.padding = NULL,
footnotes.padding.horizontal = NULL,
footnotes.border.bottom.style = NULL,
footnotes.border.bottom.width = NULL,
footnotes.border.bottom.color = NULL,
footnotes.border.lr.style = NULL,
footnotes.border.lr.width = NULL,
footnotes.border.lr.color = NULL,
footnotes.marks = NULL,
footnotes.spec_ref = NULL,
footnotes.spec_ftr = NULL,
footnotes.multiline = NULL,
footnotes.sep = NULL,
source_notes.background.color = NULL,
source_notes.font.size = NULL,
source_notes.padding = NULL,
source_notes.padding.horizontal = NULL,
source_notes.border.bottom.style = NULL,
source_notes.border.bottom.width = NULL,
source_notes.border.bottom.color = NULL,
source_notes.border.lr.style = NULL,
source_notes.border.lr.width = NULL,
source_notes.border.lr.color = NULL,
source_notes.multiline = NULL,
source_notes.sep = NULL,
row.striping.background_color = NULL,
row.striping.include_stub = NULL,
row.striping.include_table_body = NULL,
container.width = NULL,
container.height = NULL,
container.padding.x = NULL,

tab_options 431

container.padding.y = NULL,
container.overflow.x = NULL,
container.overflow.y = NULL,
ihtml.active = NULL,
ihtml.use_pagination = NULL,
ihtml.use_pagination_info = NULL,
ihtml.use_sorting = NULL,
ihtml.use_search = NULL,
ihtml.use_filters = NULL,
ihtml.use_resizers = NULL,
ihtml.use_highlight = NULL,
ihtml.use_compact_mode = NULL,
ihtml.use_text_wrapping = NULL,
ihtml.use_page_size_select = NULL,
ihtml.page_size_default = NULL,
ihtml.page_size_values = NULL,
ihtml.pagination_type = NULL,
page.orientation = NULL,
page.numbering = NULL,
page.header.use_tbl_headings = NULL,
page.footer.use_tbl_notes = NULL,
page.width = NULL,
page.height = NULL,
page.margin.left = NULL,
page.margin.right = NULL,
page.margin.top = NULL,
page.margin.bottom = NULL,
page.header.height = NULL,
page.footer.height = NULL,
quarto.use_bootstrap = NULL,
quarto.disable_processing = NULL

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

table.width Table width
The table width can be specified as a single-length character with units of pixels
or as a percentage. If provided as a single-length numeric vector, it is assumed
that the value is given in units of pixels. The px() and pct() helper functions
can also be used to pass in numeric values and obtain values as pixel or percent
units.

table.layout The table-layout property
This is the value for the table-layout CSS style in the HTML output context.
By default, this is "fixed" but another valid option is "auto".

432 tab_options

table.align Horizontal alignment of table
The table.align option lets us set the horizontal alignment of the table in its
container. By default, this is "center". Other options are "left" and "right".
This will automatically set table.margin.left and table.margin.right to
the appropriate values.

table.margin.left, table.margin.right

Left and right table margins
The size of the margins on the left and right of the table within the container can
be set with table.margin.left and table.margin.right. Can be specified
as a single-length character with units of pixels or as a percentage. If provided
as a single-length numeric vector, it is assumed that the value is given in units of
pixels. The px() and pct() helper functions can also be used to pass in numeric
values and obtain values as pixel or percent units. Using table.margin.left
or table.margin.right will overwrite any values set by table.align.

table.background.color, heading.background.color, column_labels.background.color, row_group.background.color, stub.background.color, summary_row.background.color, grand_summary_row.background.color, footnotes.background.color, source_notes.background.color

Background colors
These options govern background colors for the parent element table and the
following child elements: heading, column_labels, row_group, stub, summary_row,
grand_summary_row, footnotes, and source_notes. A color name or a hex-
adecimal color code should be provided.

table.additional_css

Additional CSS
The table.additional_css option can be used to supply an additional block
of CSS rules to be applied after the automatically generated table CSS.

table.font.names

Default table fonts
The names of the fonts used for the table can be supplied through table.font.names.
This is a vector of several font names. If the first font isn’t available, then the
next font is tried (and so on).

table.font.size, heading.title.font.size, heading.subtitle.font.size, column_labels.font.size, row_group.font.size, stub.font.size, footnotes.font.size, source_notes.font.size

Table font sizes
The font sizes for the parent text element table and the following child ele-
ments: heading.title, heading.subtitle, column_labels, row_group, footnotes,
and source_notes. Can be specified as a single-length character vector with
units of pixels (e.g., 12px) or as a percentage (e.g., 80\%). If provided as a
single-length numeric vector, it is assumed that the value is given in units of
pixels. The px() and pct() helper functions can also be used to pass in nu-
meric values and obtain values as pixel or percentage units.

table.font.weight, heading.title.font.weight, heading.subtitle.font.weight, column_labels.font.weight, row_group.font.weight, stub.font.weight

Table font weights
The font weights of the table, heading.title, heading.subtitle, column_labels,
row_group, and stub text elements. Can be a text-based keyword such as
"normal", "bold", "lighter", "bolder", or, a numeric value between 1 and
1000, inclusive. Note that only variable fonts may support the numeric mapping
of weight.

tab_options 433

table.font.style

Default table font style
This is the default font style for the table. Can be one of either "normal",
"italic", or "oblique".

table.font.color, table.font.color.light

Default dark and light text for the table
These options define text colors used throughout the table. There are two vari-
ants: table.font.color is for text overlaid on lighter background colors, and
table.font.color.light is automatically used when text needs to be overlaid
on darker background colors. A color name or a hexadecimal color code should
be provided.

table.border.top.style, table.border.top.width, table.border.top.color, table.border.right.style, table.border.right.width, table.border.right.color, table.border.bottom.style, table.border.bottom.width, table.border.bottom.color, table.border.left.style, table.border.left.width, table.border.left.color

Top border properties
The style, width, and color properties of the table’s absolute top and absolute
bottom borders.

heading.align Horizontal alignment in the table header
Controls the horizontal alignment of the heading title and subtitle. We can either
use "center", "left", or "right".

heading.padding, column_labels.padding, data_row.padding, row_group.padding, summary_row.padding, grand_summary_row.padding, footnotes.padding, source_notes.padding

Vertical padding throughout the table
The amount of vertical padding to incorporate in the heading (title and subtitle),
the column_labels (this includes the column spanners), the row group labels
(row_group.padding), in the body/stub rows (data_row.padding), in sum-
mary rows (summary_row.padding or grand_summary_row.padding), or in
the footnotes and source notes (footnotes.padding and source_notes.padding).

heading.padding.horizontal, column_labels.padding.horizontal, data_row.padding.horizontal, row_group.padding.horizontal, summary_row.padding.horizontal, grand_summary_row.padding.horizontal, footnotes.padding.horizontal, source_notes.padding.horizontal

Horizontal padding throughout the table
The amount of horizontal padding to incorporate in the heading (title and sub-
title), the column_labels (this includes the column spanners), the row group la-
bels (row_group.padding.horizontal), in the body/stub rows (data_row.padding),
in summary rows (summary_row.padding.horizontal or grand_summary_row.padding.horizontal),
or in the footnotes and source notes (footnotes.padding.horizontal and
source_notes.padding.horizontal).

heading.border.bottom.style, heading.border.bottom.width, heading.border.bottom.color

Properties of the header’s bottom border
The style, width, and color properties of the header’s bottom border. This border
shares space with that of the column_labels location. If the width of this
border is larger, then it will be the visible border.

heading.border.lr.style, heading.border.lr.width, heading.border.lr.color

Properties of the header’s left and right borders
The style, width, and color properties for the left and right borders of the heading
location.

column_labels.text_transform, row_group.text_transform, stub.text_transform, summary_row.text_transform, grand_summary_row.text_transform

Text transforms throughout the table
Options to apply text transformations to the column_labels, row_group, stub,
summary_row, and grand_summary_row text elements. Either of the "uppercase",
"lowercase", or "capitalize" keywords can be used.

434 tab_options

column_labels.vlines.style, column_labels.vlines.width, column_labels.vlines.color

Properties of all vertical lines by the column labels
The style, width, and color properties for all vertical lines (’vlines’) of the the
column_labels.

column_labels.border.top.style, column_labels.border.top.width, column_labels.border.top.color

Properties of the border above the column labels
The style, width, and color properties for the top border of the column_labels
location. This border shares space with that of the heading location. If the
width of this border is larger, then it will be the visible border.

column_labels.border.bottom.style, column_labels.border.bottom.width, column_labels.border.bottom.color

Properties of the border below the column labels
The style, width, and color properties for the bottom border of the column_labels
location.

column_labels.border.lr.style, column_labels.border.lr.width, column_labels.border.lr.color

Properties of the left and right borders next to the column labels
The style, width, and color properties for the left and right borders of the column_labels
location.

column_labels.hidden

Hiding all column labels
An option to hide the column labels. If providing TRUE then the entire column_labels
location won’t be seen and the table header (if present) will collapse downward.

column_labels.units_pattern

Pattern to combine column labels and units
The default pattern for combining column labels with any defined units for col-
umn labels. The pattern is initialized as "{1}, {2}", where "{1}" refers to the
column label text and "{2}" is the text related to the associated units. When
using cols_units(), there is the opportunity to provide a specific pattern that
overrides the units pattern unit. Further to this, if specifying units directly in
cols_label() (through the units syntax surrounded by "{{"/"}}") there is no
need for a units pattern and any value here will be disregarded.

row_group.border.top.style, row_group.border.top.width, row_group.border.top.color, row_group.border.bottom.style, row_group.border.bottom.width, row_group.border.bottom.color, row_group.border.left.style, row_group.border.left.width, row_group.border.left.color, row_group.border.right.style, row_group.border.right.width, row_group.border.right.color

Border properties associated with the row_group location
The style, width, and color properties for all top, bottom, left, and right borders
of the row_group location.

row_group.default_label

The default row group label
An option to set a default row group label for any rows not formally placed in
a row group named by group in any call of tab_row_group(). If this is set as
NA_character_ and there are rows that haven’t been placed into a row group
(where one or more row groups already exist), those rows will be automatically
placed into a row group without a label.

row_group.as_column

Structure row groups with a column
How should row groups be structured? By default, they are separate rows that
lie above the each of the groups. Setting this to TRUE will structure row group
labels as a separate column in the table stub.

tab_options 435

table_body.hlines.style, table_body.hlines.width, table_body.hlines.color, table_body.vlines.style, table_body.vlines.width, table_body.vlines.color

Properties of all horizontal and vertical lines in the table body
The style, width, and color properties for all horizontal lines (’hlines’) and ver-
tical lines (’vlines’) in the table_body.

table_body.border.top.style, table_body.border.top.width, table_body.border.top.color, table_body.border.bottom.style, table_body.border.bottom.width, table_body.border.bottom.color

Properties of top and bottom borders in the table body
The style, width, and color properties for all top and bottom borders of the
table_body location.

stub.border.style, stub.border.width, stub.border.color

Properties of the vertical border of the table stub
The style, width, and color properties for the vertical border of the table stub.

stub.indent_length

Width of each indentation
The width of each indentation level for row labels in the stub. The indentation
can be set by using tab_stub_indent(). By default this is "5px".

stub_row_group.font.size, stub_row_group.font.weight, stub_row_group.text_transform, stub_row_group.border.style, stub_row_group.border.width, stub_row_group.border.color

Properties of the row group column in the table stub
Options for the row group column in the table stub (made possible when using
row_group.as_column = TRUE). The defaults for these options mirror that of the
stub.* variants (except for stub_row_group.border.width, which is "1px"
instead of "2px").

summary_row.border.style, summary_row.border.width, summary_row.border.color

Properties of horizontal borders belonging to summary rows
The style, width, and color properties for all horizontal borders of the summary_row
location.

grand_summary_row.border.style, grand_summary_row.border.width, grand_summary_row.border.color

Properties of horizontal borders belonging to grand summary rows
The style, width, and color properties for the top borders of the grand_summary_row
location.

footnotes.border.bottom.style, footnotes.border.bottom.width, footnotes.border.bottom.color

Properties of the bottom border belonging to the footnotes
The style, width, and color properties for the bottom border of the footnotes
location.

footnotes.border.lr.style, footnotes.border.lr.width, footnotes.border.lr.color

Properties of left and right borders belonging to the footnotes
The style, width, and color properties for the left and right borders of the footnotes
location.

footnotes.marks

Sequence of footnote marks
The set of sequential marks used to reference and identify each of the footnotes
(same input as the opt_footnote_marks() function). We can supply a vector
that represents the series of footnote marks. This vector is recycled when its
usage goes beyond the length of the set. At each cycle, the marks are simply
combined (e.g., * -> ** -> ***). The option exists for providing keywords for
certain types of footnote marks. The keyword "numbers" (the default, indicating
that we want to use numeric marks). We can use lowercase "letters" or up-
percase "LETTERS". There is the option for using a traditional symbol set where

436 tab_options

"standard" provides four symbols, and, "extended" adds two more symbols,
making six.

footnotes.spec_ref, footnotes.spec_ftr

Specifications for formatting of footnote marks
Optional specifications for formatting of footnote references (footnotes.spec_ref)
and their associated marks the footer section (footnotes.spec_ftr) (same in-
put as the opt_footnote_spec() function). This is a string containing speci-
fication control characters. The default is the spec string "^i", which is super-
script text set in italics. Other control characters that can be used are: (1) "b" for
bold text, and (2) "(" / ")" for the enclosure of footnote marks in parentheses.

footnotes.multiline, source_notes.multiline

Typesetting of multiple footnotes and source notes
An option to either put footnotes and source notes in separate lines (the default,
or TRUE) or render them as a continuous line of text with footnotes.sep pro-
viding the separator (by default " ") between notes.

footnotes.sep, source_notes.sep

Separator characters between adjacent footnotes and source notes
The separating characters between adjacent footnotes and source notes in their
respective footer sections when rendered as a continuous line of text (when
footnotes.multiline == FALSE). The default value is a single space character
(" ").

source_notes.border.bottom.style, source_notes.border.bottom.width, source_notes.border.bottom.color

Properties of the bottom border belonging to the source notes
The style, width, and color properties for the bottom border of the source_notes
location.

source_notes.border.lr.style, source_notes.border.lr.width, source_notes.border.lr.color

Properties of left and right borders belonging to the source notes
The style, width, and color properties for the left and right borders of the source_notes
location.

row.striping.background_color

Background color for row stripes
The background color for striped table body rows. A color name or a hexadeci-
mal color code should be provided.

row.striping.include_stub

Inclusion of the table stub for row stripes
An option for whether to include the stub when striping rows.

row.striping.include_table_body

Inclusion of the table body for row stripes
An option for whether to include the table body when striping rows.

container.width, container.height, container.padding.x, container.padding.y

Table container dimensions and padding
The width and height of the table’s container, and, the vertical and horizontal
padding of the table’s container. The container width and height can be specified
with units of pixels or as a percentage. The padding is to be specified as a length
with units of pixels. If provided as a numeric value, it is assumed that the value
is given in units of pixels. The px() and pct() helper functions can also be used
to pass in numeric values and obtain values as pixel or percent units.

tab_options 437

container.overflow.x, container.overflow.y

Table container overflow
Options to enable scrolling in the horizontal and vertical directions when the
table content overflows the container dimensions. Using TRUE (the default for
both) means that horizontal or vertical scrolling is enabled to view the entire
table in those directions. With FALSE, the table may be clipped if the table width
or height exceeds the container.width or container.height.

ihtml.active Display interactive HTML table
The option for displaying an interactive version of an HTML table (rather than
an otherwise ’static’ table). This enables the use of controls for pagination,
global search, filtering, and sorting. The individual features are controlled by the
other table.* options. By default, the pagination (ihtml.use_pagination)
and sorting (ihtml.use_sorting) features are enabled. The ihtml.active
option, however, is FALSE by default.

ihtml.use_pagination, ihtml.use_pagination_info

Use pagination
For interactive HTML output, the option for using pagination controls (below
the table body) can be controlled with ihtml.use_pagination. By default, this
is TRUE and it will allow the use to page through table content. The informational
display text regarding the current page can be set with ihtml.use_pagination_info
(which is TRUE by default).

ihtml.use_sorting

Provide column sorting controls
For interactive HTML output, the option to provide controls for sorting column
values. By default, this is TRUE.

ihtml.use_search

Provide a global search field
For interactive HTML output, an option that places a search field for globally
filtering rows to the requested content. By default, this is FALSE.

ihtml.use_filters

Display filtering fields
For interactive HTML output, this places search fields below each column header
and allows for filtering by column. By default, this is FALSE.

ihtml.use_resizers

Allow column resizing
For interactive HTML output, this allows for interactive resizing of columns. By
default, this is FALSE.

ihtml.use_highlight

Enable row highlighting on hover
For interactive HTML output, this highlights individual rows upon hover. By
default, this is FALSE.

ihtml.use_compact_mode

Use compact mode
For interactive HTML output, an option to reduce vertical padding and thus
make the table consume less vertical space. By default, this is FALSE.

438 tab_options

ihtml.use_text_wrapping

Use text wrapping
For interactive HTML output, an option to control text wrapping. By default
(TRUE), text will be wrapped to multiple lines; if FALSE, text will be truncated to
a single line.

ihtml.use_page_size_select, ihtml.page_size_default, ihtml.page_size_values

Change page size properties
For interactive HTML output, ihtml.use_page_size_select provides the op-
tion to display a dropdown menu for the number of rows to show per page of
data. By default, this is the vector c(10, 25, 50, 100) which corresponds to
options for 10, 25, 50, and 100 rows of data per page. To modify these page-size
options, provide a numeric vector to ihtml.page_size_values. The default
page size (initially set as 10) can be modified with ihtml.page_size_default
and this works whether or not ihtml.use_page_size_select is set to TRUE.

ihtml.pagination_type

Change pagination mode
For interactive HTML output and when using pagination, one of three options
for presentation pagination controls. The default is "numbers", where a series
of page-number buttons is presented along with ’previous’ and ’next’ buttons.
The "jump" option provides an input field with a stepper for the page number.
With "simple", only the ’previous’ and ’next’ buttons are displayed.

page.orientation

Set RTF page orientation
For RTF output, this provides an two options for page orientation: "portrait"
(the default) and "landscape".

page.numbering Enable RTF page numbering
Within RTF output, should page numbering be displayed? By default, this is set
to FALSE but if TRUE then page numbering text will be added to the document
header.

page.header.use_tbl_headings

Place table headings in RTF page header
If TRUE then RTF output tables will migrate all table headings (including the
table title and all column labels) to the page header. This page header content
will repeat across pages. By default, this is FALSE.

page.footer.use_tbl_notes

Place table footer in RTF page footer
If TRUE then RTF output tables will migrate all table footer content (this includes
footnotes and source notes) to the page footer. This page footer content will
repeat across pages. By default, this is FALSE.

page.width, page.height

Set RTF page dimensions
The page width and height in the standard portrait orientation. This is for RTF
table output and the default values (in inches) are 8.5in and 11.0in.

page.margin.left, page.margin.right, page.margin.top, page.margin.bottom

Set RTF page margins
For RTF table output, these options correspond to the left, right, top, and bottom
page margins. The default values for each of these is 1.0in.

tab_options 439

page.header.height, page.footer.height

Set RTF page header and footer distances
The heights of the page header and footer for RTF table outputs. Default values
for both are 0.5in.

quarto.use_bootstrap, quarto.disable_processing

Modify Quarto properties
When rendering a gt table with Quarto, the table can undergo transformations
to support advanced Quarto features. Setting quarto.use_bootstrap to TRUE
(FALSE by default) will allow Quarto to add Bootstrap classes to the table, al-
lowing those styles to permeate the table. Quarto performs other alterations as
well but they can all be deactivated with quarto.disable_processing = TRUE
(this option is FALSE by default).

Value

An object of class gt_tbl.

Examples

Use select columns from the exibble dataset to create a gt table with a number of table parts added
(using functions like summary_rows(), grand_summary_rows(), and more). We can use this gt
object going forward to demo some of the features available in the tab_options() function.

tab_1 <-
exibble |>
dplyr::select(-c(fctr, date, time, datetime)) |>
gt(
rowname_col = "row",
groupname_col = "group"

) |>
tab_header(
title = md("Data listing from **exibble**"),
subtitle = md("`exibble` is an R dataset")

) |>
fmt_number(columns = num) |>
fmt_currency(columns = currency) |>
tab_footnote(
footnote = "Using commas for separators.",
locations = cells_body(
columns = num,
rows = num > 1000

)
) |>
tab_footnote(
footnote = "Using commas for separators.",
locations = cells_body(
columns = currency,
rows = currency > 1000

)

440 tab_options

) |>
tab_footnote(
footnote = "Alphabetical fruit.",
locations = cells_column_labels(columns = char)

)

tab_1

We can modify the table width to be set as ’100%’. In effect, this spans the table to entirely fill the
content width area. This is done with the table.width option and we take advantage of the pct()
helper function.

tab_1 |> tab_options(table.width = pct(100))

With the table.background.color option, we can modify the table’s background color. Here, we
want that to be "lightcyan".

tab_1 |> tab_options(table.background.color = "lightcyan")

We have footnotes residing in the footer section of tab_1. By default, each footnote takes up
a new line of text. This can be changed with the footnotes.multiline option. Using FALSE
with that means that all footnotes will be placed into one continuous span of text. Speaking of
footnotes, we can change the ’marks’ used to identify them. Here, we’ll use letters as the marks
for footnote references (instead of the default, which is numbers). This is accomplished with the
footnotes.marks option, and we are going to supply the letters vector to that.

tab_1 |>
tab_options(
footnotes.multiline = FALSE,
footnotes.marks = letters

)

The data rows of a table typically take up the most physical space but we have some control over
the extent of that. With the data_row.padding option, it’s possible to modify the top and bottom
padding of data rows. We’ll do just that in the following example, reducing the padding to a value
of 5 px (note that we are using the px() helper function here).

tab_1 |> tab_options(data_row.padding = px(5))

The size of the title and the subtitle text in the header of the table can be altered with the heading.title.font.size
and heading.subtitle.font.size options. Here, we’ll use the "small" keyword as a value for
both options.

tab_1 |>
tab_options(
heading.title.font.size = "small",
heading.subtitle.font.size = "small"

)

tab_row_group 441

Function ID

2-12

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_row_group(), tab_source_note(), tab_spanner_delim(), tab_spanner(),
tab_stub_indent(), tab_stubhead(), tab_style_body(), tab_style()

tab_row_group Add a row group to a gt table

Description

We can create a row group from a collection of rows with the tab_row_group() function. This
requires specification of the rows to be included, either by supplying row labels, row indices, or
through use of a select helper function like starts_with(). To modify the order of row groups, we
can use the row_group_order() function.

To set a default row group label for any rows not formally placed in a row group, we can use a
separate call to tab_options(row_group.default_label = <label>). If this is not done and
there are rows that haven’t been placed into a row group (where one or more row groups already
exist), those rows will be automatically placed into a row group without a label.

Usage

tab_row_group(data, label, rows, id = label, others_label = NULL, group = NULL)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

label Row group label text
scalar<character> // required
The text to use for the row group label. We can optionally use the md() and
html() functions to style the text as Markdown or to retain HTML elements in
the text.

442 tab_row_group

rows Rows to target
<row-targeting expression> // required
The rows to be made components of the row group. We can supply a vector of
row ID values within c(), a vector of row indices, or use select helpers here.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). We
can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

id Row group ID
scalar<character> // default: label
The ID for the row group. When accessing a row group through cells_row_groups()
(when using tab_style() or tab_footnote()) the id value is used as the ref-
erence (and not the label). If an id is not explicitly provided here, it will be
taken from the label value. It is advisable to set an explicit id value if you plan
to access this cell in a later function call and the label text is complicated (e.g.,
contains markup, is lengthy, or both). Finally, when providing an id value you
must ensure that it is unique across all ID values set for row groups (the function
will stop if id isn’t unique).

others_label Deprecated Label for default row group
scalar<character> // default: NULL (optional)
This argument is deprecated. Instead use tab_options(row_group.default_label = <label>).

group Deprecated The group label
scalar<character> // default: NULL (optional)
This argument is deprecated. Instead use label.

Value

An object of class gt_tbl.

Examples

Using a subset of the gtcars dataset, let’s create a simple gt table with row labels (from the model
column) inside of a stub. This eight-row table begins with no row groups at all but with a single use
of the tab_row_group() function, we can specify a row group that will contain any rows where the
car model begins with a number.

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_row_group(
label = "numbered",
rows = matches("^[0-9]")

)

This actually makes two row groups since there are row labels that don’t begin with a number. That
second row group is a catch-all NA group, and it doesn’t display a label at all. Rather, it is set off
from the other group with a double line. This may be a preferable way to display the arrangement

tab_row_group 443

of one distinct group and an ’others’ or default group. If that’s the case but you’d like the order
reversed, the row_group_order() function can be used for that.

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_row_group(
label = "numbered",
rows = matches("^[0-9]")

) |>
row_group_order(groups = c(NA, "numbered"))

Two more options include: (1) setting a default label for the ’others’ group (done through tab_options()),
and (2) creating row groups until there are no more unaccounted for rows. Let’s try the first option
in the next example:

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_row_group(
label = "numbered",
rows = matches("^[0-9]")

) |>
row_group_order(groups = c(NA, "numbered")) |>
tab_options(row_group.default_label = "others")

The above use of the row_group.default_label in tab_options() gets the job done and provides
a default label. One drawback is that the default/NA group doesn’t have an ID, so it can’t as easily be
styled with tab_style(); however, row groups have indices and the index for the "others" group
here is 1.

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_row_group(
label = "numbered",
rows = matches("^[0-9]")

) |>
row_group_order(groups = c(NA, "numbered")) |>
tab_options(row_group.default_label = "others") |>
tab_style(
style = cell_fill(color = "bisque"),
locations = cells_row_groups(groups = 1)

) |>
tab_style(

444 tab_row_group

style = cell_fill(color = "lightgreen"),
locations = cells_row_groups(groups = "numbered")

)

Now let’s try using tab_row_group() with our gtcars-based table such that all rows are formally
assigned to different row groups. We’ll define two row groups with the (Markdown-infused) labels
"**Powerful Cars**" and "**Super Powerful Cars**". The distinction between the groups is
whether hp is lesser or greater than 600 (and this is governed by the expressions provided to the
rows argument).

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_row_group(
label = md("**Powerful Cars**"),
rows = hp < 600,
id = "powerful"

) |>
tab_row_group(
label = md("**Super Powerful Cars**"),
rows = hp >= 600,
id = "v_powerful"

) |>
tab_style(
style = cell_fill(color = "gray85"),
locations = cells_row_groups(groups = "powerful")

) |>
tab_style(
style = list(
cell_fill(color = "gray95"),
cell_text(size = "larger")

),
locations = cells_row_groups(groups = "v_powerful")

)

Setting the id values for each of the row groups makes things easier since you will have clean,
markup-free ID values to reference in later calls (as was done with the tab_style() invocations in
the example above). The use of the md() helper function makes it so that any Markdown provided
for the label of a row group is faithfully rendered.

Function ID

2-4

Function Introduced

v0.2.0.5 (March 31, 2020)

tab_source_note 445

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_source_note(), tab_spanner_delim(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

tab_source_note Add a source note citation

Description

Add a source note to the footer part of the gt table. A source note is useful for citing the data in-
cluded in the table. Several can be added to the footer, simply use multiple calls of tab_source_note()
and they will be inserted in the order provided. We can use Markdown formatting for the note, or,
if the table is intended for HTML output, we can include HTML formatting.

Usage

tab_source_note(data, source_note)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

source_note Source note text
scalar<character> // required
Text to be used in the source note. We can optionally use the md() and html()
functions to style the text as Markdown or to retain HTML elements in the text.

Value

An object of class gt_tbl.

Examples

With three columns from the gtcars dataset, let’s create a gt table. We can use the tab_source_note()
function to add a source note to the table footer. Here we are citing the data source but this function
can be used for any text you’d prefer to display in the footer section.

gtcars |>
dplyr::select(mfr, model, msrp) |>
dplyr::slice(1:5) |>
gt() |>
tab_source_note(source_note = "From edmunds.com")

446 tab_spanner

Function ID

2-8

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_spanner_delim(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

tab_spanner Add a spanner label

Description

With the tab_spanner() function, you can insert a spanner in the column labels part of a gt table.
This part of the table contains, at a minimum, column labels and, optionally, an unlimited number
of levels for spanners. A spanner will occupy space over any number of contiguous column labels
and it will have an associated label and ID value. This function allows for mapping to be defined
by column names, existing spanner ID values, or a mixture of both. The spanners are placed in the
order of calling tab_spanner() so if a later call uses the same columns in its definition (or even
a subset) as the first invocation, the second spanner will be overlaid atop the first. Options exist
for forcibly inserting a spanner underneath other (with level as space permits) and with replace,
which allows for full or partial spanner replacement.

Usage

tab_spanner(
data,
label,
columns = NULL,
spanners = NULL,
level = NULL,
id = label,
gather = TRUE,
replace = FALSE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

tab_spanner 447

label Spanner label text
scalar<character> // required
The text to use for the spanner label. We can optionally use the md() and html()
functions to style the text as Markdown or to retain HTML elements in the text.

columns Columns to target
<column-targeting expression> // default: NULL (optional)
The columns to serve as components of the spanner. Can either be a series of col-
umn names provided in c(), a vector of column indices, or a select helper func-
tion. Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). This
argument works in tandem with the spanners argument.

spanners Spanners to target
vector<character> // default: NULL (optional)
The spanners that should be spanned over, should they already be defined. One
or more spanner ID values (in quotes) can be supplied here. This argument
works in tandem with the columns argument.

level Spanner level for insertion
scalar<numeric|integer> // default: NULL (optional)
An explicit level to which the spanner should be placed. If not provided, gt will
choose the level based on the inputs provided within columns and spanners,
placing the spanner label where it will fit. The first spanner level (right above
the column labels) is 1.

id Spanner ID
scalar<character> // default: label

The ID for the spanner. When accessing a spanner through the spanners argu-
ment of tab_spanner() or cells_column_spanners() (when using tab_style()
or tab_footnote()) the id value is used as the reference (and not the label).
If an id is not explicitly provided here, it will be taken from the label value.
It is advisable to set an explicit id value if you plan to access this cell in a
later function call and the label text is complicated (e.g., contains markup, is
lengthy, or both). Finally, when providing an id value you must ensure that it
is unique across all ID values set for spanner labels (the function will stop if id
isn’t unique).

gather Gather columns together
scalar<logical> // default: TRUE

An option to move the specified columns such that they are unified under the
spanner. Ordering of the moved-into-place columns will be preserved in all
cases. By default, this is set to TRUE.

replace Replace existing spanners
scalar<logical> // default: FALSE

Should new spanners be allowed to partially or fully replace existing spanners?
(This is a possibility if setting spanners at an already populated level.) By
default, this is set to FALSE and an error will occur if some replacement is at-
tempted.

448 tab_spanner

Value

An object of class gt_tbl.

Targeting columns with the columns argument

The columns argument allows us to target a subset of columns contained in the table. We can declare
column names in c() (with bare column names or names in quotes) or we can use tidyselect-style
expressions. This can be as basic as supplying a select helper like starts_with(), or, providing a
more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

Details on spanner placement

Let’s take a hypothetical table that includes the following column names in order from left to right:
year, len.pop, m.pop, len.dens, and m.dens. We’d like to have some useful spanners, but don’t
want to have any over the year column (so we’ll avoid using that column when defining spanners).
Let’s start by creating a schematic representation of what is wanted in terms of spanners:

| ------- `"Two Provinces of Ireland"` ------ <- level 2 spanner
| ---- `"Leinster"` ---- | --- `"Munster"` -- <- level 1 spanners

`year` | `len.pop` | `len.dens` | `m.pop` | `m.dens` <- column names
--

To make this arrangement happen, we need three separate calls of tab_spanner():

• tab_spanner(., label = "Leinster", columns = starts_with("len"))

• tab_spanner(., label = "Munster", columns = starts_with("m"))

• tab_spanner(., label = "Two Provinces of Ireland", columns = -year)

This will give us the spanners we need with the appropriate labels. The ID values will be derived
from the labels in this case, but they can directly supplied via the id argument.

An important thing to keep aware of is that the order of calls matters. The first two can be in any
order but the third one must happen last since we build spanners from the bottom up. Also note
that the first calls will rearrange columns! This is by design as the gather = TRUE default will
purposefully gather columns together so that the columns will be united under a single spanner.
More complex definitions of spanners can be performed and the Examples section demonstrates
some of the more advanced calls of tab_spanner().

As a final note, the column labels (by default deriving from the column names) will likely need to
change and that’s especially true in the above case. This can be done with either of cols_label()
or cols_label_with().

tab_spanner 449

Incorporating units with gt’s units notation

Measurement units are often seen as part of spanner labels and indeed it can be much more straight-
forward to include them here rather than using other devices to make readers aware of units for
specific columns. Any text pertaining units is to be defined alongside the spanner label. To do this,
we have to surround the portion of text in the label that corresponds to the units definition with
"{{"/"}}".

Now that we know how to mark text for units definition, we know need to know how to write
proper units with the notation. Such notation uses a succinct method of writing units and it should
feel somewhat familiar though it is particular to the task at hand. Each unit is treated as a separate
entity (parentheses and other symbols included) and the addition of subscript text and exponents is
flexible and relatively easy to formulate. This is all best shown with a few examples:

• "m/s" and "m / s" both render as "m/s"

• "m s^-1" will appear with the "-1" exponent intact

• "m /s" gives the the same result, as "/<unit>" is equivalent to "<unit>^-1"

• "E_h" will render an "E" with the "h" subscript

• "t_i^2.5" provides a t with an "i" subscript and a "2.5" exponent

• "m[_0^2]" will use overstriking to set both scripts vertically

• "g/L %C6H12O6%" uses a chemical formula (enclosed in a pair of "%" characters) as a unit
partial, and the formula will render correctly with subscripted numbers

• Common units that are difficult to write using ASCII text may be implicitly converted to the
correct characters (e.g., the "u" in "ug", "um", "uL", and "umol" will be converted to the
Greek mu symbol; "degC" and "degF" will render a degree sign before the temperature unit)

• We can transform shorthand symbol/unit names enclosed in ":" (e.g., ":angstrom:", ":ohm:",
etc.) into proper symbols

• Greek letters can added by enclosing the letter name in ":"; you can use lowercase letters
(e.g., ":beta:", ":sigma:", etc.) and uppercase letters too (e.g., ":Alpha:", ":Zeta:", etc.)

• The components of a unit (unit name, subscript, and exponent) can be fully or partially itali-
cized/emboldened by surrounding text with "*" or "**"

Examples

Let’s create a gt table using a small portion of the gtcars dataset. Over several columns (hp,
hp_rpm, trq, trq_rpm, mpg_c, mpg_h) we’ll use tab_spanner() to add a spanner with the label
"performance". This effectively groups together several columns related to car performance under
a unifying label.

gtcars |>
dplyr::select(
-mfr, -trim, bdy_style,
-drivetrain, -trsmn, -ctry_origin

) |>
dplyr::slice(1:8) |>
gt(rowname_col = "model") |>
tab_spanner(

450 tab_spanner

label = "performance",
columns = c(
hp, hp_rpm, trq, trq_rpm, mpg_c, mpg_h

)
)

With the default gather = TRUE option, columns selected for a particular spanner will be moved so
that there is no separation between them. This can be seen with the example below that uses a subset
of the towny dataset. The starting column order is name, latitude, longitude, population_2016,
density_2016, population_2021, and density_2021. The first two uses of tab_spanner() deal
with making separate spanners for the two population and two density columns. After their use,
the columns are moved to this new ordering: name, latitude, longitude, population_2016,
population_2021, density_2016, and density_2021. The third and final call of tab_spanner()
doesn’t further affect the ordering of columns.

towny |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 5) |>
dplyr::select(
name, latitude, longitude,
ends_with("2016"), ends_with("2021")

) |>
gt() |>
tab_spanner(
label = "Population",
columns = starts_with("pop")

) |>
tab_spanner(
label = "Density",
columns = starts_with("den")

) |>
tab_spanner(
label = md("*Location*"),
columns = ends_with("itude"),
id = "loc"

)

While columns are moved, it is only the minimal amount of moving required (pulling in columns
from the right) to ensure that columns are gathered under the appropriate spanners. With the last
call, there are two more things to note: (1) label values can use the md() (or html()) helper
functions to help create styled text, and (2) an id value may be supplied for reference later (e.g., for
styling with tab_style() or applying footnotes with tab_footnote()).

It’s possible to stack multiple spanners atop each other with consecutive calls of tab_spanner().
It’s a bit like playing Tetris: putting a spanner down anywhere there is another spanner (i.e., there are
one or more shared columns) means that second spanner will reside a level above the prior. Let’s
look at a few examples at how this works, and we’ll also explore a few lesser-known placement
tricks. Let’s use a cut down version of exibble for this, set up a few level-one spanners, and then
place a level two spanner over two other spanners.

tab_spanner 451

exibble_narrow <- exibble |> dplyr::slice_head(n = 3)

exibble_narrow |>
gt() |>
tab_spanner(
label = "Row Information",
columns = c(row, group)

) |>
tab_spanner(
label = "Numeric Values",
columns = where(is.numeric),
id = "num_spanner"

) |>
tab_spanner(
label = "Text Values",
columns = c(char, fctr),
id = "text_spanner"

) |>
tab_spanner(
label = "Numbers and Text",
spanners = c("num_spanner", "text_spanner")

)

In the above example, we used the spanners argument to define where the "Numbers and Text"-
labeled spanner should reside. For that, we supplied the "num_spanner" and "text_spanner" ID
values for the two spanners associated with the num, currency, char, and fctr columns. Alterna-
tively, we could have given those column names to the columns argument and achieved the same
result. You could actually use a combination of spanners and columns to define where the spanner
should be placed. Here is an example of just that:

exibble_narrow_gt <-
exibble_narrow |>
gt() |>
tab_spanner(
label = "Numeric Values",
columns = where(is.numeric),
id = "num_spanner"

) |>
tab_spanner(
label = "Text Values",
columns = c(char, fctr),
id = "text_spanner"

) |>
tab_spanner(
label = "Text, Dates, Times, Datetimes",
columns = contains(c("date", "time")),
spanners = "text_spanner"

)

452 tab_spanner

exibble_narrow_gt

And, again, we could have solely supplied all of the column names to columns instead of using
this hybrid approach, but it is interesting to express the definition of spanners with this flexible
combination.

What if you wanted to extend the above example and place a spanner above the date, time, and
datetime columns? If you tried that in the manner as exemplified above, the spanner will be placed
in the third level of spanners:

exibble_narrow_gt |>
tab_spanner(
label = "Date and Time Columns",
columns = contains(c("date", "time")),
id = "date_time_spanner"

)

Remember that the approach taken by tab_spanner() is to keep stacking atop existing spanners.
But, there is space next to the "Text Values" spanner on the first level. You can either revise the
order of tab_spanner() calls, or, use the level argument to force the spanner into that level (so
long as there is space).

exibble_narrow_gt |>
tab_spanner(
label = "Date and Time Columns",
columns = contains(c("date", "time")),
level = 1,
id = "date_time_spanner"

)

That puts the spanner in the intended level. If there aren’t free locations available in the level
specified you’ll get an error stating which columns cannot be used for the new spanner (this can be
circumvented, if necessary, with the replace = TRUE option). If you choose a level higher than the
maximum occupied, then the spanner will be dropped down. Again, these behaviors are indicative
of Tetris-like rules though they tend to work well for the application of spanners.

Using a subset of the towny dataset, we can create an interesting gt table. First, only certain columns
are selected from the dataset, some filtering of rows is done, rows are sorted, and then only the first
10 rows are kept. After the data is introduced to gt(), we then apply some spanner labels using
two calls of tab_spanner(). In the second of those, we incorporate unit notation text (within
"{{"/"}}") in the label to get a display of nicely-formatted units.

towny |>
dplyr::select(
name, ends_with("2001"), ends_with("2006"), matches("2001_2006")

) |>
dplyr::filter(population_2001 > 100000) |>
dplyr::arrange(desc(pop_change_2001_2006_pct)) |>
dplyr::slice_head(n = 10) |>

tab_spanner_delim 453

gt() |>
fmt_integer() |>
fmt_percent(columns = matches("change"), decimals = 1) |>
tab_spanner(
label = "Population",
columns = starts_with("population")

) |>
tab_spanner(
label = "Density, {{*persons* km^-2}}",
columns = starts_with("density")

) |>
cols_label(
ends_with("01") ~ "2001",
ends_with("06") ~ "2006",
matches("change") ~ md("Population Change,
2001 to 2006")

) |>
cols_width(everything() ~ px(120))

Function ID

2-2

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

tab_spanner_delim() to create spanners and new column labels with delimited column names.

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(),
tab_stub_indent(), tab_stubhead(), tab_style_body(), tab_style()

tab_spanner_delim Create column labels and spanners via delimited column names

Description

The tab_spanner_delim() function can take specially-crafted column names and generate one or
more spanners (and revise column labels at the same time). This is done by splitting the column
name by the specified delimiter text (delim) and placing the fragments from top to bottom (i.e.,
higher-level spanners to the column labels) or vice versa. Furthermore, neighboring text fragments
on different spanner levels that have the same text will be coalesced together. For instance, having
the three side-by-side column names rating_1, rating_2, and rating_3 will (in the default case
at least) result in a spanner with the label "rating" above columns with the labels "1", "2", and
"3". There are many options in cols_spanner_delim() to slice and dice delimited column names
in different ways:

454 tab_spanner_delim

• delimiter text: choose the delimiter text to use for the fragmentation of column names into
spanners with the delim argument

• direction and amount of splitting: we can choose to split n times according to a limit ar-
gument, and, we get to specify from which side of the column name the splitting should
commence

• reversal of fragments: we can reverse the order the fragments we get from the splitting proce-
dure with the reverse argument

• column constraints: it’s possible to constrain which columns in a gt table should participate
in spanner creation using vectors or tidyselect-style expressions

Usage

tab_spanner_delim(
data,
delim,
columns = everything(),
split = c("last", "first"),
limit = NULL,
reverse = FALSE

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

delim Delimiter for splitting
scalar<character> // required
The delimiter text to use to split one of more column names (i.e., those that are
targeted via the columns argument).

columns Columns to target
<column-targeting expression> // default: everything()
The columns to consider for the splitting, relabeling, and spanner setting op-
erations. Can either be a series of column names provided in c(), a vector of
column indices, or a select helper function. Examples of select helper functions
include starts_with(), ends_with(), contains(), matches(), one_of(),
num_range(), and everything().

split Splitting side
singl-kw:[last|first] // default: "last"
Should the delimiter splitting occur from the "last" instance of the delim char-
acter or from the "first"? The default here uses the "last" keyword, and
splitting begins at the last instance of the delimiter in the column name. This
option only has some consequence when there is a limit value applied that is
lesser than the number of delimiter characters for a given column name (i.e.,
number of splits is not the maximum possible number).

tab_spanner_delim 455

limit Limit for splitting
scalar<numeric|integer|character> // default: NULL (optional)
An optional limit to place on the splitting procedure. The default NULL means
that a column name will be split as many times are there are delimiter characters.
In other words, the default means there is no limit. If an integer value is given
to limit then splitting will cease at the iteration given by limit. This works in
tandem with split since we can adjust the number of splits from either the right
side (split = "last") or left side (split = "first") of the column name.

reverse Reverse vector of split names
scalar<logical> // default: FALSE
Should the order of split names be reversed? By default, this is FALSE.

Value

An object of class gt_tbl.

Details on column splitting

If we take a hypothetical table that includes the column names province.NL_ZH.pop, province.NL_ZH.gdp,
province.NL_NH.pop, and province.NL_NH.gdp, we can see that we have a naming system that
has a well-defined structure. We start with the more general to the left ("province") and move to
the more specific on the right ("pop"). If the columns are in the table in this exact order, then things
are in an ideal state as the eventual spanner labels will form from this neighboring. When using
tab_spanner_delim() here with delim set as "." we get the following text fragments:

• province.NL_ZH.pop -> "province", "NL_ZH", "pop"

• province.NL_ZH.gdp -> "province", "NL_ZH", "gdp"

• province.NL_NH.pop -> "province", "NL_NH", "pop"

• province.NL_NH.gdp -> "province", "NL_NH", "gdp"

This gives us the following arrangement of column labels and spanner labels:

--------- `"province"` ---------- <- level 2 spanner
---`"NL_ZH"`--- | ---`"NL_NH"`--- <- level 1 spanners
`"pop"`|`"gdp"` | `"pop"`|`"gdp"` <- column labels

There might be situations where the same delimiter is used throughout but only the last instance re-
quires a splitting. With a pair of column names like north_holland_pop and north_holland_area
you would only want "pop" and "area" to be column labels underneath a single spanner ("north_holland").
To achieve this, the split and limit arguments are used and the values for each need to be split
= "last" and limit = 1. This will give us the following arrangement:

--`"north_holland"`-- <- level 1 spanner
`"pop"` | `"area"` <- column labels

456 tab_spanner_delim

Examples

With a subset of the towny dataset, we can create a gt table and then use the tab_spanner_delim()
function to automatically generate column spanner labels. In this case we have some column names
in the form population_<year>. The underscore character is the delimiter that separates a common
word "population" and a year value. In this default way of splitting, fragments to the right are
lowest (really they become new column labels) and moving left we get spanners. Let’s have a look
at how tab_spanner_delim() handles these column names:

towny_subset_gt <-
towny |>
dplyr::select(name, starts_with("population")) |>
dplyr::filter(grepl("^F", name)) |>
gt() |>
tab_spanner_delim(delim = "_") |>
fmt_integer()

towny_subset_gt

The spanner created through this use of tab_spanner_delim() is automatically given an ID value
by gt. Because it’s hard to know what the ID value is, we can use tab_info() to inspect the table’s
indices and ID values.

towny_subset_gt |> tab_info()

From this informational table, we see that the ID for the spanner is "spanner-population_1996".
Also, the columns are still accessible by the original column names (tab_spanner_delim() did
change their labels though). Let’s use tab_style() to add some styles to the towny_subset_gt
table.

towny |>
dplyr::select(name, starts_with("population")) |>
dplyr::filter(grepl("^F", name)) |>
gt() |>
tab_spanner_delim(delim = "_") |>
fmt_integer() |>
tab_style(
style = cell_fill(color = "aquamarine"),
locations = cells_body(columns = population_2021)

) |>
tab_style(
style = cell_text(transform = "capitalize"),
locations = cells_column_spanners(spanners = "spanner-population_1996")

)

We can plan ahead a bit and refashion the column names with dplyr before introducing the table to
gt() and tab_spanner_delim(). Here the column labels have underscore delimiters where split-
ting is not wanted (so a period or space character is used instead). The usage of tab_spanner_delim()
gives two levels of spanners. We can further touch up the labels after that with cols_label_with()
and text_transform().

tab_spanner_delim 457

towny |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 5) |>
dplyr::select(name, ends_with("pct")) |>
dplyr::rename_with(
.fn = function(x) {
x |>
gsub("(.*?)_(\\d{4})", "\\1.\\2", x = _) |>
gsub("pop_change", "Population Change", x = _)

}
) |>
gt(rowname_col = "name") |>
tab_spanner_delim(delim = "_") |>
fmt_number(decimals = 1, scale_by = 100) |>
cols_label_with(
fn = function(x) gsub("pct", "%", x)

) |>
text_transform(
fn = function(x) gsub("\\.", " - ", x),
locations = cells_column_spanners()

) |>
tab_style(
style = cell_text(align = "center"),
locations = cells_column_labels()

) |>
tab_style(
style = "padding-right: 36px;",
locations = cells_body()

)

With a summarized, filtered, and pivoted version of the pizzaplace dataset, we can create another
gt table and then use the tab_spanner_delim() function with the same delimiter/separator that
was used in the tidyr pivot_wider() call. We can also process the generated column labels with
cols_label_with().

pizzaplace |>
dplyr::select(name, date, type, price) |>
dplyr::group_by(name, date, type) |>
dplyr::summarize(
revenue = sum(price),
sold = dplyr::n(),
.groups = "drop"

) |>
dplyr::filter(date %in% c("2015-01-01", "2015-01-02", "2015-01-03")) |>
dplyr::filter(type %in% c("classic", "veggie")) |>
tidyr::pivot_wider(
names_from = date,
names_sep = ".",
values_from = c(revenue, sold),

458 tab_stubhead

values_fn = sum,
names_sort = TRUE

) |>
gt(rowname_col = "name", groupname_col = "type") |>
tab_spanner_delim(delim = ".") |>
sub_missing(missing_text = "") |>
fmt_currency(columns = starts_with("revenue")) |>
data_color(
columns = starts_with("revenue"),
method = "numeric",
palette = c("white", "lightgreen")

) |>
cols_label_with(
fn = function(x) {
paste0(x, " (", vec_fmt_datetime(x, format = "E"), ")")

}
)

Function ID

2-3

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

tab_spanner() to manually create spanners with more control over spanner labels.

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner(), tab_stub_indent(),
tab_stubhead(), tab_style_body(), tab_style()

tab_stubhead Add label text to the stubhead

Description

We can add a label to the stubhead of a gt table with the tab_stubhead() function. The stubhead
is the lone part of the table that is positioned left of the column labels, and above the stub. If a
stub does not exist, then there is no stubhead (so no visible change will be made when using this
function in that case). We have the flexibility to use Markdown formatting for the stubhead label
via the md() helper function. Furthermore, if the table is intended for HTML output, we can use
HTML inside of html() for the stubhead label.

Usage

tab_stubhead(data, label)

tab_stubhead 459

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

label Stubhead label text
scalar<character> // required
The text to be used as the stubhead label. We can optionally use the md() and
html() functions to style the text as Markdown or to retain HTML elements in
the text.

Value

An object of class gt_tbl.

Examples

Using a small subset of the gtcars dataset, we can create a gt table with row labels. Since we
have row labels in the stub (via use of rowname_col = "model" in the gt() function call) we have
a stubhead, so, let’s add a stubhead label ("car") with the tab_stubhead() function to describe
what’s in the stub.

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:5) |>
gt(rowname_col = "model") |>
tab_stubhead(label = "car")

The stuhead can contain all sorts of interesting content. How about an icon for a car? We can make
this happen with help from the fontawesome package.

gtcars |>
dplyr::select(model, year, hp, trq) |>
dplyr::slice(1:5) |>
gt(rowname_col = "model") |>
tab_stubhead(label = fontawesome::fa("car"))

Function ID

2-5

Function Introduced

v0.2.0.5 (March 31, 2020)

460 tab_stub_indent

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(),
tab_spanner(), tab_stub_indent(), tab_style_body(), tab_style()

tab_stub_indent Control indentation of row labels in the stub

Description

Indentation of row labels is an effective way for establishing structure in a table stub. The tab_stub_indent()
function allows for fine control over row label indentation in the stub. We can use an explicit defi-
nition of an indentation level (with a number between 0 and 5), or, employ an indentation directive
using keywords ("increase"/"decrease").

Usage

tab_stub_indent(data, rows, indent = "increase")

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

rows Rows to target
<row-targeting expression> // required
The rows to consider for the indentation change. We can supply a vector of
row ID values within c(), a vector of row indices, or use select helpers here.
Examples of select helper functions include starts_with(), ends_with(),
contains(), matches(), one_of(), num_range(), and everything(). We
can also use expressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

indent Indentation directive
scalar<character|numeric|integer> // default: "increase"
An indentation directive either as a keyword describing the indentation change
or as an explicit integer value for directly setting the indentation level. The
keyword "increase" (the default) will increase the indentation level by one;
"decrease" will do the same in the reverse direction. The starting indentation
level of 0 means no indentation and this values serves as a lower bound. The
upper bound for indentation is at level 5.

Value

An object of class gt_tbl.

tab_stub_indent 461

Compatibility of arguments with the from_column() helper function

The from_column() helper function can be used with the indent argument of tab_stub_indent()
to obtain varying parameter values from a specified column within the table. This means that each
row label could be indented a little bit differently.

Please note that for this argument (indent), a from_column() call needs to reference a column
that has data of the numeric or integer type. Additional columns for parameter values can be
generated with the cols_add() function (if not already present). Columns that contain parameter
data can also be hidden from final display with cols_hide().

Examples

Let’s use a summarized version of the pizzaplace dataset to create a gt table with row groups and
row labels. With the summary_rows() function, we’ll generate summary rows at the top of each
row group. With tab_stub_indent() we can add indentation to the row labels in the stub.

pizzaplace |>
dplyr::group_by(type, size) |>
dplyr::summarize(
sold = dplyr::n(),
income = sum(price),
.groups = "drop"

) |>
gt(rowname_col = "size", groupname_col = "type") |>
tab_header(title = "Pizzas Sold in 2015") |>
fmt_integer(columns = sold) |>
fmt_currency(columns = income) |>
summary_rows(
fns = list(label = "All Sizes", fn = "sum"),
side = "top",
fmt = list(
~ fmt_integer(., columns = sold),
~ fmt_currency(., columns = income)

)
) |>
tab_options(
summary_row.background.color = "gray95",
row_group.background.color = "#FFEFDB",
row_group.as_column = TRUE

) |>
tab_stub_indent(
rows = everything(),
indent = 2

)

Function ID

2-6

462 tab_style

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(),
tab_spanner(), tab_stubhead(), tab_style_body(), tab_style()

tab_style Add custom styles to one or more cells

Description

With the tab_style() function we can target specific cells and apply styles to them. This is best
done in conjunction with the helper functions cell_text(), cell_fill(), and cell_borders().
At present this function is focused on the application of styles for HTML output only (as such, other
output formats will ignore all tab_style() calls). Using the aforementioned helper functions, here
are some of the styles we can apply:

• the background color of the cell (cell_fill(): color)

• the cell’s text color, font, and size (cell_text(): color, font, size)

• the text style (cell_text(): style), enabling the use of italics or oblique text.

• the text weight (cell_text(): weight), allowing the use of thin to bold text (the degree of
choice is greater with variable fonts)

• the alignment and indentation of text (cell_text(): align and indent)

• the cell borders (cell_borders())

Usage

tab_style(data, style, locations)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

style Style declarations
<style expressions> // required
The styles to use for the cells at the targeted locations. The cell_text(),
cell_fill(), and cell_borders() helper functions can be used here to more
easily generate valid styles. If using more than one helper function to define
styles, all calls must be enclosed in a list(). Custom CSS declarations can be
used for HTML output by including a css()-based statement as a list item.

tab_style 463

locations Locations to target
<locations expressions> // required
The cell or set of cells to be associated with the style. Supplying any of the
cells_*() helper functions is a useful way to target the location cells that
are associated with the styling. These helper functions are: cells_title(),
cells_stubhead(), cells_column_spanners(), cells_column_labels(), cells_row_groups(),
cells_stub(), cells_body(), cells_summary(), cells_grand_summary(),
cells_stub_summary(), cells_stub_grand_summary(), cells_footnotes(),
and cells_source_notes(). Additionally, we can enclose several cells_*()
calls within a list() if we wish to apply styling to different types of locations
(e.g., body cells, row group labels, the table title, etc.).

Value

An object of class gt_tbl.

Using from_column() with cell_*() styling functions

The from_column() helper function can be used with certain arguments of cell_fill() and
cell_text(); this allows you to get parameter values from a specified column within the table.
This means that body cells targeted for styling could be formatted a little bit differently, using op-
tions taken from a column. For cell_fill(), we can use from_column() for its color argument.
The cell_text() function allows the use of from_column() in the following arguments:

• color

• size

• align

• v_align

• style

• weight

• stretch

• decorate

• transform

• whitespace

• indent

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a
column that has data of the correct type (this is different for each argument). Additional columns for
parameter values can be generated with the cols_add() function (if not already present). Columns
that contain parameter data can also be hidden from final display with cols_hide().

Importantly, a call of tab_style() with any use of from_column() within styling expressions must
only use cells_body() within locations. This is because we cannot map multiple options taken
from a column onto other locations.

464 tab_style

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the num and
currency columns). With the tab_style() function (called twice), we’ll selectively add style to
the values formatted by fmt_number(). In the style argument of each tab_style() call, we can
define multiple types of styling with the cell_fill() and cell_text() helper functions (enclosed
in a list). The cells to be targeted for styling require the use of helper functions like cells_body(),
which is used here with different columns and rows being targeted.

exibble |>
dplyr::select(num, currency) |>
gt() |>
fmt_number(decimals = 1) |>
tab_style(
style = list(
cell_fill(color = "lightcyan"),
cell_text(weight = "bold")
),

locations = cells_body(
columns = num,
rows = num >= 5000

)
) |>
tab_style(
style = list(
cell_fill(color = "#F9E3D6"),
cell_text(style = "italic")
),

locations = cells_body(
columns = currency,
rows = currency < 100

)
)

With a subset of the sp500 dataset, we’ll create a different gt table. Here, we’ll color the background
of entire rows of body cells and do so on the basis of value expressions involving the open and close
columns.

sp500 |>
dplyr::filter(
date >= "2015-12-01" &
date <= "2015-12-15"

) |>
dplyr::select(-c(adj_close, volume)) |>
gt() |>
tab_style(
style = cell_fill(color = "lightgreen"),
locations = cells_body(rows = close > open)

) |>

tab_style 465

tab_style(
style = list(
cell_fill(color = "red"),
cell_text(color = "white")
),

locations = cells_body(rows = open > close)
)

With another two-column table based on the exibble dataset, let’s create a gt table. First, we’ll re-
place missing values with the sub_missing() function. Next, we’ll add styling to the char column.
This styling will be HTML-specific and it will involve (all within a list): (1) a cell_fill() call (to
set a "lightcyan" background), and (2) a string containing a CSS style declaration ("font-variant:
small-caps;").

exibble |>
dplyr::select(char, fctr) |>
gt() |>
sub_missing() |>
tab_style(
style = list(
cell_fill(color = "lightcyan"),
"font-variant: small-caps;"

),
locations = cells_body(columns = char)

)

In the following table based on the towny dataset, we’ll use a larger number of tab_style() calls
with the aim of styling each location available in the table. Over six separate uses of tab_style(),
different body cells are styled with background colors, the header and the footer also receive back-
ground color fills, borders are applied to a column of body cells and also to the column labels, and,
the row labels in the stub receive a custom text treatment.

towny |>
dplyr::filter(csd_type == "city") |>
dplyr::arrange(desc(population_2021)) |>
dplyr::select(
name, land_area_km2, density_2016, density_2021,
population_2016, population_2021

) |>
dplyr::slice_head(n = 5) |>
gt(rowname_col = "name") |>
tab_header(
title = md(paste("Largest Five", fontawesome::fa("city") , "in `towny`")),
subtitle = "Changes in vital numbers from 2016 to 2021."

) |>
fmt_number(
columns = starts_with("population"),
n_sigfig = 3,

466 tab_style

suffixing = TRUE
) |>
fmt_integer(columns = starts_with("density")) |>
fmt_number(columns = land_area_km2, decimals = 1) |>
cols_merge(
columns = starts_with("density"),
pattern = paste("{1}", fontawesome::fa("arrow-right"), "{2}")

) |>
cols_merge(
columns = starts_with("population"),
pattern = paste("{1}", fontawesome::fa("arrow-right"), "{2}")

) |>
cols_label(
land_area_km2 = md("Area, km^2^"),
starts_with("density") ~ md("Density, ppl/km^2^"),
starts_with("population") ~ "Population"

) |>
cols_align(align = "center", columns = -name) |>
cols_width(
stub() ~ px(125),
everything() ~ px(150)

) |>
tab_footnote(
footnote = "Data was used from their respective census-year publications.",
locations = cells_title(groups = "subtitle")

) |>
tab_source_note(source_note = md(
"All figures are compiled in the `towny` dataset (in the **gt** package)."

)) |>
opt_footnote_marks(marks = "letters") |>
tab_style(
style = list(
cell_fill(color = "gray95"),
cell_borders(sides = c("l", "r"), color = "gray50", weight = px(3))

),
locations = cells_body(columns = land_area_km2)

) |>
tab_style(
style = cell_fill(color = "lightblue" |> adjust_luminance(steps = 2)),
locations = cells_body(columns = -land_area_km2)

) |>
tab_style(
style = list(cell_fill(color = "gray35"), cell_text(color = "white")),
locations = list(cells_footnotes(), cells_source_notes())

) |>
tab_style(
style = cell_fill(color = "gray98"),
locations = cells_title()

tab_style 467

) |>
tab_style(
style = cell_text(
size = "smaller",
weight = "bold",
transform = "uppercase"

),
locations = cells_stub()

) |>
tab_style(
style = cell_borders(
sides = c("t", "b"),
color = "powderblue",
weight = px(3)

),
locations = list(cells_column_labels(), cells_stubhead())

)

The from_column() helper function can be used to get values from a column. We’ll use it in
the next example, which begins with a table having a color name column and a column with the
associated hexadecimal color code. To show the color in a separate column, we first create one
with cols_add() (ensuring that missing values are replaced with "" via sub_missing()). Then,
tab_style() is used to style that column, calling from_column() in the color argument of the
cell_fill() function.

dplyr::tibble(
name = c(
"red", "green", "blue", "yellow", "orange",
"cyan", "purple", "magenta", "lime", "pink"

),
hex = c(
"#E6194B", "#3CB44B", "#4363D8", "#FFE119", "#F58231",
"#42D4F4", "#911EB4", "#F032E6", "#BFEF45", "#FABED4"

)
) |>
gt(rowname_col = "name") |>
cols_add(color = rep(NA_character_, 10)) |>
sub_missing(missing_text = "") |>
tab_style(
style = cell_fill(color = from_column(column = "hex")),
locations = cells_body(columns = color)

) |>
tab_style(
style = cell_text(font = system_fonts(name = "monospace-code")),
locations = cells_body()

) |>
opt_all_caps() |>
cols_width(everything() ~ px(100)) |>
tab_options(table_body.hlines.style = "none")

468 tab_style

The cell_text() function also allows the use of from_column() for many of its arguments. Let’s
take a small portion of data from sp500 and add an up or down arrow based on the values in the open
and close columns. Within cols_add() we can create a new column (dir) with an expression to
get either "red" or "green" text from a comparison of the open and close values. These values
are transformed to up or down arrows with the text_case_match() function, using fontawesome
icons in the end. However, the text values are still present and can be used by cell_text() within
tab_style(). The from_column() helper function makes it possible to use the text in the cells of
the dir column as color input values.

sp500 |>
dplyr::filter(date > "2015-01-01") |>
dplyr::arrange(date) |>
dplyr::slice_head(n = 5) |>
dplyr::select(date, open, close) |>
gt(rowname_col = "date") |>
fmt_currency(columns = c(open, close)) |>
cols_add(dir = ifelse(close < open, "red", "forestgreen")) |>
cols_label(dir = "") |>
text_case_match(
"red" ~ fontawesome::fa("arrow-down"),
"forestgreen" ~ fontawesome::fa("arrow-up")

) |>
tab_style(
style = cell_text(color = from_column("dir")),
locations = cells_body(columns = dir)

)

Function ID

2-10

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

cell_text(), cell_fill(), and cell_borders() as helpers for defining custom styles and cells_body()
as one of many useful helper functions for targeting the locations to be styled.

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(),
tab_spanner(), tab_stub_indent(), tab_stubhead(), tab_style_body()

tab_style_body 469

tab_style_body Target cells in the table body and style accordingly

Description

With the tab_style_body() function we can target cells though value, regex, and custom matching
rules and apply styles to them and their surrounding context (i.e., styling an entire row or column
wherein the match is found). Just as with the general tab_style() function, this function is focused
on the application of styles for HTML output only (as such, other output formats will ignore all
tab_style() calls).

With the collection of cell_*() helper functions available in gt, we can modify:

• the background color of the cell (cell_fill(): color)

• the cell’s text color, font, and size (cell_text(): color, font, size)

• the text style (cell_text(): style), enabling the use of italics or oblique text.

• the text weight (cell_text(): weight), allowing the use of thin to bold text (the degree of
choice is greater with variable fonts)

• the alignment and indentation of text (cell_text(): align and indent)

• the cell borders (cell_borders())

Usage

tab_style_body(
data,
style,
columns = everything(),
rows = everything(),
values = NULL,
pattern = NULL,
fn = NULL,
targets = "cell",
extents = "body"

)

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

style Style declarations
<style expressions> // required
The styles to use for the targeted cells. The cell_text(), cell_fill(), and
cell_borders() helper functions can be used here to more easily generate valid
styles. If using more than one helper function to define styles, all calls must be

470 tab_style_body

enclosed in a list(). Custom CSS declarations can be used for HTML output
by including a css()-based statement as a list item.

columns Columns to target
<column-targeting expression> // default: everything()
The columns to which the targeting operations are constrained. Can either be a
series of column names provided in c(), a vector of column indices, or a select
helper function. Examples of select helper functions include starts_with(),
ends_with(), contains(), matches(), one_of(), num_range(), and everything().
This argument works in tandem with the spanners argument.

rows Rows to target
<row-targeting expression> // default: everything()
In conjunction with columns, we can specify which of their rows should form
a constraint for targeting operations. The default everything() results in all
rows in columns being formatted. Alternatively, we can supply a vector of row
IDs within c(), a vector of row indices, or a select helper function. Examples
of select helper functions include starts_with(), ends_with(), contains(),
matches(), one_of(), num_range(), and everything(). We can also use ex-
pressions to filter down to the rows we need (e.g., [colname_1] > 100 & [colname_2] < 50).

values Values for targeting
vector<character|numeric|integer> // default: NULL (optional)
The specific value or values that should be targeted for styling. If pattern is
also supplied then values will be ignored.

pattern Regex pattern for targeting
scalar<character> // default: NULL (optional)
A regex pattern that can target solely those values in character-based columns.
If values is also supplied, pattern will take precedence.

fn Function to return logical values
<function> // default: NULL (optional)
A supplied function that operates on each cell of each column specified through
columns and rows. The function should be fashioned such that a single logical
value is returned. If either of values or pattern is also supplied, fn will take
precedence.

targets Styling targets
vector<character> // default: "cell"
A vector of styling target keywords to contain or expand the target of each cell.
By default, this is a vector just containing "cell". However, the keywords
"row" and "column" may be used separately or in combination to style the
target cells’ associated rows or columns.

extents Styling extents
vector<character> // default: "body"
A vector of locations to project styling. By default, this is a vector just con-
taining "body", whereby styled rows or columns (facilitated via inclusion of the
"row" and "column" keywords in targets) will not permeate into the stub. The
additional keyword "stub" may be used alone or in conjunction with "body" to
project or expand the styling into the stub.

tab_style_body 471

Value

An object of class gt_tbl.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for
rows then entire columns are selected). The columns argument allows us to constrain a subset
of cells contained in the resolved columns. We say resolved because aside from declaring column
names in c() (with bare column names or names in quotes) we can use tidyselect-style expressions.
This can be as basic as supplying a select helper like starts_with(), or, providing a more complex
incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any
NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that are
incompatible with a given search will be skipped over. So it’s safe to select all columns with a type
of search (only those values that can be formatted will be formatted), but, you may not want that.
One strategy is to format the bulk of cell values with one formatting function and then constrain the
columns for later passes with other types of formatting (the last formatting done to a cell is what
you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done
in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used
much like column names in the columns-targeting scenario. We can use simpler tidyselect-style
expressions (the select helpers should work well here) and we can use quoted row identifiers in c().
It’s also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to
the row numbers of the input data (the indices won’t necessarily match those of rearranged rows if
row groups are present). One more type of expression is possible, an expression that takes column
values (can involve any of the available columns in the table) and returns a logical vector.

Examples

Use exibble to create a gt table with a stub and row groups. This contains an assortment of values
that could potentially undergo some styling via tab_style_body().

gt_tbl <-
exibble |>
gt(
rowname_col = "row",
groupname_col = "group"

)

Cells in the table body can be styled through specification of literal values in the values argument
of tab_style_body(). It’s okay to search for numerical, character, or logical values across all
columns. Let’s target the values 49.95 and 33.33 and style those cells with an orange fill.

gt_tbl |>
tab_style_body(

472 tab_style_body

style = cell_fill(color = "orange"),
values = c(49.95, 33.33)

)

Multiple styles can be combined in a list, here’s an example of that using the same cell targets:

gt_tbl |>
tab_style_body(
style = list(
cell_text(font = google_font("Inter"), color = "white"),
cell_fill(color = "red"),
cell_borders(
sides = c("left", "right"),
color = "steelblue",
weight = px(4)

)
),
values = c(49.95, 33.33)

)

You can opt to color entire rows or columns (or both, should you want to) with those specific
keywords in the targets argument. For the 49.95 value we will style the entire row and with
33.33 the entire column will get the same styling.

gt_tbl |>
tab_style_body(
style = cell_fill(color = "lightblue"),
values = 49.95,
targets = "row"

) |>
tab_style_body(
style = cell_fill(color = "lightblue"),
values = 33.33,
targets = "column"

)

In a minor variation to the prior example, it’s possible to extend the styling to other locations, or,
entirely project the styling elsewhere. This is done with the extents argument. Valid keywords
that can be included in the vector are: "body" (the default) and "stub". Let’s take the previous
example and extend the styling of the row into the stub.

gt_tbl |>
tab_style_body(
style = cell_fill(color = "lightblue"),
values = 49.95,
targets = "row",
extents = c("body", "stub")

) |>

tab_style_body 473

tab_style_body(
style = cell_fill(color = "lightblue"),
values = 33.33,
targets = "column"

)

We can also use the pattern argument to target cell values in character-based columns. The
"fctr" column is skipped because it is in fact a factor-based column.

gt_tbl |>
tab_style_body(
style = cell_fill(color = "green"),
pattern = "ne|na"

)

For the most flexibility in targeting, it’s best to use the fn argument. The function you give to fn will
be invoked separately on all cells so the columns argument of tab_style_body() might be useful
to limit which cells should be evaluated. For this next example, the supplied function should only
be used on numeric values and we can make sure of this by using columns = where(is.numeric).

gt_tbl |>
tab_style_body(
columns = where(is.numeric),
style = cell_fill(color = "pink"),
fn = function(x) x >= 0 && x < 50

)

Styling every NA value in a table is also easily accomplished with the fn argument by way of the
is.na() function.

gt_tbl |>
tab_style_body(
style = cell_text(color = "red3"),
fn = function(x) is.na(x)

) |>
sub_missing(missing_text = "Not Available")

Function ID

2-11

Function Introduced

v0.8.0 (November 16, 2022)

See Also

Other part creation/modification functions: tab_caption(), tab_footnote(), tab_header(),
tab_info(), tab_options(), tab_row_group(), tab_source_note(), tab_spanner_delim(),
tab_spanner(), tab_stub_indent(), tab_stubhead(), tab_style()

474 text_case_match

test_image Generate a path to a test image

Description

Two test images are available within the gt package. Both contain the same imagery (sized at 200px
by 200px) but one is a PNG file while the other is an SVG file. This function is most useful when
paired with local_image() since we test various sizes of the test image within that function.

Usage

test_image(type = c("png", "svg"))

Arguments

type The image type
singl-kw:[png|svg] // default: "png"

The type of image to produce here can either be "png" (the default) or "svg".

Value

A character vector with a single path to an image file.

Function ID

9-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other image addition functions: ggplot_image(), local_image(), web_image()

text_case_match Perform whole or partial text replacements with a ’switch’-like ap-
proach

text_case_match 475

Description

The text_case_match() function provides a useful interface for a approach to replacing table cells
that behaves much like a switch statement. The targeting of cells for transformation happens with
the .locations argument. Once overall targeting is handled, you need to supply a sequence of
two-sided formulas matching of the general form: <vector_old_text> ~ <new_text>. In the
left hand side (LHS) there should be a character vector containing strings to match on. The right
hand side (RHS) should contain a single string (or something coercible to a length one character
vector). There’s also the .replace argument that changes the matching and replacing behavior. By
default, text_case_match() will try to match on entire strings and replace those strings. This can
be changed to a partial matching and replacement strategy with the alternate option.

Usage

text_case_match(
.data,
...,
.default = NULL,
.replace = c("all", "partial"),
.locations = cells_body()

)

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Matching expressions
<multiple expressions> // required
A sequence of two-sided formulas matching this general construction: <old_text> ~ <new_text>.
The left hand side (LHS) determines which values to match on and it can be any
length (allowing for new_text to replace different values of old_text). The
right hand side (RHS) provides the replacement text (it must resolve to a single
value of the character class).

.default Default replacement text
scalar<character> // default: NULL (optional)
The replacement text to use when cell values aren’t matched by any of the LHS
inputs. If NULL, the default, no replacement text will be used.

.replace Method for text replacement
singl-kw:[all|partial] // default: "all"
A choice in how the matching is to be done. The default "all" means that the
old_text (on the LHS of formulas given in ...) must match the cell text com-
pletely. With that option, the replacement will completely replace that matched
text. With "partial", the match will occur in all substrings of old_text. In
this way, the replacements will act on those matched substrings.

.locations Locations to target
<locations expressions> // default: cells_body()

476 text_case_match

The cell or set of cells to be associated with the text transformation. Only the
cells_body(), cells_stub(), cells_row_groups(), cells_column_labels(),
and cells_column_spanners() helper functions can be used here. We can en-
close several of these calls within a list() if we wish to make the transforma-
tion happen at different locations.

Value

An object of class gt_tbl.

Examples

Let’s use the exibble dataset to create a simple, two-column gt table (keeping only the char and
fctr columns). In the char column, we’ll transform the NA value to "elderberry" using the
text_case_match() function. Over in the fctr column, some more sophisticated matches will be
performed using text_case_match(). That column has spelled out numbers and we can produce
these on the LHS with help from the vec_fmt_spelled_num() function. The replacements will
contain descriptive text. In this last call of text_case_match(), we use a .default to replace text
for any of those non-matched cases.

exibble |>
dplyr::select(char, fctr) |>
gt() |>
text_case_match(
NA ~ "elderberry",
.locations = cells_body(columns = char)

) |>
text_case_match(
vec_fmt_spelled_num(1:4) ~ "one to four",
vec_fmt_spelled_num(5:6) ~ "five or six",
.default = "seven or more",
.locations = cells_body(columns = fctr)

)

Next, let’s use a transformed version of the towny dataset to create a gt table. Transform the text in
the csd_type column using two-sided formulas supplied to text_case_match(). We can replace
matches on the LHS with Fontawesome icons furnished by the fontawesome R package.

towny |>
dplyr::select(name, csd_type, population_2021) |>
dplyr::filter(csd_type %in% c("city", "town")) |>
dplyr::group_by(csd_type) |>
dplyr::arrange(desc(population_2021)) |>
dplyr::slice_head(n = 5) |>
dplyr::ungroup() |>
gt() |>
fmt_integer() |>
text_case_match(
"city" ~ fontawesome::fa("city"),

text_case_when 477

"town" ~ fontawesome::fa("house-chimney")
) |>
cols_label(
name = "City/Town",
csd_type = "",
population_2021 = "Population"

)

Function ID

4-3

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other text transforming functions: text_case_when(), text_replace(), text_transform()

text_case_when Perform whole text replacements using a ’case-when’-expression ap-
proach

Description

The text_case_when() function provides a useful interface for a case-by-case approach to replac-
ing entire table cells. First off, you have to make sure you’re targeting the appropriate cells with the
.locations argument. Following that, you supply a sequence of two-sided formulas matching of
the general form: <logical_stmt> ~ <new_text>. In the left hand side (LHS) there should be a
predicate statement that evaluates to a logical vector of length one (i.e., either TRUE or FALSE). To
refer to the values undergoing transformation, you need to use the x variable.

Usage

text_case_when(.data, ..., .default = NULL, .locations = cells_body())

Arguments

.data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

... Matching expressions
<multiple expressions> // required
A sequence of two-sided formulas. The left hand side (LHS) determines which
values match this case. The right hand side (RHS) provides the replacement
text (it must resolve to a value of the character class). The LHS inputs must
evaluate to logical vectors.

478 text_case_when

.default Default replacement text
scalar<character> // default: NULL (optional)
The replacement text to use when cell values aren’t matched by any of the LHS
inputs. If NULL, the default, no replacement text will be used.

.locations Locations to target
<locations expressions> // default: cells_body()
The cell or set of cells to be associated with the text transformation. Only the
cells_body(), cells_stub(), cells_row_groups(), cells_column_labels(),
and cells_column_spanners() helper functions can be used here. We can en-
close several of these calls within a list() if we wish to make the transforma-
tion happen at different locations.

Value

An object of class gt_tbl.

Examples

Use a portion of the metro dataset to create a gt table. We’ll use the text_case_when() function
to supply pairs of predicate statements and replacement text. For the connect_rer column, we will
perform a count of pattern matches with stringr::str_count() and determine which cells have
1, 2, or 3 matched patterns. For each of these cases, descriptive replacement text is provided. Here,
we use a .default value to replace the non-matched cases with an empty string (""). Finally, we
use cols_label() to modify the labels of the three columns.

metro |>
dplyr::arrange(desc(passengers)) |>
dplyr::select(name, lines, connect_rer) |>
dplyr::slice_head(n = 10) |>
gt() |>
text_case_when(
stringr::str_count(x, pattern = "[ABCDE]") == 1 ~ "One connection.",
stringr::str_count(x, pattern = "[ABCDE]") == 2 ~ "Two connections.",
stringr::str_count(x, pattern = "[ABCDE]") == 3 ~ "Three connections.",
.default = "", .locations = cells_body(columns = connect_rer)

) |>
cols_label(
name = "Station",
lines = "Lines Serviced",
connect_rer = "RER Connections"

)

Function ID

4-2

Function Introduced

v0.9.0 (Mar 31, 2023)

text_replace 479

See Also

Other text transforming functions: text_case_match(), text_replace(), text_transform()

text_replace Perform highly targeted text replacement with a regex pattern

Description

The text_replace() function provides a specialized interface for replacing text fragments in ta-
ble cells with literal text. You need to ensure that you’re targeting the appropriate cells with the
locations argument. Once that is done, the remaining two values to supply are for the regex
pattern (pattern) and the replacement for all matched text (replacement).

Usage

text_replace(data, pattern, replacement, locations = cells_body())

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

pattern Regex pattern to match with
scalar<character> // required
A regex pattern used to target text fragments in the cells resolved in locations.

replacement Replacement text
scalar<character> // required
The replacement text for any matched text fragments.

locations Locations to target
<locations expressions> // default: cells_body()

The cell or set of cells to be associated with the text transformation. Only the
cells_body(), cells_stub(), cells_row_groups(), cells_column_labels(),
and cells_column_spanners() helper functions can be used here. We can en-
close several of these calls within a list() if we wish to make the transforma-
tion happen at different locations.

Value

An object of class gt_tbl.

480 text_transform

Examples

Use the metro dataset to create a gt table. With the cols_merge() function, we’ll merge the
name and caption columns together but only if caption doesn’t have an NA value (the special
pattern syntax of "{1}<< ({2})>>" takes care of this). This merged content is now part of the
name column. We’d like to modify this further wherever there is text in parentheses: (1) make
that text italicized, and (2) introduce a line break before the text in parentheses. We can do
this with the text_replace() function. The pattern value of "\\((.*?)\\)" will match on
text between parentheses, and the inner "(.*?)" is a capture group. The replacement value of
"
(\\1)" puts the capture group text "\\1" within tags, wraps literal paren-
theses around it, and prepends a line break tag.

metro |>
dplyr::select(name, caption, lines) |>
dplyr::slice(110:120) |>
gt() |>
cols_merge(
columns = c(name, caption),
pattern = "{1}<< ({2})>>"

) |>
text_replace(
locations = cells_body(columns = name),
pattern = "\\((.*?)\\)",
replacement = "
(\\1)"

)

Function ID

4-1

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other text transforming functions: text_case_match(), text_case_when(), text_transform()

text_transform Perform text transformations with a custom function

Description

Text transforming in gt is the act of modifying formatted strings in targeted cells. The text_transform()
function provides the most flexibility of all the text_*() functions in their family of functions. With
it, you target the cells to undergo modification in the locations argument while also supplying a
function to the fn argument. The function given to fn should ideally at the very least take x as an
input (it stands for the character vector that is essentially the targeted cells) and return a character
vector of the same length as the input. Using the construction function(x) { .. } for the function
is recommended.

text_transform 481

Usage

text_transform(data, fn, locations = cells_body())

Arguments

data The gt table data object
obj:<gt_tbl> // required
This is the gt table object that is commonly created through use of the gt()
function.

fn Function for text transformation
<function> // required
The function to use for text transformation. It should include x as an argument
and return a character vector of the same length as the input x.

locations Locations to target
<locations expressions> // default: cells_body()
The cell or set of cells to be associated with the text transformation. Only the
cells_body(), cells_stub(), cells_row_groups(), cells_column_labels(),
and cells_column_spanners() helper functions can be used here. We can en-
close several of these calls within a list() if we wish to make the transforma-
tion happen at different locations.

Value

An object of class gt_tbl.

Examples

Use a subset of the sp500 dataset to create a gt table. Transform the text in the date column
using a function supplied to text_transform() (via the fn argument). Note that the x in the
fn = function (x) part consists entirely of ISO 8601 date strings (which are acceptable as input
to the vec_fmt_date() and vec_fmt_datetime() functions).

sp500 |>
dplyr::slice_head(n = 10) |>
dplyr::select(date, open, close) |>
dplyr::arrange(-dplyr::row_number()) |>
gt() |>
fmt_currency() |>
text_transform(
fn = function(x) {
paste0(
"",
vec_fmt_date(x, date_style = "m_day_year"),
"",
"—W",
vec_fmt_datetime(x, format = "w")

)

482 text_transform

},
locations = cells_body(columns = date)

) |>
cols_label(
date = "Date and Week",
open = "Opening Price",
close = "Closing Price"

)

Let’s use a summarized version of the gtcars dataset to create a gt table. First, the numeric values
in the n column are formatted as spelled-out numbers with fmt_spelled_num(). The output values
are indeed spelled out but exclusively with lowercase letters. We actually want these words to begin
with a capital letter and end with a period. To make this possible, the text_transform() function
will be used since it can modify already-formatted text. Through the fn argument, we provide a
custom function that uses R’s toTitleCase() operating on x (the numbers-as-text strings) within
a paste0() so that a period can be properly placed.

gtcars |>
dplyr::select(mfr, ctry_origin) |>
dplyr::filter(ctry_origin %in% c("Germany", "Italy", "Japan")) |>
dplyr::group_by(mfr, ctry_origin) |>
dplyr::count() |>
dplyr::ungroup() |>
dplyr::arrange(ctry_origin, desc(n)) |>
gt(rowname_col = "mfr", groupname_col = "ctry_origin") |>
cols_label(n = "No. of Entries") |>
tab_stub_indent(rows = everything(), indent = 2) |>
cols_align(align = "center", columns = n) |>
fmt_spelled_num() |>
text_transform(
fn = function(x) {
paste0(tools::toTitleCase(x), ".")

},
locations = cells_body(columns = n)

)

There may be occasions where you’d want to remove all text. Here in this example based on the
pizzaplace dataset, we generate a gt table that summarizes an entire year of data by colorizing
the daily sales revenue. Individual cell values are not needed here (since the encoding by color
suffices), so, text_transform() is used to turn every value to an empty string: "".

pizzaplace |>
dplyr::group_by(date) |>
dplyr::summarize(rev = sum(price)) |>
dplyr::ungroup() |>
dplyr::mutate(
month = lubridate::month(date, label = TRUE),
day_num = lubridate::mday(date)

towny 483

) |>
dplyr::select(-date) |>
tidyr::pivot_wider(names_from = month, values_from = rev) |>
gt(rowname_col = "day_num") |>
data_color(
method = "numeric",
palette = "wesanderson::Zissou1",
na_color = "white"

) |>
text_transform(
fn = function(x) "",
locations = cells_body()

) |>
opt_table_lines(extent = "none") |>
opt_all_caps() |>
cols_width(everything() ~ px(35)) |>
cols_align(align = "center")

Function ID

4-4

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other text transforming functions: text_case_match(), text_case_when(), text_replace()

towny Populations of all municipalities in Ontario from 1996 to 2021

Description

A dataset containing census population data from six census years (1996 to 2021) for all 414 of
Ontario’s local municipalities. The Municipal Act of Ontario (2001) defines a local municipality
as "a single-tier municipality or a lower-tier municipality". There are 173 single-tier municipalities
and 241 lower-tier municipalities representing 99 percent of Ontario’s population and 17 percent of
its land use.

In the towny dataset we include information specific to each municipality such as location (in the
latitude and longitude columns), their website URLs, their classifications, and land area sizes
according to 2021 boundaries. Additionally, there are computed columns containing population
density values for each census year and population change values from adjacent census years.

Usage

towny

484 towny

Format

A tibble with 414 rows and 25 variables:

name The name of the municipality.

website The website for the municipality. This is NA if there isn’t an official site.

status The status of the municipality. This is either "lower-tier" or "single-tier". A single-
tier municipality, which takes on all municipal duties outlined in the Municipal Act and other
Provincial laws, is independent of an upper-tier municipality. Part of an upper-tier municipal-
ity is a lower-tier municipality. The upper-tier and lower-tier municipalities are responsible
for carrying out the duties laid out in the Municipal Act and other provincial laws.

csd_type The Census Subdivision Type. This can be one of "village", "town", "township",
"municipality", or "city".

census_div The Census division, of which there are 49. This is made up of single-tier municipali-
ties, regional municipalities, counties, and districts.

latitude, longitude The location of the municipality, given as latitude and longitude values in dec-
imal degrees.

land_area_km2 The total area of the local municipality in square kilometers.

population_1996, population_2001, population_2006, population_2011, population_2016, population_2021
Population values for each municipality from the 1996 to 2021 census years.

density_1996, density_2001, density_2006, density_2011, density_2016, density_2021 Population
density values, calculated as persons per square kilometer, for each municipality from the 1996
to 2021 census years.

pop_change_1996_2001_pct, pop_change_2001_2006_pct, pop_change_2006_2011_pct, pop_change_2011_2016_pct, pop_change_2016_2021_pct
Population changes between adjacent pairs of census years, from 1996 to 2021.

Examples

Here is a glimpse at the data available in towny.

dplyr::glimpse(towny)
#> Rows: 414
#> Columns: 25
#> $ name <chr> "Addington Highlands", "Adelaide Metcalfe", "~
#> $ website <chr> "https://addingtonhighlands.ca", "https://ade~
#> $ status <chr> "lower-tier", "lower-tier", "lower-tier", "lo~
#> $ csd_type <chr> "township", "township", "township", "township~
#> $ census_div <chr> "Lennox and Addington", "Middlesex", "Simcoe"~
#> $ latitude <dbl> 45.00000, 42.95000, 44.13333, 45.52917, 43.85~
#> $ longitude <dbl> -77.25000, -81.70000, -79.93333, -76.89694, -~
#> $ land_area_km2 <dbl> 1293.99, 331.11, 371.53, 519.59, 66.64, 116.6~
#> $ population_1996 <int> 2429, 3128, 9359, 2837, 64430, 1027, 8315, 16~
#> $ population_2001 <int> 2402, 3149, 10082, 2824, 73753, 956, 8593, 18~
#> $ population_2006 <int> 2512, 3135, 10695, 2716, 90167, 958, 8654, 19~
#> $ population_2011 <int> 2517, 3028, 10603, 2844, 109600, 864, 9196, 2~
#> $ population_2016 <int> 2318, 2990, 10975, 2935, 119677, 969, 9680, 2~
#> $ population_2021 <int> 2534, 3011, 10989, 2995, 126666, 954, 9949, 2~

vec_fmt_bytes 485

#> $ density_1996 <dbl> 1.88, 9.45, 25.19, 5.46, 966.84, 8.81, 21.22,~
#> $ density_2001 <dbl> 1.86, 9.51, 27.14, 5.44, 1106.74, 8.20, 21.93~
#> $ density_2006 <dbl> 1.94, 9.47, 28.79, 5.23, 1353.05, 8.22, 22.09~
#> $ density_2011 <dbl> 1.95, 9.14, 28.54, 5.47, 1644.66, 7.41, 23.47~
#> $ density_2016 <dbl> 1.79, 9.03, 29.54, 5.65, 1795.87, 8.31, 24.71~
#> $ density_2021 <dbl> 1.96, 9.09, 29.58, 5.76, 1900.75, 8.18, 25.39~
#> $ pop_change_1996_2001_pct <dbl> -0.0111, 0.0067, 0.0773, -0.0046, 0.1447, -0.~
#> $ pop_change_2001_2006_pct <dbl> 0.0458, -0.0044, 0.0608, -0.0382, 0.2226, 0.0~
#> $ pop_change_2006_2011_pct <dbl> 0.0020, -0.0341, -0.0086, 0.0471, 0.2155, -0.~
#> $ pop_change_2011_2016_pct <dbl> -0.0791, -0.0125, 0.0351, 0.0320, 0.0919, 0.1~
#> $ pop_change_2016_2021_pct <dbl> 0.0932, 0.0070, 0.0013, 0.0204, 0.0584, -0.01~

Dataset ID and Badge

DATA-7

Dataset Introduced

v0.9.0 (Mar 31, 2023)

See Also

Other datasets: constants, countrypops, exibble, gtcars, illness, metro, pizzaplace, rx_addv,
rx_adsl, sp500, sza

vec_fmt_bytes Format a vector as values in terms of bytes

Description

With numeric values in a vector, we can transform each into byte values with human readable units.
The vec_fmt_bytes() function allows for the formatting of byte sizes to either of two common
representations: (1) with decimal units (powers of 1000, examples being "kB" and "MB"), and (2)
with binary units (powers of 1024, examples being "KiB" and "MiB").

It is assumed the input numeric values represent the number of bytes and automatic truncation of
values will occur. The numeric values will be scaled to be in the range of 1 to <1000 and then
decorated with the correct unit symbol according to the standard chosen. For more control over the
formatting of byte sizes, we can use the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

486 vec_fmt_bytes

Usage

vec_fmt_bytes(
x,
standard = c("decimal", "binary"),
decimals = 1,
n_sigfig = NULL,
drop_trailing_zeros = TRUE,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
incl_space = TRUE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

standard Standard used to express byte sizes
singl-kw:[decimal|binary] // default: "decimal"
The form of expressing large byte sizes is divided between: (1) decimal units
(powers of 1000; e.g., "kB" and "MB"), and (2) binary units (powers of 1024;
e.g., "KiB" and "MiB").

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 1
This corresponds to the exact number of decimal places to use. A value such as
2.34 can, for example, be formatted with 0 decimal places and it would result
in "2". With 4 decimal places, the formatted value becomes "2.3400". The
trailing zeros can be removed with drop_trailing_zeros = TRUE.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

vec_fmt_bytes 487

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive numbers (effectively showing a
sign for all numbers except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign.

incl_space Include a space between the value and the units
scalar<logical> // default: TRUE
An option for whether to include a space between the value and the units. The
default is to use a space character for separation.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

488 vec_fmt_bytes

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(3.24294e14, 8, 1362902, -59027, NA)

Using vec_fmt_bytes() with the default options will create a character vector with values in bytes.
Any NA values remain as NA values. The rendering context will be autodetected unless specified in
the output argument (here, it is of the "plain" output type).

vec_fmt_bytes(num_vals)

#> [1] "324.3 TB" "8 B" "1.4 MB" "-59 kB" "NA"

We can change the number of decimal places with the decimals option:

vec_fmt_bytes(num_vals, decimals = 2)

#> [1] "324.29 TB" "8 B" "1.36 MB" "-59.03 kB" "NA"

If we are formatting for a different locale, we could supply the locale ID and gt will handle any
locale-specific formatting options:

vec_fmt_bytes(num_vals, locale = "fi")

#> [1] "324,3 TB" "8 B" "1,4 MB" "-59 kB" "NA"

Should you need to have positive and negative signs on each of the output values, use force_sign
= TRUE:

vec_fmt_bytes(num_vals, force_sign = TRUE)

#> [1] "+324.3 TB" "+8 B" "+1.4 MB" "-59 kB" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_bytes(num_vals, pattern = "[{x}]")

#> [1] "[324.3 TB]" "[8 B]" "[1.4 MB]" "[-59 kB]" "NA"

vec_fmt_currency 489

Function ID

15-12

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_bytes().

Other vector formatting functions: vec_fmt_currency(), vec_fmt_datetime(), vec_fmt_date(),
vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_currency Format a vector as currency values

Description

With numeric values in a vector, we can perform currency-based formatting. This function supports
both automatic formatting with a three-letter or numeric currency code. We can also specify a
custom currency that is formatted according to the output context with the currency() helper
function. We have fine control over the conversion from numeric values to currency values, where
we could take advantage of the following options:

• the currency: providing a currency code or common currency name will procure the correct
currency symbol and number of currency subunits; we could also use the currency() helper
function to specify a custom currency

• currency symbol placement: the currency symbol can be placed before or after the values

• decimals/subunits: choice of the number of decimal places, and a choice of the decimal sym-
bol, and an option on whether to include or exclude the currency subunits (decimal portion)

• negative values: choice of a negative sign or parentheses for values less than zero

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value

• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

• pattern: option to use a text pattern for decoration of the formatted currency values

• locale-based formatting: providing a locale ID will result in currency formatting specific to
the chosen locale; it will also retrieve the locale’s currency if none is explicitly given

We can use the info_currencies() function for a useful reference on all of the possible inputs to
the currency argument.

490 vec_fmt_currency

Usage

vec_fmt_currency(
x,
currency = NULL,
use_subunits = TRUE,
decimals = NULL,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
placement = "left",
incl_space = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector

vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

currency Currency to use
scalar<character>|obj:<gt_currency> // default: NULL (optional)
The currency to use for the numeric value. This input can be supplied as a 3-
letter currency code (e.g., "USD" for U.S. Dollars, "EUR" for the Euro currency).
Use info_currencies() to get an information table with all of the valid cur-
rency codes and examples of each. Alternatively, we can provide a common cur-
rency name (e.g., "dollar", "pound", "yen", etc.) to simplify the process. Use
info_currencies() with the type == "symbol" option to view an information
table with all of the supported currency symbol names along with examples.
We can also use the currency() helper function to specify a custom currency,
where the string could vary across output contexts. For example, using currency(html
= "ƒ", default = "f") would give us a suitable glyph for the Dutch guilder
in an HTML output table, and it would simply be the letter "f" in all other
output contexts). Please note that decimals will default to 2 when using the
currency() helper function.
If nothing is provided here but a locale value has been set (either in this func-
tion call or as part of the initial gt() call), the currency will be obtained from
that locale. Virtually all locales are linked to a territory that is a country (use
info_locales() for details on all locales used in this package), so, the in-use

vec_fmt_currency 491

(or de facto) currency will be obtained. As the default locale is "en", the "USD"
currency will be used if neither a locale nor a currency value is given.

use_subunits Show or hide currency subunits
scalar<logical> // default: TRUE
An option for whether the subunits portion of a currency value should be dis-
played. For example, with an input value of 273.81, the default formatting will
produce "$273.81". Removing the subunits (with use_subunits = FALSE) will
give us "$273".

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols

492 vec_fmt_currency

will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).
Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

placement Currency symbol placement
scalar<character> // default: "left"
The placement of the currency symbol. This can be either be left (as in "$450")
or right (which yields "450$").

incl_space Include a space between the value and the currency symbol
scalar<logical> // default: FALSE
An option for whether to include a space between the value and the currency
symbol. The default is to not introduce a space character.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with

vec_fmt_currency 493

a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(5.2, 8.65, 0, -5.3, NA)

Using vec_fmt_currency() with the default options will create a character vector where the nu-
meric values have been transformed to U.S. Dollars ("USD"). Furthermore, the rendering context
will be autodetected unless specified in the output argument (here, it is of the "plain" output
type).

vec_fmt_currency(num_vals)

#> [1] "$5.20" "$8.65" "$0.00" "-$5.30" "NA"

We can supply a currency code to the currency argument. Let’s use British Pounds through
currency = "GBP":

vec_fmt_currency(num_vals, currency = "GBP")

#> [1] "GBP5.20" "GBP8.65" "GBP0.00" "-GBP5.30" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt handle all
locale-specific formatting options:

vec_fmt_currency(num_vals, locale = "fr")

#> [1] "EUR5,20" "EUR8,65" "EUR0,00" "-EUR5,30" "NA"

There are many options for formatting values. Perhaps you need to have explicit positive and
negative signs? Use force_sign = TRUE for that.

vec_fmt_currency(num_vals, force_sign = TRUE)

494 vec_fmt_date

#> [1] "+$5.20" "+$8.65" "$0.00" "-$5.30" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_currency(num_vals, pattern = "`{x}`")

#> [1] "`$5.20`" "`$8.65`" "`$0.00`" "`-$5.30`" "NA"

Function ID

15-8

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_currency().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_datetime(), vec_fmt_date(),
vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_date Format a vector as date values

Description

Format vector values to date values using one of 41 preset date styles. Input can be in the form of
POSIXt (i.e., datetimes), the Date type, or character (must be in the ISO 8601 form of YYYY-MM-DD HH:MM:SS
or YYYY-MM-DD).

Usage

vec_fmt_date(
x,
date_style = "iso",
pattern = "{x}",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

vec_fmt_date 495

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

date_style Predefined style for dates
scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso"
The date style to use. By default this is the short name "iso" which corresponds
to ISO 8601 date formatting. There are 41 date styles in total and their short
names can be viewed using info_date_style().

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Formatting with the date_style argument

We need to supply a preset date style to the date_style argument. The date styles are numerous and
can handle localization to any supported locale. A large segment of date styles are termed flexible
date formats and this means that their output will adapt to any locale provided. That feature makes
the flexible date formats a better option for locales other than "en" (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes
1 "iso" "2000-02-29" ISO 8601

496 vec_fmt_date

2 "wday_month_day_year" "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year" "Tuesday 29 February 2000"
5 "month_day_year" "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month" "29 February"
10 "day_m" "29 Feb"
11 "year" "2000"
12 "month" "February"
13 "day" "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day" "00/02/29"
16 "year_week" "2000-W09"
17 "year_quarter" "2000-Q1"
18 "yMd" "2/29/2000" flexible
19 "yMEd" "Tue, 2/29/2000" flexible
20 "yMMM" "Feb 2000" flexible
21 "yMMMM" "February 2000" flexible
22 "yMMMd" "Feb 29, 2000" flexible
23 "yMMMEd" "Tue, Feb 29, 2000" flexible
24 "GyMd" "2/29/2000 A" flexible
25 "GyMMMd" "Feb 29, 2000 AD" flexible
26 "GyMMMEd" "Tue, Feb 29, 2000 AD" flexible
27 "yM" "2/2000" flexible
28 "Md" "2/29" flexible
29 "MEd" "Tue, 2/29" flexible
30 "MMMd" "Feb 29" flexible
31 "MMMEd" "Tue, Feb 29" flexible
32 "MMMMd" "February 29" flexible
33 "GyMMM" "Feb 2000 AD" flexible
34 "yQQQ" "Q1 2000" flexible
35 "yQQQQ" "1st quarter 2000" flexible
36 "Gy" "2000 AD" flexible
37 "y" "2000" flexible
38 "M" "2" flexible
39 "MMM" "Feb" flexible
40 "d" "29" flexible
41 "Ed" "29 Tue" flexible

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

Examples

Let’s create a character vector of dates in the ISO-8601 format for the next few examples:

vec_fmt_date 497

str_vals <- c("2022-06-13", "2019-01-25", "2015-03-23", NA)

Using vec_fmt_date() (here with the "wday_month_day_year" date style) will result in a char-
acter vector of formatted dates. Any NA values remain as NA values. The rendering context will be
autodetected unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_date(str_vals, date_style = "wday_month_day_year")

#> [1] "Monday, June 13, 2022" "Friday, January 25, 2019"
#> [3] "Monday, March 23, 2015" NA

We can choose from any of 41 different date formatting styles. Many of these styles are flexible,
meaning that the structure of the format will adapt to different locales. Let’s use the "yMMMEd" date
style to demonstrate this (first in the default locale of "en"):

vec_fmt_date(str_vals, date_style = "yMMMEd")

#> [1] "Mon, Jun 13, 2022" "Fri, Jan 25, 2019" "Mon, Mar 23, 2015" NA

Let’s perform the same type of formatting in the French ("fr") locale:

vec_fmt_date(str_vals, date_style = "yMMMEd", locale = "fr")

#> [1] "lun. 13 juin 2022" "ven. 25 janv. 2019" "lun. 23 mars 2015" NA

We can always use info_date_style() to call up an info table that serves as a handy reference to
all of the date_style options.

As a last example, one can wrap the date values in a pattern with the pattern argument. Note here
that NA values won’t have the pattern applied.

vec_fmt_date(str_vals, pattern = "Date: {x}")

#> [1] "Date: 2022-06-13" "Date: 2019-01-25" "Date: 2015-03-23" NA

Function ID

15-13

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_date().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

498 vec_fmt_datetime

vec_fmt_datetime Format a vector as datetime values

Description

Format values in a vector to datetime values using either presets for the date and time components
or a formatting directive (this can either use a CLDR datetime pattern or strptime formatting).
Input can be in the form of POSIXct (i.e., datetimes), the Date type, or character (must be in the
ISO 8601 form of YYYY-MM-DD HH:MM:SS or YYYY-MM-DD).

Usage

vec_fmt_datetime(
x,
date_style = "iso",
time_style = "iso",
sep = " ",
format = NULL,
tz = NULL,
pattern = "{x}",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

date_style Predefined style for dates
scalar<character>|scalar<numeric|integer>(1<=val<=41) // default: "iso"
The date style to use. By default this is the short name "iso" which corresponds
to ISO 8601 date formatting. There are 41 date styles in total and their short
names can be viewed using info_date_style().

time_style Predefined style for times
scalar<character>|scalar<numeric|integer>(1<=val<=25) // default: "iso"
The time style to use. By default this is the short name "iso" which corresponds
to how times are formatted within ISO 8601 datetime values. There are 25 time
styles in total and their short names can be viewed using info_time_style().

sep Separator between date and time components
scalar<character> // default: " "

The separator string to use between the date and time components. By default,
this is a single space character (" "). Only used when not specifying a format
code.

vec_fmt_datetime 499

format Date/time formatting string
scalar<character> // default: NULL (optional)
An optional formatting string used for generating custom dates/times. If used
then the arguments governing preset styles (date_style and time_style) will
be ignored in favor of formatting via the format string.

tz Time zone
scalar<character> // default: NULL (optional)
The time zone for printing dates/times (i.e., the output). The default of NULL will
preserve the time zone of the input data in the output. If providing a time zone,
it must be one that is recognized by the user’s operating system (a vector of all
valid tz values can be produced with OlsonNames()).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Formatting with the date_style argument

We can supply a preset date style to the date_style argument to separately handle the date portion
of the output. The date styles are numerous and can handle localization to any supported locale.
A large segment of date styles are termed flexible date formats and this means that their output
will adapt to any locale provided. That feature makes the flexible date formats a better option for
locales other than "en" (the default locale).

The following table provides a listing of all date styles and their output values (corresponding to an
input date of 2000-02-29).

Date Style Output Notes

500 vec_fmt_datetime

1 "iso" "2000-02-29" ISO 8601
2 "wday_month_day_year" "Tuesday, February 29, 2000"
3 "wd_m_day_year" "Tue, Feb 29, 2000"
4 "wday_day_month_year" "Tuesday 29 February 2000"
5 "month_day_year" "February 29, 2000"
6 "m_day_year" "Feb 29, 2000"
7 "day_m_year" "29 Feb 2000"
8 "day_month_year" "29 February 2000"
9 "day_month" "29 February"
10 "day_m" "29 Feb"
11 "year" "2000"
12 "month" "February"
13 "day" "29"
14 "year.mn.day" "2000/02/29"
15 "y.mn.day" "00/02/29"
16 "year_week" "2000-W09"
17 "year_quarter" "2000-Q1"
18 "yMd" "2/29/2000" flexible
19 "yMEd" "Tue, 2/29/2000" flexible
20 "yMMM" "Feb 2000" flexible
21 "yMMMM" "February 2000" flexible
22 "yMMMd" "Feb 29, 2000" flexible
23 "yMMMEd" "Tue, Feb 29, 2000" flexible
24 "GyMd" "2/29/2000 A" flexible
25 "GyMMMd" "Feb 29, 2000 AD" flexible
26 "GyMMMEd" "Tue, Feb 29, 2000 AD" flexible
27 "yM" "2/2000" flexible
28 "Md" "2/29" flexible
29 "MEd" "Tue, 2/29" flexible
30 "MMMd" "Feb 29" flexible
31 "MMMEd" "Tue, Feb 29" flexible
32 "MMMMd" "February 29" flexible
33 "GyMMM" "Feb 2000 AD" flexible
34 "yQQQ" "Q1 2000" flexible
35 "yQQQQ" "1st quarter 2000" flexible
36 "Gy" "2000 AD" flexible
37 "y" "2000" flexible
38 "M" "2" flexible
39 "MMM" "Feb" flexible
40 "d" "29" flexible
41 "Ed" "29 Tue" flexible

We can use the info_date_style() function within the console to view a similar table of date
styles with example output.

vec_fmt_datetime 501

Formatting with the time_style argument

We can supply a preset time style to the time_style argument to separately handle the time portion
of the output. There are many time styles and all of them can handle localization to any supported
locale. Many of the time styles are termed flexible time formats and this means that their output
will adapt to any locale provided. That feature makes the flexible time formats a better option for
locales other than "en" (the default locale).

The following table provides a listing of all time styles and their output values (corresponding to
an input time of 14:35:00). It is noted which of these represent 12- or 24-hour time. Some of
the flexible formats (those that begin with "E") include the the day of the week. Keep this in mind
when pairing such time_style values with a date_style so as to avoid redundant or repeating
information.

Time Style Output Notes
1 "iso" "14:35:00" ISO 8601, 24h
2 "iso-short" "14:35" ISO 8601, 24h
3 "h_m_s_p" "2:35:00 PM" 12h
4 "h_m_p" "2:35 PM" 12h
5 "h_p" "2 PM" 12h
6 "Hms" "14:35:00" flexible, 24h
7 "Hm" "14:35" flexible, 24h
8 "H" "14" flexible, 24h
9 "EHm" "Thu 14:35" flexible, 24h
10 "EHms" "Thu 14:35:00" flexible, 24h
11 "Hmsv" "14:35:00 GMT+00:00" flexible, 24h
12 "Hmv" "14:35 GMT+00:00" flexible, 24h
13 "hms" "2:35:00 PM" flexible, 12h
14 "hm" "2:35 PM" flexible, 12h
15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM" flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms" "Thu 2:35:00 in the afternoon" flexible, 12h
19 "Bhms" "2:35:00 in the afternoon" flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon" flexible, 12h
21 "Bhm" "2:35 in the afternoon" flexible, 12h
22 "Bh" "2 in the afternoon" flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35 PM GMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Formatting with a CLDR datetime pattern

We can use a CLDR datetime pattern with the format argument to create a highly customized and
locale-aware output. This is a character string that consists of two types of elements:

502 vec_fmt_datetime

• Pattern fields, which repeat a specific pattern character one or more times. These fields are
replaced with date and time data when formatting. The character sets of A-Z and a-z are
reserved for use as pattern characters.

• Literal text, which is output verbatim when formatting. This can include:

– Any characters outside the reserved character sets, including spaces and punctuation.
– Any text between single vertical quotes (e.g., 'text').
– Two adjacent single vertical quotes (”), which represent a literal single quote, either inside

or outside quoted text.

The number of pattern fields is quite sizable so let’s first look at how some CLDR datetime patterns
work. We’ll use the datetime string "2018-07-04T22:05:09.2358(America/Vancouver)" for all
of the examples that follow.

• "mm/dd/y" -> "05/04/2018"

• "EEEE, MMMM d, y" -> "Wednesday, July 4, 2018"

• "MMM d E" -> "Jul 4 Wed"

• "HH:mm" -> "22:05"

• "h:mm a" -> "10:05 PM"

• "EEEE, MMMM d, y 'at' h:mm a" -> "Wednesday, July 4, 2018 at 10:05 PM"

Here are the individual pattern fields:

Year:
Calendar Year:
This yields the calendar year, which is always numeric. In most cases the length of the "y" field
specifies the minimum number of digits to display, zero-padded as necessary. More digits will
be displayed if needed to show the full year. There is an exception: "yy" gives use just the two
low-order digits of the year, zero-padded as necessary. For most use cases, "y" or "yy" should
be good enough.

Field Patterns Output
"y" "2018"
"yy" "18"
"yyy" to "yyyyyyyyy" "2018" to "000002018"

Year in the Week in Year Calendar:
This is the year in ’Week of Year’ based calendars in which the year transition occurs on a week
boundary. This may differ from calendar year "y" near a year transition. This numeric year
designation is used in conjunction with pattern character "w" in the ISO year-week calendar as
defined by ISO 8601.

Field Patterns Output
"Y" "2018"
"YY" "18"
"YYY" to "YYYYYYYYY" "2018" to "000002018"

vec_fmt_datetime 503

Quarter:
Quarter of the Year: formatting and standalone versions:
The quarter names are identified numerically, starting at 1 and ending at 4. Quarter names may
vary along two axes: the width and the context. The context is either ’formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may
be used in any other date format that shares the same form of the name. Here, the formatting
form for quarters of the year consists of some run of "Q" values whereas the standalone form
uses "q".

Field Patterns Output Notes
"Q"/"q" "3" Numeric, one digit
"QQ"/"qq" "03" Numeric, two digits (zero padded)
"QQQ"/"qqq" "Q3" Abbreviated
"QQQQ"/"qqqq" "3rd quarter" Wide
"QQQQQ"/"qqqqq" "3" Narrow

Month:
Month: formatting and standalone versions:
The month names are identified numerically, starting at 1 and ending at 12. Month names may
vary along two axes: the width and the context. The context is either ’formatting’ (taken as a
default), which the form used within a complete date format string, or, ’standalone’, the form
for date elements used independently (such as in calendar headers). The standalone form may
be used in any other date format that shares the same form of the name. Here, the formatting
form for months consists of some run of "M" values whereas the standalone form uses "L".

Field Patterns Output Notes
"M"/"L" "7" Numeric, minimum digits
"MM"/"LL" "07" Numeric, two digits (zero padded)
"MMM"/"LLL" "Jul" Abbreviated
"MMMM"/"LLLL" "July" Wide
"MMMMM"/"LLLLL" "J" Narrow

Week:
Week of Year:
Values calculated for the week of year range from 1 to 53. Week 1 for a year is the first week
that contains at least the specified minimum number of days from that year. Weeks between
week 1 of one year and week 1 of the following year are numbered sequentially from 2 to 52 or
53 (if needed).
There are two available field lengths. Both will display the week of year value but the "ww"
width will always show two digits (where weeks 1 to 9 are zero padded).

Field Patterns Output Notes
"w" "27" Minimum digits
"ww" "27" Two digits (zero padded)

504 vec_fmt_datetime

Week of Month:
The week of a month can range from 1 to 5. The first day of every month always begins at week
1 and with every transition into the beginning of a week, the week of month value is incremented
by 1.

Field Pattern Output
"W" "1"

Day:
Day of Month:
The day of month value is always numeric and there are two available field length choices in its
formatting. Both will display the day of month value but the "dd" formatting will always show
two digits (where days 1 to 9 are zero padded).

Field Patterns Output Notes
"d" "4" Minimum digits
"dd" "04" Two digits, zero padded

Day of Year:
The day of year value ranges from 1 (January 1) to either 365 or 366 (December 31), where the
higher value of the range indicates that the year is a leap year (29 days in February, instead of
28). The field length specifies the minimum number of digits, with zero-padding as necessary.

Field Patterns Output Notes
"D" "185"
"DD" "185" Zero padded to minimum width of 2
"DDD" "185" Zero padded to minimum width of 3

Day of Week in Month:
The day of week in month returns a numerical value indicating the number of times a given
weekday had occurred in the month (e.g., ’2nd Monday in March’). This conveniently resolves
to predicable case structure where ranges of day of the month values return predictable day of
week in month values:

• days 1 - 7 -> 1

• days 8 - 14 -> 2

• days 15 - 21 -> 3

• days 22 - 28 -> 4

• days 29 - 31 -> 5

Field Pattern Output
"F" "1"

Modified Julian Date:
The modified version of the Julian date is obtained by subtracting 2,400,000.5 days from the

vec_fmt_datetime 505

Julian date (the number of days since January 1, 4713 BC). This essentially results in the number
of days since midnight November 17, 1858. There is a half day offset (unlike the Julian date,
the modified Julian date is referenced to midnight instead of noon).

Field Patterns Output
"g" to "ggggggggg" "58303" -> "000058303"

Weekday:
Day of Week Name:
The name of the day of week is offered in four different widths.

Field Patterns Output Notes
"E", "EE", or "EEE" "Wed" Abbreviated
"EEEE" "Wednesday" Wide
"EEEEE" "W" Narrow
"EEEEEE" "We" Short

Periods:
AM/PM Period of Day:
This denotes before noon and after noon time periods. May be upper or lowercase depending on
the locale and other options. The wide form may be the same as the short form if the ’real’ long
form (e.g. ’ante meridiem’) is not customarily used. The narrow form must be unique, unlike
some other fields.

Field Patterns Output Notes
"a", "aa", or "aaa" "PM" Abbreviated
"aaaa" "PM" Wide
"aaaaa" "p" Narrow

AM/PM Period of Day Plus Noon and Midnight:
Provide AM and PM as well as phrases for exactly noon and midnight. May be upper or low-
ercase depending on the locale and other options. If the locale doesn’t have the notion of a
unique ’noon’ (i.e., 12:00), then the PM form may be substituted. A similar behavior can occur
for ’midnight’ (00:00) and the AM form. The narrow form must be unique, unlike some other
fields.
(a) input_midnight: "2020-05-05T00:00:00" (b) input_noon: "2020-05-05T12:00:00"

Field Patterns Output Notes
"b", "bb", or "bbb" (a) "midnight" Abbreviated

(b) "noon"
"bbbb" (a) "midnight" Wide

(b) "noon"
"bbbbb" (a) "mi" Narrow

(b) "n"

506 vec_fmt_datetime

Flexible Day Periods:
Flexible day periods denotes things like ’in the afternoon’, ’in the evening’, etc., and the flex-
ibility comes from a locale’s language and script. Each locale has an associated rule set that
specifies when the day periods start and end for that locale.
(a) input_morning: "2020-05-05T00:08:30" (b) input_afternoon: "2020-05-05T14:00:00"

Field Patterns Output Notes
"B", "BB", or "BBB" (a) "in the morning" Abbreviated

(b) "in the afternoon"
"BBBB" (a) "in the morning" Wide

(b) "in the afternoon"
"BBBBB" (a) "in the morning" Narrow

(b) "in the afternoon"

Hours, Minutes, and Seconds:
Hour 0-23:
Hours from 0 to 23 are for a standard 24-hour clock cycle (midnight plus 1 minute is 00:01)
when using "HH" (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"H" "8" Numeric, minimum digits
"HH" "08" Numeric, 2 digits (zero padded)

Hour 1-12:
Hours from 1 to 12 are for a standard 12-hour clock cycle (midnight plus 1 minute is 12:01)
when using "hh" (which is the more common width that indicates zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"h" "8" Numeric, minimum digits
"hh" "08" Numeric, 2 digits (zero padded)

Hour 1-24:
Using hours from 1 to 24 is a less common way to express a 24-hour clock cycle (midnight
plus 1 minute is 24:01) when using "kk" (which is the more common width that indicates
zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"k" "9" Numeric, minimum digits
"kk" "09" Numeric, 2 digits (zero padded)

Hour 0-11:
Using hours from 0 to 11 is a less common way to express a 12-hour clock cycle (midnight

vec_fmt_datetime 507

plus 1 minute is 00:01) when using "KK" (which is the more common width that indicates
zero-padding to 2 digits).
Using "2015-08-01T08:35:09":

Field Patterns Output Notes
"K" "7" Numeric, minimum digits
"KK" "07" Numeric, 2 digits (zero padded)

Minute:
The minute of the hour which can be any number from 0 to 59. Use "m" to show the minimum
number of digits, or "mm" to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"m" "5" Numeric, minimum digits
"mm" "06" Numeric, 2 digits (zero padded)

Seconds:
The second of the minute which can be any number from 0 to 59. Use "s" to show the minimum
number of digits, or "ss" to always show two digits (zero-padding, if necessary).

Field Patterns Output Notes
"s" "9" Numeric, minimum digits
"ss" "09" Numeric, 2 digits (zero padded)

Fractional Second:
The fractional second truncates (like other time fields) to the width requested (i.e., count of
letters). So using pattern "SSSS" will display four digits past the decimal (which, incidentally,
needs to be added manually to the pattern).

Field Patterns Output
"S" to "SSSSSSSSS" "2" -> "235000000"

Milliseconds Elapsed in Day:
There are 86,400,000 milliseconds in a day and the "A" pattern will provide the whole number.
The width can go up to nine digits with "AAAAAAAAA" and these higher field widths will result
in zero padding if necessary.
Using "2011-07-27T00:07:19.7223":

Field Patterns Output
"A" to "AAAAAAAAA" "439722" -> "000439722"

Era:

The Era Designator:
This provides the era name for the given date. The Gregorian calendar has two eras: AD and

508 vec_fmt_datetime

BC. In the AD year numbering system, AD 1 is immediately preceded by 1 BC, with nothing in
between them (there was no year zero).

Field Patterns Output Notes
"G", "GG", or "GGG" "AD" Abbreviated
"GGGG" "Anno Domini" Wide
"GGGGG" "A" Narrow

Time Zones:
TZ // Short and Long Specific non-Location Format:
The short and long specific non-location formats for time zones are suggested for displaying
a time with a user friendly time zone name. Where the short specific format is unavailable,
it will fall back to the short localized GMT format ("O"). Where the long specific format is
unavailable, it will fall back to the long localized GMT format ("OOOO").

Field Patterns Output Notes
"z", "zz", or "zzz" "PDT" Short Specific
"zzzz" "Pacific Daylight Time" Long Specific

TZ // Common UTC Offset Formats:
The ISO8601 basic format with hours, minutes and optional seconds fields is represented by
"Z", "ZZ", or "ZZZ". The format is equivalent to RFC 822 zone format (when the optional
seconds field is absent). This is equivalent to the "xxxx" specifier. The field pattern "ZZZZ"
represents the long localized GMT format. This is equivalent to the "OOOO" specifier. Finally,
"ZZZZZ" pattern yields the ISO8601 extended format with hours, minutes and optional seconds
fields. The ISO8601 UTC indicator Z is used when local time offset is 0. This is equivalent to
the "XXXXX" specifier.

Field Patterns Output Notes
"Z", "ZZ", or "ZZZ" "-0700" ISO 8601 basic format
"ZZZZ" "GMT-7:00" Long localized GMT format
"ZZZZZ" "-07:00" ISO 8601 extended format

TZ // Short and Long Localized GMT Formats:
The localized GMT formats come in two widths "O" (which removes the minutes field if it’s
0) and "OOOO" (which always contains the minutes field). The use of the GMT indicator changes
according to the locale.

Field Patterns Output Notes
"O" "GMT-7" Short localized GMT format
"OOOO" "GMT-07:00" Long localized GMT format

TZ // Short and Long Generic non-Location Formats:
The generic non-location formats are useful for displaying a recurring wall time (e.g., events,
meetings) or anywhere people do not want to be overly specific. Where either of these is un-

vec_fmt_datetime 509

available, there is a fallback to the generic location format ("VVVV"), then the short localized
GMT format as the final fallback.

Field Patterns Output Notes
"v" "PT" Short generic non-location format
"vvvv" "Pacific Time" Long generic non-location format

TZ // Short Time Zone IDs and Exemplar City Formats:
These formats provide variations of the time zone ID and often include the exemplar city. The
widest of these formats, "VVVV", is useful for populating a choice list for time zones, because it
supports 1-to-1 name/zone ID mapping and is more uniform than other text formats.

Field Patterns Output Notes
"V" "cavan" Short time zone ID
"VV" "America/Vancouver" Long time zone ID
"VVV" "Vancouver" The tz exemplar city
"VVVV" "Vancouver Time" Generic location format

TZ // ISO 8601 Formats with Z for +0000:
The "X"-"XXX" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. The final two widths, "XXXX" and "XXXXX" allow for optional seconds fields. The sec-
onds field is not supported by the ISO 8601 specification. For all of these, the ISO 8601 UTC
indicator Z is used when the local time offset is 0.

Field Patterns Output Notes
"X" "-07" ISO 8601 basic format (h, optional m)
"XX" "-0700" ISO 8601 basic format (h & m)
"XXX" "-07:00" ISO 8601 extended format (h & m)
"XXXX" "-0700" ISO 8601 basic format (h & m, optional s)
"XXXXX" "-07:00" ISO 8601 extended format (h & m, optional s)

TZ // ISO 8601 Formats (no use of Z for +0000):
The "x"-"xxxxx" field patterns represent valid ISO 8601 patterns for time zone offsets in date-
times. They are similar to the "X"-"XXXXX" field patterns except that the ISO 8601 UTC indica-
tor Z will not be used when the local time offset is 0.

Field Patterns Output Notes
"x" "-07" ISO 8601 basic format (h, optional m)
"xx" "-0700" ISO 8601 basic format (h & m)
"xxx" "-07:00" ISO 8601 extended format (h & m)
"xxxx" "-0700" ISO 8601 basic format (h & m, optional s)
"xxxxx" "-07:00" ISO 8601 extended format (h & m, optional s)

510 vec_fmt_datetime

Formatting with a strptime format code

Performing custom date/time formatting with the format argument can also occur with a strptime
format code. This works by constructing a string of individual format codes representing formatted
date and time elements. These are all indicated with a leading %, literal characters are interpreted as
any characters not starting with a % character.

First off, let’s look at a few format code combinations that work well together as a strptime format.
This will give us an intuition on how these generally work. We’ll use the datetime "2015-06-08
23:05:37.48" for all of the examples that follow.

• "%m/%d/%Y" -> "06/08/2015"

• "%A, %B %e, %Y" -> "Monday, June 8, 2015"

• "%b %e %a" -> "Jun 8 Mon"

• "%H:%M" -> "23:05"

• "%I:%M %p" -> "11:05 pm"

• "%A, %B %e, %Y at %I:%M %p" -> "Monday, June 8, 2015 at 11:05 pm"

Here are the individual format codes for the date components:

• "%a" -> "Mon" (abbreviated day of week name)

• "%A" -> "Monday" (full day of week name)

• "%w" -> "1" (day of week number in 0..6; Sunday is 0)

• "%u" -> "1" (day of week number in 1..7; Monday is 1, Sunday 7)

• "%y" -> "15" (abbreviated year, using the final two digits)

• "%Y" -> "2015" (full year)

• "%b" -> "Jun" (abbreviated month name)

• "%B" -> "June" (full month name)

• "%m" -> "06" (month number)

• "%d" -> "08" (day number, zero-padded)

• "%e" -> "8" (day number without zero padding)

• "%j" -> "159" (day of the year, always zero-padded)

• "%W" -> "23" (week number for the year, always zero-padded)

• "%V" -> "24" (week number for the year, following the ISO 8601 standard)

• "%C" -> "20" (the century number)

Here are the individual format codes for the time components:

• "%H" -> "23" (24h hour)

• "%I" -> "11" (12h hour)

• "%M" -> "05" (minute)

• "%S" -> "37" (second)

• "%OS3" -> "37.480" (seconds with decimals; 3 decimal places here)
• %p -> "pm" (AM or PM indicator)

vec_fmt_datetime 511

Here are some extra formats that you may find useful:

• "%z" -> "+0000" (signed time zone offset, here using UTC)

• "%F" -> "2015-06-08" (the date in the ISO 8601 date format)

• "%%" -> "%" (the literal "%" character, in case you need it)

Examples

Let’s create a character vector of datetime values in the ISO-8601 format for the next few examples:

str_vals <- c("2022-06-13 18:36", "2019-01-25 01:08", NA)

Using vec_fmt_datetime() with different date_style and time_style options (here, date_style
= "yMMMEd" and time_style = "Hm") will result in a character vector of formatted datetime values.
Any NA values remain as NA values. The rendering context will be autodetected unless specified in
the output argument (here, it is of the "plain" output type).

vec_fmt_datetime(
str_vals,
date_style = "yMMMEd",
time_style = "Hm"

)

#> [1] "Mon, Jun 13, 2022 18:36" "Fri, Jan 25, 2019 01:08" NA

We can choose from any of 41 different date styles and 25 time formatting styles. Many of these
styles are flexible, meaning that the structure of the format will adapt to different locales. Let’s use
a combination of the the "yMMMd" and "hms" date and time styles to demonstrate this (first in the
default locale of "en"):

vec_fmt_datetime(
str_vals,
date_style = "yMMMd",
time_style = "hms"

)

#> [1] "Jun 13, 2022 6:36:00 PM" "Jan 25, 2019 1:08:00 AM" NA

Let’s perform the same type of formatting in the Italian ("it") locale:

vec_fmt_datetime(
str_vals,
date_style = "yMMMd",
time_style = "hms",
locale = "it"

)

#> [1] "13 giu 2022 6:36:00 PM" "25 gen 2019 1:08:00 AM" NA

512 vec_fmt_datetime

We can always use info_date_style() or info_time_style() to call up info tables that serve as
handy references to all of the date_style and time_style options.

It’s possible to supply our own time formatting pattern within the format argument. One way is
with a CLDR pattern, which is locale-aware:

vec_fmt_datetime(str_vals, format = "EEEE, MMMM d, y, h:mm a")

#> [1] "Monday, June 13, 2022, 06:36 PM"
#> [2] "Friday, January 25, 2019, 01:08 AM"
#> [3] NA

By using the locale argument, this can be formatted as Dutch datetime values:

vec_fmt_datetime(
str_vals,
format = "EEEE, MMMM d, y, h:mm a",
locale = "nl"

)

#> [1] "maandag, juni 13, 2022, 6:36 p.m."
#> [2] "vrijdag, januari 25, 2019, 1:08 a.m."
#> [3] NA

It’s also possible to use a strptime format code with format (however, any value provided to
locale will be ignored).

vec_fmt_datetime(str_vals, format = "%A, %B %e, %Y at %I:%M %p")

#> [1] "Monday, June 13, 2022 at 06:36 pm"
#> [2] "Friday, January 25, 2019 at 01:08 am"
#> [3] NA

As a last example, one can wrap the datetime values in a pattern with the pattern argument. Note
here that NA values won’t have the pattern applied.

vec_fmt_datetime(
str_vals,
sep = " at ",
pattern = "Date and Time: {x}"

)

#> [1] "Date and Time: 2022-06-13 at 18:36:00"
#> [2] "Date and Time: 2019-01-25 at 01:08:00"
#> [3] NA

Function ID

15-15

vec_fmt_duration 513

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_datetime().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_date(),
vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_duration Format a vector of numeric or duration values as styled time duration
strings

Description

Format input values to time duration values whether those input values are numbers or of the
difftime class. We can specify which time units any numeric input values have (as weeks, days,
hours, minutes, or seconds) and the output can be customized with a duration style (corresponding
to narrow, wide, colon-separated, and ISO forms) and a choice of output units ranging from weeks
to seconds.

Usage

vec_fmt_duration(
x,
input_units = NULL,
output_units = NULL,
duration_style = c("narrow", "wide", "colon-sep", "iso"),
trim_zero_units = TRUE,
max_output_units = NULL,
pattern = "{x}",
use_seps = TRUE,
sep_mark = ",",
force_sign = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

514 vec_fmt_duration

input_units Declaration of duration units for numerical values
scalar<character> // default: NULL (optional)
If one or more selected columns contains numeric values (not difftime values,
which contain the duration units), a keyword must be provided for input_units
for gt to determine how those values are to be interpreted in terms of dura-
tion. The accepted units are: "seconds", "minutes", "hours", "days", and
"weeks".

output_units Choice of output units
mult-kw:[weeks|days|hours|minutes|seconds] // default: NULL (optional)
Controls the output time units. The default, NULL, means that gt will automati-
cally choose time units based on the input duration value. To control which time
units are to be considered for output (before trimming with trim_zero_units)
we can specify a vector of one or more of the following keywords: "weeks",
"days", "hours", "minutes", or "seconds".

duration_style Style for representing duration values
singl-kw:[narrow|wide|colon-sep|iso] // default: "narrow"
A choice of four formatting styles for the output duration values. With "narrow"
(the default style), duration values will be formatted with single letter time-
part units (e.g., 1.35 days will be styled as "1d 8h 24m"). With "wide", this
example value will be expanded to "1 day 8 hours 24 minutes" after format-
ting. The "colon-sep" style will put days, hours, minutes, and seconds in the
"([D]/)[HH]:[MM]:[SS]" format. The "iso" style will produce a value that
conforms to the ISO 8601 rules for duration values (e.g., 1.35 days will become
"P1DT8H24M").

trim_zero_units

Trimming of zero values
scalar<logical>|mult-kw:[leading|trailing|internal] // default: TRUE
Provides methods to remove output time units that have zero values. By default
this is TRUE and duration values that might otherwise be formatted as "0w 1d 0h
4m 19s" with trim_zero_units = FALSE are instead displayed as "1d 4m 19s".
Aside from using TRUE/FALSE we could provide a vector of keywords for more
precise control. These keywords are: (1) "leading", to omit all leading zero-
value time units (e.g., "0w 1d" -> "1d"), (2) "trailing", to omit all trailing
zero-value time units (e.g., "3d 5h 0s" -> "3d 5h"), and "internal", which
removes all internal zero-value time units (e.g., "5d 0h 33m" -> "5d 33m").

max_output_units

Maximum number of time units to display
scalar<numeric|integer>(val>=1) // default: NULL (optional)
If output_units is NULL, where the output time units are unspecified and left to
gt to handle, a numeric value provided for max_output_units will be taken as
the maximum number of time units to display in all output time duration values.
By default, this is NULL and all possible time units will be displayed. This option
has no effect when duration_style = "colon-sep" (only output_units can
be used to customize that type of duration output).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"

vec_fmt_duration 515

A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. By default only
negative values will display a minus sign.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Output units for the colon-separated duration style

The colon-separated duration style (enabled when duration_style = "colon-sep") is essentially
a clock-based output format which uses the display logic of chronograph watch functionality. It
will, by default, display duration values in the (D/)HH:MM:SS format. Any duration values greater
than or equal to 24 hours will have the number of days prepended with an adjoining slash mark.
While this output format is versatile, it can be changed somewhat with the output_units option.
The following combinations of output units are permitted:

516 vec_fmt_duration

• c("minutes", "seconds") -> MM:SS

• c("hours", "minutes") -> HH:MM

• c("hours", "minutes", "seconds") -> HH:MM:SS

• c("days", "hours", "minutes") -> (D/)HH:MM

Any other specialized combinations will result in the default set being used, which is c("days",
"hours", "minutes", "seconds")

Examples

Let’s create a difftime-based vector for the next few examples:

difftimes <-
difftime(
lubridate::ymd("2017-01-15"),
lubridate::ymd(c("2015-06-25", "2016-03-07", "2017-01-10"))

)

Using vec_fmt_duration() with its defaults provides us with a succinct vector of formatted dura-
tions.

vec_fmt_duration(difftimes)

#> [1] "81w 3d" "44w 6d" "5d"

We can elect to use just only the time units of days to describe the duration values.

vec_fmt_duration(difftimes, output_units = "days")

#> [1] "570d" "314d" "5d"

We can also use numeric values in the input vector vec_fmt_duration(). Here’s a numeric vector
for use with examples:

num_vals <- c(3.235, 0.23, 0.005, NA)

The necessary thing with numeric values as an input is defining what time unit those values have.

vec_fmt_duration(num_vals, input_units = "days")

#> [1] "3d 5h 38m 24s" "5h 31m 12s" "7m 12s" "NA"

We can define a set of output time units that we want to see.

vec_fmt_duration(
num_vals,
input_units = "days",
output_units = c("hours", "minutes")

)

vec_fmt_duration 517

#> [1] "77h 38m" "5h 31m" "7m" "NA"

There are many duration ’styles’ to choose from. We could opt for the "wide" style.

vec_fmt_duration(
num_vals,
input_units = "days",
duration_style = "wide"

)

#> [1] "3 days 5 hours 38 minutes 24 seconds"
#> [2] "5 hours 31 minutes 12 seconds"
#> [3] "7 minutes 12 seconds"
#> [4] "NA"

We can always perform locale-specific formatting with vec_fmt_duration(). Let’s attempt the
same type of duration formatting as before with the "nl" locale.

vec_fmt_duration(
num_vals,
input_units = "days",
duration_style = "wide",
locale = "nl"

)

#> [1] "3 dagen 5 uur 38 minuten 24 seconden"
#> [2] "5 uur 31 minuten 12 seconden"
#> [3] "7 minuten 12 seconden"
#> [4] "NA"

Function ID

15-16

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_duration().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

518 vec_fmt_engineering

vec_fmt_engineering Format a vector as values in engineering notation

Description

With numeric values in a vector, we can perform formatting so that the targeted values are rendered
in engineering notation, where numbers are written in the form of a mantissa (m) and an exponent
(n). When combined the construction is either of the form m x 10^n or mEn. The mantissa is
a number between 1 and 1000 and the exponent is a multiple of 3. For example, the number
0.0000345 can be written in engineering notation as 34.50 x 10^-6. This notation helps to simplify
calculations and make it easier to compare numbers that are on very different scales.

We have fine control over the formatting task, with the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• scaling: we can choose to scale targeted values by a multiplier value

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in formatting specific to the chosen
locale

Usage

vec_fmt_engineering(
x,
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_by = 1,
exp_style = "x10n",
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign_m = FALSE,
force_sign_n = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

vec_fmt_engineering 519

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

exp_style Style declaration for exponent formatting
scalar<character> // default: "x10n"
Style of formatting to use for the scientific notation formatting. By default this
is "x10n" but other options include using a single letter (e.g., "e", "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten"
for using a stylized "10" marker.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

520 vec_fmt_engineering

force_sign_m, force_sign_n

Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(3.24e-4, 8.65, 1362902.2, -59027.3, NA)

Using vec_fmt_engineering() with the default options will create a character vector with values
engineering notation. Any NA values remain as NA values. The rendering context will be autode-
tected unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_engineering(num_vals)

#> [1] "324.00 × 10^-6" "8.65" "1.36 × 10^6" "-59.03 × 10^3" "NA"

We can change the number of decimal places with the decimals option:

vec_fmt_engineering(num_vals, decimals = 1)

#> [1] "324.0 × 10^-6" "8.7" "1.4 × 10^6" "-59.0 × 10^3" "NA"

vec_fmt_engineering 521

If we are formatting for a different locale, we could supply the locale ID and gt will handle any
locale-specific formatting options:

vec_fmt_engineering(num_vals, locale = "da")

#> [1] "324,00 × 10^-6" "8,65" "1,36 × 10^6" "-59,03 × 10^3" "NA"

Should you need to have positive and negative signs for the mantissa component of a given value,
use force_sign_m = TRUE:

vec_fmt_engineering(num_vals, force_sign_m = TRUE)

#> [1] "+324.00 × 10^-6" "+8.65" "+1.36 × 10^6" "-59.03 × 10^3" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_engineering(num_vals, pattern = "/{x}/")

#> [1] "/324.00 × 10^-6/" "/8.65/" "/1.36 × 10^6/" "/-59.03 × 10^3/" "NA"

Function ID

15-4

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_engineering().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_fraction(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

522 vec_fmt_fraction

vec_fmt_fraction Format a vector as mixed fractions

Description

With numeric values in vector, we can perform mixed-fraction-based formatting. There are several
options for setting the accuracy of the fractions. Furthermore, there is an option for choosing a
layout (i.e., typesetting style) for the mixed-fraction output.

The following options are available for controlling this type of formatting:

• accuracy: how to express the fractional part of the mixed fractions; there are three keyword
options for this and an allowance for arbitrary denominator settings

• simplification: an option to simplify fractions whenever possible

• layout: We can choose to output values with diagonal or inline fractions

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol for the whole number portion

• pattern: option to use a text pattern for decoration of the formatted mixed fractions

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

vec_fmt_fraction(
x,
accuracy = NULL,
simplify = TRUE,
layout = c("inline", "diagonal"),
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

accuracy Accuracy of fractions
singl-kw:[low|med|high]|scalar<numeric|integer>(val>=1) // default:
"low"

The type of fractions to generate. This can either be one of the keywords "low",
"med", or "high" (to generate fractions with denominators of up to 1, 2, or 3

vec_fmt_fraction 523

digits, respectively) or an integer value greater than zero to obtain fractions with
a fixed denominator (2 yields halves, 3 is for thirds, 4 is quarters, etc.). For
the latter option, using simplify = TRUE will simplify fractions where possible
(e.g., 2/4 will be simplified as 1/2). By default, the "low" option is used.

simplify Simplify the fraction
scalar<logical> // default: TRUE
If choosing to provide a numeric value for accuracy, the option to simplify the
fraction (where possible) can be taken with TRUE (the default). With FALSE,
denominators in fractions will be fixed to the value provided in accuracy.

layout Layout of fractions in HTML output
singl-kw:[inline|diagonal] // default: "inline"
For HTML output, the "inline" layout is the default. This layout places the
numerals of the fraction on the baseline and uses a standard slash character. The
"diagonal" layout will generate fractions that are typeset with raised/lowered
numerals and a virgule.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

524 vec_fmt_fraction

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(0.0052, 0.08, 0, -0.535, NA)

Using vec_fmt_fraction() will create a character vector of fractions. Any NA values will render
as "NA". The rendering context will be autodetected unless specified in the output argument (here,
it is of the "plain" output type).

vec_fmt_fraction(num_vals)

#> [1] "0" "1/9" "0" "-5/9" "NA"

There are many options for formatting as fractions. If you’d like a higher degree of accuracy in the
computation of fractions we can supply the "med" or "high" keywords to the accuracy argument:

vec_fmt_fraction(num_vals, accuracy = "high")

#> [1] "1/200" "2/25" "0" "-107/200" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_fraction(num_vals, accuracy = 8, pattern = "[{x}]")

#> [1] "[0]" "[1/8]" "[0]" "[-1/2]" "NA"

Function ID

15-7

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_fraction().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_index(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_index 525

vec_fmt_index Format a vector as indexed characters

Description

With numeric values in a vector, we can transform those to index values, usually based on letters.
These characters can be derived from a specified locale and they are intended for ordering (often
leaving out characters with diacritical marks).

Usage

vec_fmt_index(
x,
case = c("upper", "lower"),
index_algo = c("repeat", "excel"),
pattern = "{x}",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

case Use uppercase or lowercase letters
singl-kw:[upper|lower] // default: "upper"
Should the resulting index characters be rendered as uppercase ("upper") or
lowercase ("lower") letters? By default, this is set to "upper".

index_algo Indexing algorithm
singl-kw:[repeat|excel] // default: "repeat"
The indexing algorithm handles the recycling of the index character set. By
default, the "repeat" option is used where characters are doubled, tripled,
and so on, when moving past the character set limit. The alternative is the
"excel" option, where Excel-based column naming is adapted and used here
(e.g., [..., Y, Z, AA, AB, ...]).

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)

526 vec_fmt_index

An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(1, 4, 5, 8, 12, 20, 26, 34, 0, -5, 1.3, NA)

Using vec_fmt_index() with the default options will create a character vector with values rendered
as index numerals. Zero values will be rendered as "" (i.e., empty strings), any NA values remain as
NA values, and negative values will be automatically made positive. The rendering context will be
autodetected unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_index(num_vals)

#> [1] "A" "D" "E" "H" "L" "T" "Z" "HH" "" "E" "A" "NA"

We can also use vec_fmt_index() with the case = "lower" option to create a character vector
with values rendered as lowercase Roman numerals.

vec_fmt_index(num_vals, case = "lower")

#> [1] "a" "d" "e" "h" "l" "t" "z" "hh" "" "e" "a" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt obtain a locale-
specific set of index values:

vec_fmt_index(1:10, locale = "so")

#> [1] "B" "C" "D" "F" "G" "H" "J" "K" "L" "M"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_index(num_vals, case = "lower", pattern = "{x}.")

#> [1] "a." "d." "e." "h." "l." "t." "z." "hh." "." "e." "a." "NA"

vec_fmt_integer 527

Function ID

15-10

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The variant function intended for formatting gt table data: fmt_index().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_integer(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_integer Format a vector as integer values

Description

With numeric values in a vector, we can perform number-based formatting so that the input values
are always rendered as integer values within a character vector. The following major options are
available:

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value
• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-

rated with the appropriate suffixes
• pattern: option to use a text pattern for decoration of the formatted values
• locale-based formatting: providing a locale ID will result in number formatting specific to the

chosen locale

Usage

vec_fmt_integer(
x,
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
force_sign = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

528 vec_fmt_integer

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 2M). This option can accept a logical value,
where FALSE (the default) will not perform this transformation and TRUE will
apply thousands (K), millions (M), billions (B), and trillions (T) suffixes after au-
tomatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).
Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

vec_fmt_integer 529

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(5.2, 8.65, 13602, -5.3, NA)

Using vec_fmt_integer() with the default options will create a character vector where the input
values undergo rounding to become integers and NA values will render as "NA". Also, the rendering
context will be autodetected unless specified in the output argument (here, it is of the "plain"
output type).

vec_fmt_integer(num_vals)

#> [1] "5" "9" "13,602" "-5" "NA"

We can change the digit separator mark to a period with the sep_mark option:

530 vec_fmt_markdown

vec_fmt_integer(num_vals, sep_mark = ".")

#> [1] "5" "9" "13.602" "-5" "NA"

Many options abound for formatting values. If you have a need for positive and negative signs in
front of each and every value, use force_sign = TRUE:

vec_fmt_integer(num_vals, force_sign = TRUE)

#> [1] "+5" "+9" "+13,602" "-5" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_integer(num_vals, pattern = "`{x}`")

#> [1] "`5`" "`9`" "`13,602`" "`-5`" "NA"

Function ID

15-2

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_integer().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_markdown Format a vector containing Markdown text

Description

Any Markdown-formatted text in the input vector will be transformed to the appropriate output
type.

Usage

vec_fmt_markdown(
x,
md_engine = c("markdown", "commonmark"),
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

vec_fmt_markdown 531

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

md_engine Choice of Markdown engine
singl-kw:[markdown|commonmark] // default: "markdown"
The engine preference for Markdown rendering. By default, this is set to "markdown"
where gt will use the markdown package for Markdown conversion to HTML
and LaTeX. The other option is "commonmark" and with that the commonmark
package will be used.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Create a vector of Markdown-based text snippets.

text_vec <-
c(
"This **is** *Markdown*.",
"Info on Markdown syntax can be found

[here](https://daringfireball.net/projects/markdown/).",
"The **gt** package has these datasets:

- `countrypops`
- `sza`
- `gtcars`
- `sp500`
- `pizzaplace`
- `exibble`"
)

With vec_fmt_markdown() we can easily convert these to different output types, like HTML

vec_fmt_markdown(text_vec, output = "html")
#> [1] "<p>This is Markdown.</p>"
#> [2] "<p>Info on Markdown syntax can be found\nhere.</p>"
#> [3] "<p>The gt package has these datasets:</p>\n\n<code>countrypops</code>\n<code>sza</code>\n<code>gtcars</code>\n<code>sp500</code>\n<code>pizzaplace</code>\n<code>exibble</code>\n"

532 vec_fmt_number

or LaTeX

vec_fmt_markdown(text_vec, output = "latex")
#> [1] "This \\textbf{is} \\emph{Markdown}."
#> [2] "Info on Markdown syntax can be found\n\\href{https://daringfireball.net/projects/markdown/}{here}."
#> [3] "The \\textbf{gt} package has these datasets:\n\n\\begin{itemize}\n\\item \\texttt{countrypops}\n\n\\item \\texttt{sza}\n\n\\item \\texttt{gtcars}\n\n\\item \\texttt{sp500}\n\n\\item \\texttt{pizzaplace}\n\n\\item \\texttt{exibble}\n\n\\end{itemize}"

Function ID

15-17

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_markdown().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_number Format a vector as numeric values

Description

With numeric values in a vector, we can perform number-based formatting so that the values are
rendered to a character vector with some level of precision. The following major options are avail-
able:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• scaling: we can choose to scale targeted values by a multiplier value

• large-number suffixing: larger figures (thousands, millions, etc.) can be autoscaled and deco-
rated with the appropriate suffixes

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

vec_fmt_number 533

Usage

vec_fmt_number(
x,
decimals = 2,
n_sigfig = NULL,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
use_seps = TRUE,
accounting = FALSE,
scale_by = 1,
suffixing = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark

534 vec_fmt_number

scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied. This value will be ignored if using any of
the suffixing options (i.e., where suffixing is not set to FALSE).

suffixing Specification for large-number suffixing
scalar<logical>|vector<character> // default: FALSE
The suffixing option allows us to scale and apply suffixes to larger numbers
(e.g., 1924000 can be transformed to 1.92M). This option can accept a logical
value, where FALSE (the default) will not perform this transformation and TRUE
will apply thousands ("K"), millions ("M"), billions ("B"), and trillions ("T")
suffixes after automatic value scaling.
We can alternatively provide a character vector that serves as a specification for
which symbols are to used for each of the value ranges. These preferred symbols
will replace the defaults (e.g., c("k", "Ml", "Bn", "Tr") replaces "K", "M",
"B", and "T").
Including NA values in the vector will ensure that the particular range will either
not be included in the transformation (e.g., c(NA, "M", "B", "T") won’t mod-
ify numbers at all in the thousands range) or the range will inherit a previous
suffix (e.g., with c("K", "M", NA, "T"), all numbers in the range of millions
and billions will be in terms of millions).
Any use of suffixing (where it is not set expressly as FALSE) means that any
value provided to scale_by will be ignored.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","

vec_fmt_number 535

The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(5.2, 8.65, 0, -5.3, NA)

Using vec_fmt_number() with the default options will create a character vector where the numeric
values have two decimal places and NA values will render as "NA". Also, the rendering context will
be autodetected unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_number(num_vals)

#> [1] "5.20" "8.65" "0.00" "-5.30" "NA"

536 vec_fmt_number

We can change the decimal mark to a comma, and we have to be sure to change the digit separator
mark from the default comma to something else (a period works here):

vec_fmt_number(num_vals, sep_mark = ".", dec_mark = ",")

#> [1] "5,20" "8,65" "0,00" "-5,30" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt handle these
locale-specific formatting options:

vec_fmt_number(num_vals, locale = "fr")

#> [1] "5,20" "8,65" "0,00" "-5,30" "NA"

There are many options for formatting values. Perhaps you need to have explicit positive and
negative signs? Use force_sign = TRUE for that.

vec_fmt_number(num_vals, force_sign = TRUE)

#> [1] "+5.20" "+8.65" "0.00" "-5.30" "NA"

Those trailing zeros past the decimal mark can be stripped out by using the drop_trailing_zeros
option.

vec_fmt_number(num_vals, drop_trailing_zeros = TRUE)

#> [1] "5.2" "8.65" "0" "-5.3" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_number(num_vals, pattern = "`{x}`")

#> [1] "`5.20`" "`8.65`" "`0.00`" "`-5.30`" "NA"

Function ID

15-1

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_number().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_partsper(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_partsper 537

vec_fmt_partsper Format a vector as parts-per quantities

Description

With numeric values in a vector, we can format the values so that they are rendered as per mille,
ppm, ppb, etc., quantities. The following list of keywords (with associated naming and scaling
factors) is available to use within vec_fmt_partsper():

• "per-mille": Per mille, (1 part in 1,000)

• "per-myriad": Per myriad, (1 part in 10,000)

• "pcm": Per cent mille (1 part in 100,000)

• "ppm": Parts per million, (1 part in 1,000,000)

• "ppb": Parts per billion, (1 part in 1,000,000,000)

• "ppt": Parts per trillion, (1 part in 1,000,000,000,000)

• "ppq": Parts per quadrillion, (1 part in 1,000,000,000,000,000)

The function provides a lot of formatting control and we can use the following options:

• custom symbol/units: we can override the automatic symbol or units display with our own
choice as the situation warrants

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• value scaling toggle: choose to disable automatic value scaling in the situation that values are
already scaled coming in (and just require the appropriate symbol or unit display)

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

Usage

vec_fmt_partsper(
x,
to_units = c("per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", "ppq"),
symbol = "auto",
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
pattern = "{x}",
sep_mark = ",",

538 vec_fmt_partsper

dec_mark = ".",
force_sign = FALSE,
incl_space = "auto",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

to_units Output Quantity
singl-kw:[per-mille|per-myriad|pcm|ppm|ppb|ppt|ppq] // default: "per-mille"
A keyword that signifies the desired output quantity. This can be any from the
following set: "per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", or
"ppq".

symbol Symbol or units to use in output display
scalar<character> // default: "auto"
The symbol/units to use for the quantity. By default, this is set to "auto" and
gt will choose the appropriate symbol based on the to_units keyword and the
output context. However, this can be changed by supplying a string (e.g, using
symbol = "ppbV" when to_units = "ppb").

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_values Scale input values accordingly
scalar<logical> // default: TRUE
Should the values be scaled through multiplication according to the keyword
set in to_units? By default this is TRUE since the expectation is that normally

vec_fmt_partsper 539

values are proportions. Setting to FALSE signifies that the values are already
scaled and require only the appropriate symbol/units when formatted.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

incl_space Include a space between the value and the symbol/units
scalar<character>|scalar<logical> // default: "auto"
An option for whether to include a space between the value and the symbol/units.
The default is "auto" which provides spacing dependent on the mark itself. This
can be directly controlled by using either TRUE or FALSE.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"

540 vec_fmt_partsper

The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(10^(-3:-5), NA)

Using vec_fmt_partsper() with the default options will create a character vector where the re-
sultant per mille values have two decimal places and NA values will render as "NA". The rendering
context will be autodetected unless specified in the output argument (here, it is of the "plain"
output type).

vec_fmt_partsper(num_vals)

#> [1] "1.00%" "0.10%" "0.01%" "NA"

We can change the output units to a different measure. If ppm units are desired then to_units =
"ppm" can be used.

vec_fmt_partsper(num_vals, to_units = "ppm")

#> [1] "1,000.00 ppm" "100.00 ppm" "10.00 ppm" "NA"

We can change the decimal mark to a comma, and we have to be sure to change the digit separator
mark from the default comma to something else (a period works here):

vec_fmt_partsper(
num_vals,
to_units = "ppm",
sep_mark = ".",
dec_mark = ","

)

#> [1] "1.000,00 ppm" "100,00 ppm" "10,00 ppm" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt handle these
locale-specific formatting options:

vec_fmt_partsper(num_vals, to_units = "ppm", locale = "es")

vec_fmt_percent 541

#> [1] "1.000,00 ppm" "100,00 ppm" "10,00 ppm" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_partsper(num_vals, to_units = "ppm", pattern = "{x}V")

#> [1] "1,000.00 ppmV" "100.00 ppmV" "10.00 ppmV" "NA"

Function ID

15-6

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_partsper().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_percent(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_percent Format a vector as percentage values

Description

With numeric values in vector, we can perform percentage-based formatting. It is assumed that
numeric values in the input vector are proportional values and, in this case, the values will be auto-
matically multiplied by 100 before decorating with a percent sign (the other case is accommodated
though setting the scale_values to FALSE). For more control over percentage formatting, we can
use the following options:

• percent sign placement: the percent sign can be placed after or before the values and a space
can be inserted between the symbol and the value.

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• digit grouping separators: options to enable/disable digit separators and provide a choice of
separator symbol

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in number formatting specific to the
chosen locale

542 vec_fmt_percent

Usage

vec_fmt_percent(
x,
decimals = 2,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_values = TRUE,
use_seps = TRUE,
accounting = FALSE,
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign = FALSE,
incl_space = FALSE,
placement = "right",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE
A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_values Multiply input values by 100
scalar<logical> // default: TRUE
Should the values be scaled through multiplication by 100? By default this
scaling is performed since the expectation is that incoming values are usually

vec_fmt_percent 543

proportional. Setting to FALSE signifies that the values are already scaled and
require only the percent sign when formatted.

use_seps Use digit group separators
scalar<logical> // default: TRUE
An option to use digit group separators. The type of digit group separator is set
by sep_mark and overridden if a locale ID is provided to locale. This setting
is TRUE by default.

accounting Use accounting style
scalar<logical> // default: FALSE
An option to use accounting style for values. Normally, negative values will be
shown with a minus sign but using accounting style will instead put any negative
values in parentheses.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the positive sign be shown for positive values (effectively showing a
sign for all values except zero)? If so, use TRUE for this option. The default is
FALSE, where only negative numbers will display a minus sign. This option is
disregarded when using accounting notation with accounting = TRUE.

incl_space Include a space between the value and the % sign
scalar<logical> // default: FALSE
An option for whether to include a space between the value and the percent sign.
The default is to not introduce a space character.

placement Percent sign placement
scalar<character> // default: "right"
This option governs the placement of the percent sign. This can be either be
right (the default) or left.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for

544 vec_fmt_percent

French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(0.0052, 0.08, 0, -0.535, NA)

Using vec_fmt_percent() with the default options will create a character vector where the resul-
tant percentage values have two decimal places and NA values will render as "NA". The rendering
context will be autodetected unless specified in the output argument (here, it is of the "plain"
output type).

vec_fmt_percent(num_vals)

#> [1] "0.52%" "8.00%" "0.00%" "-53.50%" "NA"

We can change the decimal mark to a comma, and we have to be sure to change the digit separator
mark from the default comma to something else (a period works here):

vec_fmt_percent(num_vals, sep_mark = ".", dec_mark = ",")

#> [1] "0,52%" "8,00%" "0,00%" "-53,50%" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt handle these
locale-specific formatting options:

vec_fmt_percent(num_vals, locale = "pt")

#> [1] "0,52%" "8,00%" "0,00%" "-53,50%" "NA"

There are many options for formatting values. Perhaps you need to have explicit positive and
negative signs? Use force_sign = TRUE for that.

vec_fmt_roman 545

vec_fmt_percent(num_vals, force_sign = TRUE)

#> [1] "+0.52%" "+8.00%" "0.00%" "-53.50%" "NA"

Those trailing zeros past the decimal mark can be stripped out by using the drop_trailing_zeros
option.

vec_fmt_percent(num_vals, drop_trailing_zeros = TRUE)

#> [1] "0.52%" "8%" "0%" "-53.5%" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_percent(num_vals, pattern = "{x}wt")

#> [1] "0.52%wt" "8.00%wt" "0.00%wt" "-53.50%wt" "NA"

Function ID

15-5

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_percent().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_roman(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_roman Format a vector as Roman numerals

Description

With numeric values in a vector, we can transform those to Roman numerals, rounding values as
necessary.

Usage

vec_fmt_roman(
x,
case = c("upper", "lower"),
pattern = "{x}",
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

546 vec_fmt_roman

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

case Use uppercase or lowercase letters
singl-kw:[upper|lower] // default: "upper"
Should Roman numerals should be rendered as uppercase ("upper") or lower-
case ("lower") letters? By default, this is set to "upper".

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(1, 4, 5, 8, 12, 20, 0, -5, 1.3, NA)

Using vec_fmt_roman() with the default options will create a character vector with values rendered
as Roman numerals. Zero values will be rendered as "N", any NA values remain as NA values,
negative values will be automatically made positive, and values greater than or equal to 3900 will
be rendered as "ex terminis". The rendering context will be autodetected unless specified in the
output argument (here, it is of the "plain" output type).

vec_fmt_roman(num_vals)

#> [1] "I" "IV" "V" "VIII" "XII" "XX" "N" "V" "I" "NA"

We can also use vec_fmt_roman() with the case = "lower" option to create a character vector
with values rendered as lowercase Roman numerals.

vec_fmt_roman(num_vals, case = "lower")

vec_fmt_scientific 547

#> [1] "i" "iv" "v" "viii" "xii" "xx" "n" "v" "i" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_roman(num_vals, case = "lower", pattern = "{x}.")

#> [1] "i." "iv." "v." "viii." "xii." "xx." "n." "v." "i." "NA"

Function ID

15-9

Function Introduced

v0.8.0 (November 16, 2022)

See Also

The variant function intended for formatting gt table data: fmt_roman().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(),
vec_fmt_scientific(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_scientific Format a vector as values in scientific notation

Description

With numeric values in a vector, we can perform formatting so that the targeted values are rendered
in scientific notation, where extremely large or very small numbers can be expressed in a more
practical fashion. Here, numbers are written in the form of a mantissa (m) and an exponent (n) with
the construction m x 10^n or mEn. The mantissa component is a number between 1 and 10. For
instance, 2.5 x 10^9 can be used to represent the value 2,500,000,000 in scientific notation. In a
similar way, 0.00000012 can be expressed as 1.2 x 10^-7. Due to its ability to describe numbers
more succinctly and its ease of calculation, scientific notation is widely employed in scientific and
technical domains.

We have fine control over the formatting task, with the following options:

• decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice
of the decimal symbol

• scaling: we can choose to scale targeted values by a multiplier value

• pattern: option to use a text pattern for decoration of the formatted values

• locale-based formatting: providing a locale ID will result in formatting specific to the chosen
locale

548 vec_fmt_scientific

Usage

vec_fmt_scientific(
x,
decimals = 2,
n_sigfig = NULL,
drop_trailing_zeros = FALSE,
drop_trailing_dec_mark = TRUE,
scale_by = 1,
exp_style = "x10n",
pattern = "{x}",
sep_mark = ",",
dec_mark = ".",
force_sign_m = FALSE,
force_sign_n = FALSE,
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

decimals Number of decimal places
scalar<numeric|integer>(val>=0) // default: 2
This corresponds to the exact number of decimal places to use. A value such
as 2.34 can, for example, be formatted with 0 decimal places and it would
result in "2". With 4 decimal places, the formatted value becomes "2.3400".
The trailing zeros can be removed with drop_trailing_zeros = TRUE. If you
always need decimals = 0, the fmt_integer() function should be considered.

n_sigfig Number of significant figures
scalar<numeric|integer>(val>=1) // default: NULL (optional)
A option to format numbers to n significant figures. By default, this is NULL and
thus number values will be formatted according to the number of decimal places
set via decimals. If opting to format according to the rules of significant figures,
n_sigfig must be a number greater than or equal to 1. Any values passed to the
decimals and drop_trailing_zeros arguments will be ignored.

drop_trailing_zeros

Drop any trailing zeros
scalar<logical> // default: FALSE
A logical value that allows for removal of trailing zeros (those redundant zeros
after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark
scalar<logical> // default: TRUE

vec_fmt_scientific 549

A logical value that determines whether decimal marks should always appear
even if there are no decimal digits to display after formatting (e.g., 23 becomes
23. if FALSE). By default trailing decimal marks are not shown.

scale_by Scale values by a fixed multiplier
scalar<numeric|integer> // default: 1
All numeric values will be multiplied by the scale_by value before undergoing
formatting. Since the default value is 1, no values will be changed unless a
different multiplier value is supplied.

exp_style Style declaration for exponent formatting
scalar<character> // default: "x10n"
Style of formatting to use for the scientific notation formatting. By default this
is "x10n" but other options include using a single letter (e.g., "e", "E", etc.), a
letter followed by a "1" to signal a minimum digit width of one, or "low-ten"
for using a stylized "10" marker.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

sep_mark Separator mark for digit grouping
scalar<character> // default: ","
The string to use as a separator between groups of digits. For example, us-
ing sep_mark = "," with a value of 1000 would result in a formatted value of
"1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark Decimal mark
scalar<character> // default: "."
The string to be used as the decimal mark. For example, using dec_mark =
"," with the value 0.152 would result in a formatted value of "0,152"). This
argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign_m, force_sign_n

Forcing the display of a positive sign
scalar<logical> // default: FALSE
Should the plus sign be shown for positive values of the mantissa (first compo-
nent, force_sign_m) or the exponent (force_sign_n)? This would effectively
show a sign for all values except zero on either of those numeric components of
the notation. If so, use TRUE for either one of these options. The default for both
is FALSE, where only negative numbers will display a sign.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

550 vec_fmt_scientific

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(3.24e-4, 8.65, 1362902.2, -59027.3, NA)

Using vec_fmt_scientific() with the default options will create a character vector with values in
scientific notation. Any NA values remain as NA values. The rendering context will be autodetected
unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_scientific(num_vals)

#> [1] "3.24 × 10^-4" "8.65" "1.36 × 10^6" "-5.90 × 10^4" "NA"

We can change the number of decimal places with the decimals option:

vec_fmt_scientific(num_vals, decimals = 1)

#> [1] "3.2 × 10^-4" "8.7" "1.4 × 10^6" "-5.9 × 10^4" "NA"

If we are formatting for a different locale, we could supply the locale ID and gt will handle any
locale-specific formatting options:

vec_fmt_scientific(num_vals, locale = "es")

#> [1] "3,24 × 10^-4" "8,65" "1,36 × 10^6" "-5,90 × 10^4" "NA"

Should you need to have positive and negative signs for the mantissa component of a given value,
use force_sign_m = TRUE:

vec_fmt_scientific(num_vals, force_sign_m = TRUE)

#> [1] "+3.24 × 10^-4" "+8.65" "+1.36 × 10^6" "-5.90 × 10^4" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_scientific(num_vals, pattern = "[{x}]")

#> [1] "[3.24 × 10^-4]" "[8.65]" "[1.36 × 10^6]" "[-5.90 × 10^4]" "NA"

vec_fmt_spelled_num 551

Function ID

15-3

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_scientific().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(),
vec_fmt_roman(), vec_fmt_spelled_num(), vec_fmt_time()

vec_fmt_spelled_num Format a vector as spelled-out numbers

Description

With numeric values in a vector, we can transform those to numbers that are spelled out. Any values
from 0 to 100 can be spelled out according to the specified locale. For example, the value 23 will
be rendered as "twenty-three" if the locale is an English-language one (or, not provided at all);
should a Swedish locale be provided (e.g., "sv"), the output will instead be "tjugotre".

Usage

vec_fmt_spelled_num(
x,
pattern = "{x}",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

552 vec_fmt_spelled_num

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Supported locales

The following 80 locales are supported in the locale argument of vec_fmt_spelled_num(): "af"
(Afrikaans), "ak" (Akan), "am" (Amharic), "ar" (Arabic), "az" (Azerbaijani), "be" (Belarusian),
"bg" (Bulgarian), "bs" (Bosnian), "ca" (Catalan), "ccp" (Chakma), "chr" (Cherokee), "cs"
(Czech), "cy" (Welsh), "da" (Danish), "de" (German), "de-CH" (German (Switzerland)), "ee"
(Ewe), "el" (Greek), "en" (English), "eo" (Esperanto), "es" (Spanish), "et" (Estonian), "fa"
(Persian), "ff" (Fulah), "fi" (Finnish), "fil" (Filipino), "fo" (Faroese), "fr" (French), "fr-BE"
(French (Belgium)), "fr-CH" (French (Switzerland)), "ga" (Irish), "he" (Hebrew), "hi" (Hindi),
"hr" (Croatian), "hu" (Hungarian), "hy" (Armenian), "id" (Indonesian), "is" (Icelandic), "it"
(Italian), "ja" (Japanese), "ka" (Georgian), "kk" (Kazakh), "kl" (Kalaallisut), "km" (Khmer),
"ko" (Korean), "ky" (Kyrgyz), "lb" (Luxembourgish), "lo" (Lao), "lrc" (Northern Luri), "lt"
(Lithuanian), "lv" (Latvian), "mk" (Macedonian), "ms" (Malay), "mt" (Maltese), "my" (Burmese),
"ne" (Nepali), "nl" (Dutch), "nn" (Norwegian Nynorsk), "no" (Norwegian), "pl" (Polish), "pt"
(Portuguese), "qu" (Quechua), "ro" (Romanian), "ru" (Russian), "se" (Northern Sami), "sk"
(Slovak), "sl" (Slovenian), "sq" (Albanian), "sr" (Serbian), "sr-Latn" (Serbian (Latin)), "su"
(Sundanese), "sv" (Swedish), "sw" (Swahili), "ta" (Tamil), "th" (Thai), "tr" (Turkish), "uk"
(Ukrainian), "vi" (Vietnamese), "yue" (Cantonese), and "zh" (Chinese).

Examples

Let’s create a numeric vector for the next few examples:

num_vals <- c(1, 8, 23, 76, 0, -5, 200, NA)

Using vec_fmt_spelled_num() will create a character vector with values rendered as spelled-out
numbers. Any NA values remain as NA values. The rendering context will be autodetected unless
specified in the output argument (here, it is of the "plain" output type).

vec_fmt_spelled_num 553

vec_fmt_spelled_num(num_vals)

#> [1] "one" "eight" "twenty-three" "seventy-six" "zero"
#> [6] "-5" "200" "NA"

If we are formatting for a different locale, we could supply the locale ID and let gt obtain a locale-
specific set of spelled numbers:

vec_fmt_spelled_num(num_vals, locale = "af")

#> [1] "een" "agt" "drie-en-twintig" "ses-en-sewentig"
#> [5] "nul" "-5" "200" "NA"

As a last example, one can wrap the values in a pattern with the pattern argument. Note here that
NA values won’t have the pattern applied.

vec_fmt_spelled_num(num_vals, pattern = "{x}.")

#> [1] "one." "eight." "twenty-three." "seventy-six." "zero."
#> [6] "-5." "200." "NA"

Function ID

15-11

Function Introduced

v0.9.0 (Mar 31, 2023)

See Also

The variant function intended for formatting gt table data: fmt_spelled_num().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(),
vec_fmt_roman(), vec_fmt_scientific(), vec_fmt_time()

554 vec_fmt_time

vec_fmt_time Format a vector as time values

Description

Format vector values to time values using one of 25 preset time styles. Input can be in the form of
POSIXt (i.e., datetimes), character (must be in the ISO 8601 forms of HH:MM:SS or YYYY-MM-DD HH:MM:SS),
or Date (which always results in the formatting of 00:00:00).

Usage

vec_fmt_time(
x,
time_style = "iso",
pattern = "{x}",
locale = NULL,
output = c("auto", "plain", "html", "latex", "rtf", "word")

)

Arguments

x The input vector
vector(numeric|integer) // required
This is the input vector that will undergo transformation to a character vector of
the same length. Values within the vector will be formatted.

time_style Predefined style for times
scalar<character>|scalar<numeric|integer>(1<=val<=25) // default: "iso"
The time style to use. By default this is the short name "iso" which corresponds
to how times are formatted within ISO 8601 datetime values. There are 25 time
styles in total and their short names can be viewed using info_time_style().

pattern Specification of the formatting pattern
scalar<character> // default: "{x}"
A formatting pattern that allows for decoration of the formatted value. The
formatted value is represented by the {x} (which can be used multiple times, if
needed) and all other characters will be interpreted as string literals.

locale Locale identifier
scalar<character> // default: NULL (optional)
An optional locale identifier that can be used for formatting values according the
locale’s rules. Examples include "en" for English (United States) and "fr" for
French (France). We can use the info_locales() function as a useful reference
for all of the locales that are supported. A locale ID can be also set in the initial
gt() function call (where it would be used automatically by any function with
a locale argument) but a locale value provided here will override that global
locale.

vec_fmt_time 555

output Output format
singl-kw:[auto|plain|html|latex|rtf|word] // default: "auto"
The output style of the resulting character vector. This can either be "auto"
(the default), "plain", "html", "latex", "rtf", or "word". In knitr rendering
(i.e., Quarto or R Markdown), the "auto" option will choose the correct output
value

Value

A character vector.

Formatting with the time_style argument

We need to supply a preset time style to the time_style argument. There are many time styles
and all of them can handle localization to any supported locale. Many of the time styles are termed
flexible time formats and this means that their output will adapt to any locale provided. That
feature makes the flexible time formats a better option for locales other than "en" (the default
locale).

The following table provides a listing of all time styles and their output values (corresponding to an
input time of 14:35:00). It is noted which of these represent 12- or 24-hour time.

Time Style Output Notes
1 "iso" "14:35:00" ISO 8601, 24h
2 "iso-short" "14:35" ISO 8601, 24h
3 "h_m_s_p" "2:35:00 PM" 12h
4 "h_m_p" "2:35 PM" 12h
5 "h_p" "2 PM" 12h
6 "Hms" "14:35:00" flexible, 24h
7 "Hm" "14:35" flexible, 24h
8 "H" "14" flexible, 24h
9 "EHm" "Thu 14:35" flexible, 24h
10 "EHms" "Thu 14:35:00" flexible, 24h
11 "Hmsv" "14:35:00 GMT+00:00" flexible, 24h
12 "Hmv" "14:35 GMT+00:00" flexible, 24h
13 "hms" "2:35:00 PM" flexible, 12h
14 "hm" "2:35 PM" flexible, 12h
15 "h" "2 PM" flexible, 12h
16 "Ehm" "Thu 2:35 PM" flexible, 12h
17 "Ehms" "Thu 2:35:00 PM" flexible, 12h
18 "EBhms" "Thu 2:35:00 in the afternoon" flexible, 12h
19 "Bhms" "2:35:00 in the afternoon" flexible, 12h
20 "EBhm" "Thu 2:35 in the afternoon" flexible, 12h
21 "Bhm" "2:35 in the afternoon" flexible, 12h
22 "Bh" "2 in the afternoon" flexible, 12h
23 "hmsv" "2:35:00 PM GMT+00:00" flexible, 12h
24 "hmv" "2:35 PM GMT+00:00" flexible, 12h
25 "ms" "35:00" flexible

556 vec_fmt_time

We can use the info_time_style() function within the console to view a similar table of time
styles with example output.

Examples

Let’s create a character vector of datetime values in the ISO-8601 format for the next few examples:

str_vals <- c("2022-06-13 18:36", "2019-01-25 01:08", NA)

Using vec_fmt_time() (here with the "iso-short" time style) will result in a character vector of
formatted times. Any NA values remain as NA values. The rendering context will be autodetected
unless specified in the output argument (here, it is of the "plain" output type).

vec_fmt_time(str_vals, time_style = "iso-short")

#> [1] "18:36" "01:08" NA

We can choose from any of 25 different time formatting styles. Many of these styles are flexible,
meaning that the structure of the format will adapt to different locales. Let’s use the "Bhms" time
style to demonstrate this (first in the default locale of "en"):

vec_fmt_time(str_vals, time_style = "Bhms")

#> [1] "6:36:00 in the evening" "1:08:00 at night" NA

Let’s perform the same type of formatting in the German ("de") locale:

vec_fmt_time(str_vals, time_style = "Bhms", locale = "de")

#> [1] "6:36:00 abends" "1:08:00 nachts" NA

We can always use info_time_style() to call up an info table that serves as a handy reference to
all of the time_style options.

As a last example, one can wrap the time values in a pattern with the pattern argument. Note here
that NA values won’t have the pattern applied.

vec_fmt_time(
str_vals,
time_style = "hm",
pattern = "temps: {x}",
locale = "fr-CA"

)

#> [1] "temps: 6:36 PM" "temps: 1:08 AM" NA

Function ID

15-14

web_image 557

Function Introduced

v0.7.0 (Aug 25, 2022)

See Also

The variant function intended for formatting gt table data: fmt_time().

Other vector formatting functions: vec_fmt_bytes(), vec_fmt_currency(), vec_fmt_datetime(),
vec_fmt_date(), vec_fmt_duration(), vec_fmt_engineering(), vec_fmt_fraction(), vec_fmt_index(),
vec_fmt_integer(), vec_fmt_markdown(), vec_fmt_number(), vec_fmt_partsper(), vec_fmt_percent(),
vec_fmt_roman(), vec_fmt_scientific(), vec_fmt_spelled_num()

web_image Helper function for adding an image from the web

Description

We can flexibly add a web image inside of a table with web_image() function. The function pro-
vides a convenient way to generate an HTML fragment with an image URL. Because this function
is currently HTML-based, it is only useful for HTML table output. To use this function inside of
data cells, it is recommended that the text_transform() function is used. With that function, we
can specify which data cells to target and then include a web_image() call within the required user-
defined function (for the fn argument). If we want to include an image in other places (e.g., in the
header, within footnote text, etc.) we need to use web_image() within the html() helper function.

By itself, the function creates an HTML image tag, so, the call web_image("http://example.com/image.png")
evaluates to:

where a height of 30px is a default height chosen to work well within the heights of most table rows.

Usage

web_image(url, height = 30)

Arguments

url An image URL
scalar<character> // required
A url that resolves to an image file.

height Height of image
scalar<numeric|integer> // default: 30
The absolute height of the image in the table cell (in "px" units). By default,
this is set to "30px".

Value

A character object with an HTML fragment that can be placed inside of a cell.

558 web_image

Examples

Get the PNG-based logo for the R Project from an image URL.

r_png_url <- "https://www.r-project.org/logo/Rlogo.png"

Create a tibble that contains heights of an image in pixels (one column as a string, the other as
numerical values), then, create a gt table. Use the text_transform() function to insert the R logo
PNG image with the various sizes.

dplyr::tibble(
pixels = px(seq(10, 35, 5)),
image = seq(10, 35, 5)

) |>
gt() |>
text_transform(
locations = cells_body(columns = image),
fn = function(x) {
web_image(
url = r_png_url,
height = as.numeric(x)

)
}

)

Get the SVG-based logo for the R Project from an image URL.

r_svg_url <- "https://www.r-project.org/logo/Rlogo.svg"

Create a tibble that contains heights of an image in pixels (one column as a string, the other as
numerical values), then, create a gt table. Use the tab_header() function to insert the R logo SVG
image once in the title and five times in the subtitle.

dplyr::tibble(
pixels = px(seq(10, 35, 5)),
image = seq(10, 35, 5)

) |>
gt() |>
tab_header(
title = html(
"R Logo",
web_image(
url = r_svg_url,
height = px(50)

)
),
subtitle = html(
web_image(

web_image 559

url = r_svg_url,
height = px(12)

) |>
rep(5)

)
)

Function ID

9-1

Function Introduced

v0.2.0.5 (March 31, 2020)

See Also

Other image addition functions: ggplot_image(), local_image(), test_image()

Index

∗ Shiny functions
gt_output, 305
render_gt, 366

∗ column modification functions
cols_add, 52
cols_align, 55
cols_align_decimal, 57
cols_hide, 59
cols_label, 61
cols_label_with, 66
cols_merge, 69
cols_merge_n_pct, 72
cols_merge_range, 75
cols_merge_uncert, 77
cols_move, 80
cols_move_to_end, 82
cols_move_to_start, 84
cols_nanoplot, 85
cols_unhide, 96
cols_units, 97
cols_width, 102

∗ data formatting functions
data_color, 108
fmt, 130
fmt_auto, 132
fmt_bins, 135
fmt_bytes, 139
fmt_currency, 144
fmt_date, 153
fmt_datetime, 158
fmt_duration, 174
fmt_engineering, 179
fmt_flag, 184
fmt_fraction, 188
fmt_icon, 194
fmt_image, 200
fmt_index, 204
fmt_integer, 208
fmt_markdown, 214

fmt_number, 217
fmt_partsper, 224
fmt_passthrough, 230
fmt_percent, 233
fmt_roman, 238
fmt_scientific, 242
fmt_spelled_num, 247
fmt_time, 252
fmt_units, 257
fmt_url, 260
sub_large_vals, 390
sub_missing, 393
sub_small_vals, 396
sub_values, 399
sub_zero, 403

∗ datasets
constants, 104
countrypops, 105
exibble, 122
gtcars, 299
illness, 311
metro, 325
pizzaplace, 361
rx_addv, 384
rx_adsl, 386
sp500, 388
sza, 415
towny, 483

∗ helper functions
adjust_luminance, 6
cell_borders, 45
cell_fill, 48
cell_text, 49
cells_body, 14
cells_column_labels, 17
cells_column_spanners, 19
cells_footnotes, 21
cells_grand_summary, 23
cells_row_groups, 26

560

INDEX 561

cells_source_notes, 29
cells_stub, 31
cells_stub_grand_summary, 35
cells_stub_summary, 37
cells_stubhead, 33
cells_summary, 40
cells_title, 43
currency, 106
default_fonts, 119
define_units, 120
escape_latex, 121
from_column, 266
google_font, 271
gt_latex_dependencies, 304
html, 310
md, 324
nanoplot_options, 327
pct, 359
px, 364
random_id, 365
stub, 389
system_fonts, 411

∗ image addition functions
ggplot_image, 269
local_image, 323
test_image, 474
web_image, 557

∗ information functions
info_currencies, 314
info_date_style, 315
info_flags, 316
info_google_fonts, 317
info_icons, 318
info_locales, 319
info_paletteer, 320
info_time_style, 322

∗ part creation/modification functions
tab_caption, 416
tab_footnote, 417
tab_header, 424
tab_info, 426
tab_options, 427
tab_row_group, 441
tab_source_note, 445
tab_spanner, 446
tab_spanner_delim, 453
tab_stub_indent, 460
tab_stubhead, 458

tab_style, 462
tab_style_body, 469

∗ part removal functions
rm_caption, 368
rm_footnotes, 369
rm_header, 371
rm_source_notes, 372
rm_spanners, 374
rm_stubhead, 376

∗ row addition/modification functions
grand_summary_rows, 273
row_group_order, 383
rows_add, 378
summary_rows, 405

∗ table creation functions
gt, 295
gt_preview, 307

∗ table export functions
as_latex, 8
as_raw_html, 10
as_rtf, 11
as_word, 12
extract_body, 124
extract_cells, 125
extract_summary, 127
gtsave, 301

∗ table group functions
grp_add, 278
grp_clone, 279
grp_options, 280
grp_pull, 292
grp_replace, 293
grp_rm, 294
gt_group, 303
gt_split, 308

∗ table option functions
opt_align_table_header, 332
opt_all_caps, 334
opt_css, 335
opt_footnote_marks, 337
opt_footnote_spec, 340
opt_horizontal_padding, 342
opt_interactive, 344
opt_row_striping, 348
opt_stylize, 349
opt_table_font, 351
opt_table_lines, 354
opt_table_outline, 356

562 INDEX

opt_vertical_padding, 357
∗ text transforming functions

text_case_match, 474
text_case_when, 477
text_replace, 479
text_transform, 480

∗ vector formatting functions
vec_fmt_bytes, 485
vec_fmt_currency, 489
vec_fmt_date, 494
vec_fmt_datetime, 498
vec_fmt_duration, 513
vec_fmt_engineering, 518
vec_fmt_fraction, 522
vec_fmt_index, 525
vec_fmt_integer, 527
vec_fmt_markdown, 530
vec_fmt_number, 532
vec_fmt_partsper, 537
vec_fmt_percent, 541
vec_fmt_roman, 545
vec_fmt_scientific, 547
vec_fmt_spelled_num, 551
vec_fmt_time, 554

adjust_luminance, 6, 16, 19, 21, 23, 26, 28,
30, 33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 414

as_latex, 8, 11, 12, 14, 125, 127, 129, 303
as_raw_html, 10, 10, 12, 14, 125, 127, 129,

303
as_raw_html(), 301
as_rtf, 10, 11, 11, 14, 125, 127, 129, 303
as_word, 10–12, 12, 125, 127, 129, 303

base::cut(), 112

c(), 14, 17, 19, 24, 27, 31, 35, 37, 40, 41, 56,
57, 59, 61, 66, 69, 70, 73, 76, 78, 81,
82, 84, 87, 88, 96, 98, 102, 109, 126,
130, 133, 136, 140, 145, 153, 158,
159, 174, 175, 180, 184, 189, 194,
195, 201, 205, 209, 214, 218, 225,
226, 230, 231, 234, 239, 243, 248,
252, 257, 261, 273, 309, 378, 391,
394, 396, 397, 400, 403, 406, 442,
447, 454, 460, 470

cell_borders, 8, 16, 19, 21, 23, 26, 28, 30,
33, 34, 37, 40, 43, 45, 45, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 414

cell_borders(), 359, 364, 462, 468, 469
cell_fill, 8, 16, 19, 21, 23, 26, 28, 30, 33,

34, 37, 40, 43, 45, 47, 48, 52, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 414

cell_fill(), 462–465, 467–469
cell_text, 8, 16, 19, 21, 23, 26, 28, 30, 33,

34, 37, 40, 43, 45, 47, 49, 49, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 414

cell_text(), 119, 268, 271, 272, 317, 351,
359, 360, 364, 411, 462–464, 468,
469

cells_body, 8, 14, 19, 21, 23, 26, 28, 30, 33,
34, 37, 40, 43, 45, 47, 49, 52, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 414

cells_body(), 15, 17, 20, 22, 24, 27, 29, 32,
33, 36, 38, 42, 44, 46, 48, 418, 419,
422, 463, 464, 468, 476, 478, 479,
481

cells_column_labels, 8, 16, 17, 21, 23, 26,
28, 30, 33, 34, 37, 40, 43, 45, 47, 49,
52, 107, 120–122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 414

cells_column_labels(), 15, 17, 20, 22, 24,
27, 29, 31, 33, 36, 38, 41, 44, 418,
419, 463, 476, 478, 479, 481

cells_column_spanners, 8, 16, 19, 19, 23,
26, 28, 30, 33, 34, 37, 40, 43, 45, 47,
49, 52, 107, 120–122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 414

cells_column_spanners(), 15, 17, 20, 22,
24, 27, 29, 31, 33, 36, 38, 41, 44,
419, 447, 463, 476, 478, 479, 481

cells_footnotes, 8, 16, 19, 21, 21, 26, 28,
30, 33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 414

cells_footnotes(), 15, 18, 20, 22, 25, 27,
30, 32, 34, 36, 38, 42, 44, 463

cells_grand_summary, 8, 16, 19, 21, 23, 23,
28, 30, 33, 34, 37, 40, 43, 45, 47, 49,
52, 107, 120–122, 269, 273, 305,

INDEX 563

311, 325, 332, 360, 365, 390, 414
cells_grand_summary(), 15, 18, 20, 22, 24,

27, 29, 32, 34, 36, 38, 42, 44, 419,
463

cells_row_groups, 8, 16, 19, 21, 23, 26, 26,
30, 33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 414

cells_row_groups(), 15, 17, 20, 22, 24, 27,
29, 31, 33, 36, 38, 41, 44, 419, 442,
463, 476, 478, 479, 481

cells_source_notes, 8, 16, 19, 21, 23, 26,
28, 29, 33, 34, 37, 40, 43, 45, 47, 49,
52, 107, 120–122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 414

cells_source_notes(), 15, 18, 20, 22, 25,
28, 30, 32, 34, 36, 38, 42, 44, 463

cells_stub, 8, 16, 19, 21, 23, 26, 28, 30, 31,
34, 37, 40, 43, 45, 47, 49, 52, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 415

cells_stub(), 15, 17, 20, 22, 24, 27, 29, 32,
33, 36, 38, 41, 44, 419, 421, 463,
476, 478, 479, 481

cells_stub_grand_summary, 8, 16, 19, 21,
23, 26, 28, 30, 33, 34, 35, 40, 43, 45,
47, 49, 52, 107, 120–122, 269, 273,
305, 311, 325, 332, 360, 365, 390,
414

cells_stub_grand_summary(), 15, 18, 20,
22, 25, 27, 29, 32, 34, 36, 38, 42, 44,
419, 463

cells_stub_summary, 8, 16, 19, 21, 23, 26,
28, 30, 33, 34, 37, 37, 43, 45, 47, 49,
52, 107, 120–122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 414

cells_stub_summary(), 15, 18, 20, 22, 25,
27, 29, 32, 34, 36, 38, 42, 44, 419,
463

cells_stubhead, 8, 16, 19, 21, 23, 26, 28, 30,
33, 33, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 415

cells_stubhead(), 15, 17, 20, 22, 24, 27, 29,
31, 33, 35, 38, 41, 44, 419, 463

cells_summary, 8, 16, 19, 21, 23, 26, 28, 30,
33, 34, 37, 40, 40, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,

325, 332, 360, 365, 390, 415
cells_summary(), 15, 17, 20, 22, 24, 27, 29,

32, 33, 36, 38, 42, 44, 419, 463
cells_title, 8, 16, 19, 21, 23, 26, 28, 30, 33,

34, 37, 40, 43, 43, 47, 49, 52, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 415

cells_title(), 15, 17, 20, 22, 24, 27, 29, 31,
33, 35, 38, 41, 44, 418, 421, 463

cols_add, 52, 57, 59, 60, 66, 68, 72, 74, 77,
80, 82, 83, 85, 96, 97, 102, 103

cols_add(), 143, 150, 155, 161, 183, 186,
192, 197, 203, 207, 212, 213, 216,
222, 223, 229, 232, 237, 240, 246,
250, 254, 263, 461, 463, 467, 468

cols_align, 55, 55, 59, 60, 66, 68, 72, 74, 77,
80, 82, 83, 85, 96, 97, 102, 103

cols_align_decimal, 55, 57, 57, 60, 66, 68,
72, 74, 77, 80, 82, 83, 85, 96, 97,
102, 103

cols_hide, 55, 57, 59, 59, 66, 68, 72, 74, 77,
80, 82, 83, 85, 96, 97, 102, 103

cols_hide(), 54, 69, 92, 95–97, 143, 150,
155, 161, 183, 186, 192, 197, 203,
207, 212, 216, 222, 229, 232, 237,
241, 246, 250, 254, 263, 461, 463

cols_label, 55, 57, 59, 60, 61, 68, 72, 74, 77,
80, 82, 83, 85, 96, 97, 102, 103

cols_label(), 54, 67, 71, 77, 79, 99, 287,
434, 448, 478

cols_label_with, 55, 57, 59, 60, 66, 66, 72,
74, 77, 80, 82, 83, 85, 96, 97, 102,
103

cols_label_with(), 448, 456, 457
cols_merge, 55, 57, 59, 60, 66, 68, 69, 74, 77,

80, 82, 83, 85, 96, 97, 102, 103
cols_merge(), 72, 73, 75–79, 124, 207, 241,

264, 480
cols_merge_n_pct, 55, 57, 59, 60, 66, 68, 72,

72, 77, 80, 82, 83, 85, 96, 97, 102,
103

cols_merge_n_pct(), 71, 77, 79
cols_merge_range, 55, 57, 59, 60, 66, 68, 72,

74, 75, 80, 82, 83, 85, 96, 97, 102,
103

cols_merge_range(), 71, 73, 79
cols_merge_uncert, 55, 57, 59, 60, 66, 68,

72, 74, 77, 77, 82, 83, 85, 96, 97,

564 INDEX

102, 103
cols_merge_uncert(), 71, 73, 77
cols_move, 55, 57, 59, 60, 66, 69, 72, 75, 77,

80, 80, 83, 85, 96, 97, 102, 103
cols_move(), 82, 84
cols_move_to_end, 55, 57, 59, 60, 66, 69, 72,

75, 77, 80, 82, 82, 85, 96, 97, 102,
103

cols_move_to_end(), 81, 84
cols_move_to_start, 55, 57, 59, 60, 66, 69,

72, 75, 77, 80, 82, 83, 84, 96, 97,
102, 103

cols_move_to_start(), 81, 82
cols_nanoplot, 55, 57, 59, 60, 66, 69, 72, 75,

77, 80, 82, 83, 85, 85, 97, 102, 103
cols_nanoplot(), 327, 331
cols_unhide, 55, 57, 59, 60, 66, 69, 72, 75,

77, 80, 82, 83, 85, 96, 96, 102, 103
cols_unhide(), 59, 60
cols_units, 55, 57, 59, 60, 66, 69, 72, 75, 77,

80, 82, 83, 85, 96, 97, 97, 103
cols_units(), 62, 287, 434
cols_width, 55, 57, 59, 60, 66, 69, 72, 75, 77,

80, 82, 83, 85, 96, 97, 102, 102
cols_width(), 54, 309, 421
constants, 104, 106, 123, 246, 260, 300, 313,

327, 363, 386, 388, 389, 416, 485
contains(), 14, 17, 19, 24, 27, 31, 35, 37, 40,

41, 56, 58, 59, 61, 66, 69, 70, 73, 76,
78, 81, 82, 84, 87, 88, 96, 98, 102,
109, 126, 130, 133, 136, 140, 145,
153, 158, 159, 174, 175, 180, 184,
189, 195, 201, 205, 209, 214, 218,
226, 230, 231, 234, 239, 243, 248,
252, 257, 261, 274, 309, 378, 391,
394, 396, 397, 400, 403, 406, 442,
447, 454, 460, 470

countrypops, 25, 36, 39, 42, 56, 60, 63, 67,
81, 83–85, 97, 105, 105, 115, 116,
123, 134, 137, 184, 186, 187, 213,
222, 277, 300, 313, 327, 363, 386,
388, 389, 410, 416, 485

css(), 462, 470
currency, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34,

37, 40, 43, 45, 47, 49, 52, 106,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 390, 415

currency(), 144, 146, 331, 489, 490

data_color, 108, 132, 135, 138, 144, 152,
157, 173, 178, 183, 188, 193, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

data_color(), 7, 22, 250, 320, 347, 370, 420
default_fonts, 8, 16, 19, 21, 23, 26, 28, 30,

33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 119, 121, 122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 415

default_fonts(), 272, 352
define_units, 8, 16, 19, 21, 23, 26, 28, 30,

33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120, 120, 122, 269, 273, 305,
311, 325, 332, 360, 365, 390, 415

Deprecated, 111, 274, 407, 442
dplyr::group_by(), 26, 295, 297

ends_with(), 14, 17, 19, 24, 27, 31, 35, 37,
40, 41, 53, 56, 58, 59, 61, 66, 69, 70,
72, 73, 75, 76, 78, 81, 82, 84, 87–89,
96, 98, 102, 109, 126, 130, 133, 136,
140, 145, 153, 158, 159, 174, 175,
180, 184, 189, 195, 201, 205, 209,
214, 218, 226, 230, 231, 234, 239,
243, 248, 252, 257, 261, 274, 309,
378, 379, 391, 394, 396, 397, 400,
403, 406, 442, 447, 454, 460, 470

escape_latex, 8, 16, 19, 21, 23, 26, 28, 30,
33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120, 121, 121, 269, 273, 305,
311, 325, 332, 360, 365, 390, 415

everything(), 14, 17, 19, 24, 27, 31, 35, 37,
40, 41, 56, 58, 59, 61, 66, 69, 70, 73,
76, 78, 79, 81, 82, 84, 87, 88, 96, 98,
102, 109, 126, 130, 133, 136, 140,
145, 153, 158, 159, 174, 175, 180,
184, 185, 189, 195, 201, 205, 209,
214, 215, 218, 226, 230, 231, 234,
239, 243, 248, 252, 257, 261, 274,
309, 378, 391, 394, 396, 397, 400,
403, 406, 442, 447, 454, 460, 470

exibble, 20, 46, 48, 51, 53, 79, 103, 105–107,
114, 119, 122, 126, 131, 134, 143,
150, 156, 157, 172, 183, 212, 222,
232, 246, 255, 256, 272, 297, 300,
311, 313, 325, 327, 333, 335, 336,
343, 348, 355, 356, 358, 360, 363,
364, 379, 380, 384, 386, 388, 389,

INDEX 565

395, 416, 439, 450, 464, 465, 476,
485

extract_body, 10–12, 14, 124, 127, 129, 303
extract_cells, 10–12, 14, 125, 125, 129, 303
extract_summary, 10–12, 14, 125, 127, 127,

303
extract_summary(), 276, 409

fmt, 119, 130, 135, 138, 144, 152, 158, 173,
179, 183, 188, 194, 200, 204, 208,
214, 217, 224, 230, 233, 238, 241,
247, 251, 256, 260, 266, 393, 396,
399, 403, 405

fmt(), 274, 407
fmt_auto, 119, 132, 132, 138, 144, 152, 157,

173, 178, 183, 188, 193, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_bins, 119, 132, 135, 135, 144, 152, 157,
173, 178, 183, 188, 193, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_bytes, 119, 132, 135, 138, 139, 152, 157,
173, 178, 183, 188, 193, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_bytes(), 267, 489
fmt_currency, 119, 132, 135, 138, 144, 144,

157, 173, 178, 183, 188, 193, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_currency(), 106, 107, 137, 267, 268,
272, 276, 314, 315, 353, 409, 494

fmt_date, 119, 132, 135, 138, 144, 152, 153,
173, 178, 183, 188, 193, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_date(), 267, 298, 315, 497
fmt_datetime, 119, 132, 135, 138, 144, 152,

157, 158, 178, 183, 188, 193, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_datetime(), 267, 298, 513

fmt_duration, 119, 132, 135, 138, 144, 152,
157, 173, 174, 183, 188, 193, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_duration(), 517
fmt_engineering, 119, 132, 135, 138, 144,

152, 157, 173, 178, 179, 188, 193,
200, 204, 208, 214, 217, 224, 230,
233, 238, 241, 247, 251, 256, 260,
266, 393, 396, 399, 403, 405

fmt_engineering(), 267, 521
fmt_flag, 119, 132, 135, 138, 144, 152, 157,

173, 178, 183, 184, 193, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_flag(), 53, 194, 268, 316
fmt_fraction, 119, 132, 135, 138, 144, 152,

157, 173, 178, 183, 188, 188, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_fraction(), 267, 524
fmt_icon, 119, 132, 135, 138, 144, 152, 157,

173, 178, 183, 188, 193, 194, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_icon(), 87, 318
fmt_image, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 200,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_image(), 87, 184, 267
fmt_index, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 204,
204, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_index(), 267, 527
fmt_integer, 119, 132, 135, 138, 144, 152,

158, 173, 179, 183, 188, 194, 200,
204, 208, 208, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_integer(), 137, 180, 218, 224, 226, 234,

566 INDEX

243, 267, 491, 519, 530, 533, 538,
542, 548

fmt_markdown, 119, 132, 135, 138, 144, 152,
158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 214, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_markdown(), 268, 532
fmt_number, 119, 132, 135, 138, 144, 152,

158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 217, 217, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_number(), 51, 58, 73, 79, 137, 214, 246,
267, 274, 276, 298, 407, 409, 464,
536

fmt_partsper, 119, 132, 135, 138, 144, 152,
158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 217, 224, 224, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_partsper(), 267, 541
fmt_passthrough, 119, 132, 135, 138, 144,

152, 158, 173, 179, 183, 188, 194,
200, 204, 208, 214, 217, 224, 230,
230, 238, 241, 247, 251, 256, 260,
266, 393, 396, 399, 403, 405

fmt_passthrough(), 268
fmt_percent, 119, 132, 135, 138, 144, 152,

158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 217, 224, 230, 233,
233, 241, 247, 251, 256, 260, 266,
393, 396, 399, 403, 405

fmt_percent(), 73, 74, 267, 274, 407, 545
fmt_roman, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 204,
208, 214, 217, 224, 230, 233, 238,
238, 247, 251, 256, 260, 266, 393,
396, 399, 403, 405

fmt_roman(), 267, 389, 547
fmt_scientific, 119, 132, 135, 138, 144,

152, 158, 173, 179, 183, 188, 194,
200, 204, 208, 214, 217, 224, 230,
233, 238, 241, 242, 251, 256, 260,
266, 393, 396, 399, 403, 405

fmt_scientific(), 229, 267, 551
fmt_spelled_num, 119, 132, 135, 138, 144,

152, 158, 173, 179, 183, 188, 194,

200, 204, 208, 214, 217, 224, 230,
233, 238, 241, 247, 247, 256, 260,
266, 393, 396, 399, 403, 405

fmt_spelled_num(), 267, 482, 553
fmt_time, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 252, 260, 266, 393,
396, 399, 403, 405

fmt_time(), 267, 322, 557
fmt_units, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 257, 266, 393,
396, 399, 403, 405

fmt_units(), 53, 241
fmt_url, 119, 132, 135, 138, 144, 152, 158,

173, 179, 183, 188, 194, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 260, 393,
396, 399, 403, 405

fmt_url(), 267
from_column, 8, 16, 19, 21, 23, 26, 28, 30, 33,

34, 37, 40, 43, 45, 47, 49, 52, 107,
120–122, 266, 273, 305, 311, 325,
332, 360, 365, 390, 415

from_column(), 142, 143, 149–152, 155, 160,
161, 182, 183, 186, 191, 192, 197,
199, 203, 207, 212, 215, 216,
221–223, 228, 229, 232, 237, 240,
241, 245, 246, 249, 250, 254, 263,
461, 463, 467, 468

ggplot_image, 269, 324, 474, 559
google_font, 8, 16, 19, 21, 23, 26, 28, 30, 33,

34, 37, 40, 43, 45, 47, 49, 52, 107,
120–122, 269, 271, 305, 311, 325,
332, 360, 365, 390, 415

google_font(), 317, 351–353
grand_summary_rows, 273, 383, 384, 411
grand_summary_rows(), 23, 31, 35, 151, 333,

335, 343, 348, 355, 356, 358, 409,
439

grp_add, 278, 280, 292, 294, 304, 310
grp_clone, 279, 279, 292, 294, 304, 310
grp_options, 279, 280, 280, 292, 294, 304,

310
grp_pull, 279, 280, 292, 292, 294, 304, 310

INDEX 567

grp_replace, 279, 280, 292, 293, 294, 304,
310

grp_rm, 279, 280, 292, 294, 294, 304, 310
gt, 295, 308
gt(), 9–11, 13, 26, 31, 52, 56–59, 61, 64, 66,

69, 72, 75, 76, 78, 81, 82, 84, 87, 96,
98, 102, 109, 122, 125, 126,
128–130, 133, 136, 137, 140, 141,
143, 145, 146, 148, 150, 153, 154,
156, 158, 159, 172, 174, 176, 178,
180, 181, 183, 184, 189, 190, 192,
194, 199, 201, 205, 206, 209, 211,
212, 214, 218, 220, 222, 223, 225,
227, 229, 230, 234, 236, 237, 239,
243, 244, 246, 248, 252, 253, 255,
257, 261, 273, 278, 293, 301, 303,
307, 308, 332, 334, 336, 338, 340,
342, 345, 348, 349, 351, 354, 356,
358, 366, 368, 369, 371, 373, 375,
377, 378, 380, 382, 383, 390, 394,
396, 400, 403, 406, 416, 418, 424,
426, 431, 441, 445, 446, 452, 454,
456, 459, 460, 462, 469, 475, 477,
479, 481, 487, 490, 492, 495, 499,
515, 520, 523, 526, 529, 535, 539,
544, 549, 552, 554

gt_group, 279, 280, 292, 294, 303, 310
gt_group(), 278, 279, 284, 292–294
gt_latex_dependencies, 8, 16, 19, 21, 23,

26, 28, 30, 33, 34, 37, 40, 43, 45, 47,
49, 52, 107, 120–122, 269, 273, 304,
311, 325, 332, 360, 365, 390, 415

gt_output, 305, 368
gt_output(), 366, 367
gt_preview, 299, 307
gt_split, 279, 280, 292, 294, 304, 308
gt_split(), 278, 279, 284, 292–294
gtcars, 9, 10, 12, 13, 16, 30, 71, 77, 105, 106,

123, 250, 268, 299, 302, 308, 309,
313, 327, 347, 363, 368, 372, 373,
375, 377, 386, 388, 389, 416, 417,
424, 426, 442, 444, 445, 449, 459,
482, 485

gtsave, 10–12, 14, 125, 127, 129, 301
gtsave(), 308

html, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34, 37,
40, 43, 45, 47, 49, 52, 107, 120–122,
269, 273, 305, 310, 325, 332, 360,

365, 390, 415
html(), 61, 269, 275, 323, 324, 394, 403, 408,

418, 424, 425, 441, 445, 447, 450,
458, 459, 557

htmltools::save_html(), 301

I(), 76, 79, 136
illness, 65, 90, 105, 106, 123, 241, 259, 260,

300, 311, 327, 363, 386, 388, 389,
416, 485

info_currencies, 314, 316–318, 320–322
info_currencies(), 144, 146, 314, 332, 489,

490
info_date_style, 315, 315, 316–318,

320–322
info_date_style(), 153, 156, 159, 162,

495–498, 500, 512
info_flags, 315, 316, 316, 317, 318, 320–322
info_flags(), 186
info_google_fonts, 315, 316, 317, 318,

320–322
info_google_fonts(), 271
info_icons, 315–317, 318, 320–322
info_icons(), 197
info_locales, 315–318, 319, 321, 322
info_locales(), 58, 76, 133, 141, 143, 146,

148, 150, 154, 156, 159, 172, 176,
178, 181, 183, 190, 192, 206, 211,
212, 220, 222, 227, 229, 236, 237,
244, 246, 248, 253, 255, 296, 487,
490, 492, 495, 499, 515, 520, 523,
526, 529, 535, 539, 544, 549, 552,
554

info_paletteer, 315–318, 320, 320, 322
info_paletteer(), 114
info_time_style, 315–318, 320, 321, 322
info_time_style(), 159, 163, 252, 255, 498,

501, 512, 554, 556

list(), 462, 470
local_image, 271, 323, 474, 559
local_image(), 474

matches(), 14, 17, 19, 24, 27, 31, 35, 37, 40,
41, 56, 58, 59, 61, 66, 69, 70, 73, 76,
79, 81, 82, 84, 87, 88, 96, 98, 102,
109, 126, 130, 133, 136, 140, 145,
153, 158, 159, 174, 175, 180, 184,
189, 195, 201, 205, 209, 214, 218,

568 INDEX

226, 230, 231, 234, 239, 243, 248,
252, 257, 261, 274, 309, 378, 391,
394, 396, 397, 400, 403, 406, 442,
447, 454, 460, 470

md, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34, 37, 40,
43, 45, 47, 49, 52, 107, 120–122,
269, 273, 305, 311, 324, 332, 360,
365, 390, 415

md(), 61, 63, 65, 68, 275, 394, 403, 408, 418,
424, 441, 444, 445, 447, 450, 458,
459

metro, 63, 105, 106, 123, 198, 203, 300, 313,
325, 363, 386, 388, 389, 416, 478,
480, 485

nanoplot_options, 8, 16, 19, 21, 23, 26, 28,
30, 33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 327, 360, 365, 390, 415

nanoplot_options(), 86, 87, 89, 91, 93, 95
num_range(), 14, 17, 19, 24, 27, 31, 35, 37,

40, 41, 56, 58, 59, 66, 69, 70, 73, 76,
79, 81, 82, 84, 87, 88, 96, 109, 126,
130, 133, 136, 140, 145, 153, 158,
159, 174, 175, 180, 184, 185, 189,
195, 201, 205, 209, 214, 215, 218,
226, 230, 231, 234, 239, 243, 248,
252, 257, 261, 274, 309, 391, 394,
396, 397, 400, 403, 406, 442, 447,
454, 460, 470

OlsonNames(), 159, 499
one_of(), 14, 17, 19, 24, 27, 31, 35, 37, 40,

41, 56, 58, 59, 61, 66, 69, 70, 73, 76,
79, 81, 82, 84, 87, 88, 96, 98, 102,
109, 126, 130, 133, 136, 140, 145,
153, 158, 159, 174, 175, 180, 184,
189, 195, 201, 205, 209, 214, 218,
226, 230, 231, 234, 239, 243, 248,
252, 257, 261, 274, 309, 378, 391,
394, 396, 397, 400, 403, 406, 442,
447, 454, 460, 470

opt_align_table_header, 332, 335, 337,
340, 342, 343, 347, 349, 351, 354,
355, 357, 359

opt_all_caps, 334, 334, 337, 340, 342, 343,
347, 349, 351, 354, 355, 357, 359

opt_all_caps(), 421

opt_css, 334, 335, 335, 340, 342, 343, 347,
349, 351, 354, 355, 357, 359

opt_footnote_marks, 334, 335, 337, 337,
342, 343, 347, 349, 351, 354, 355,
357, 359

opt_footnote_marks(), 288, 422, 435
opt_footnote_spec, 334, 335, 337, 340, 340,

343, 347, 349, 351, 354, 355, 357,
359

opt_footnote_spec(), 288, 420, 423, 436
opt_horizontal_padding, 334, 335, 337,

340, 342, 342, 347, 349, 351, 354,
355, 357, 359

opt_interactive, 334, 335, 337, 340, 342,
343, 344, 349, 351, 354, 355, 357,
359

opt_row_striping, 334, 335, 337, 340, 342,
343, 347, 348, 351, 354, 355, 357,
359

opt_stylize, 334, 335, 337, 340, 342, 343,
347, 349, 349, 354, 355, 357, 359

opt_table_font, 334, 335, 337, 340, 342,
343, 347, 349, 351, 351, 355, 357,
359

opt_table_font(), 119, 271, 272, 317, 336,
411

opt_table_lines, 334, 335, 337, 340, 342,
343, 347, 349, 351, 354, 354, 357,
359

opt_table_outline, 334, 335, 337, 340, 342,
343, 347, 349, 351, 354, 355, 356,
359

opt_vertical_padding, 334, 335, 337, 340,
342, 343, 347, 349, 351, 354, 355,
357, 357

pct, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34, 37,
40, 43, 45, 47, 49, 52, 107, 120–122,
269, 273, 305, 311, 325, 332, 359,
365, 390, 415

pct(), 51, 102, 284, 285, 289, 359, 364, 366,
431, 432, 436, 440

pizzaplace, 28, 34, 68, 74, 91, 94, 95, 99,
105, 106, 117, 123, 151, 192, 238,
251, 300, 313, 327, 361, 386, 388,
389, 416, 457, 461, 482, 485

px, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34, 37, 40,
43, 45, 47, 49, 52, 107, 120–122,
269, 273, 305, 311, 325, 332, 360,

INDEX 569

364, 365, 390, 415
px(), 50, 51, 102, 284, 285, 289, 366, 431,

432, 436, 440

random_id, 8, 16, 19, 21, 23, 26, 28, 30, 33,
34, 37, 40, 43, 45, 47, 49, 52, 107,
120–122, 269, 273, 305, 311, 325,
332, 360, 365, 365, 390, 415

random_id(), 296
render_gt, 306, 366
render_gt(), 305, 306
rm_caption, 368, 371, 372, 374, 376, 377
rm_footnotes, 369, 369, 372, 374, 376, 377
rm_header, 369, 371, 371, 374, 376, 377
rm_source_notes, 369, 371, 372, 372, 376,

377
rm_spanners, 369, 371, 372, 374, 374, 377
rm_stubhead, 369, 371, 372, 374, 376, 376
row_group_order, 278, 383, 383, 411
row_group_order(), 297, 441, 443
rows_add, 278, 378, 384, 411
rx_addv, 105, 106, 123, 300, 313, 327, 363,

384, 388, 389, 416, 485
rx_adsl, 105, 106, 123, 300, 313, 327, 363,

386, 386, 389, 416, 485

scales::breaks_log(), 137
scales::col_bin(), 111, 112
scales::col_factor(), 111, 113
scales::col_numeric(), 111, 112, 115
scales::col_quantile(), 113
sp500, 45, 67, 71, 105, 106, 123, 128, 272,

276, 300, 313, 327, 341, 353, 363,
386, 388, 388, 409, 414, 416, 422,
464, 468, 481, 485

starts_with(), 14, 17, 19, 24, 27, 31, 35, 37,
40, 41, 53, 56, 57, 59, 61, 66, 69, 70,
72, 73, 75, 76, 78, 81, 82, 84, 87–89,
96, 98, 102, 109, 126, 130, 133, 136,
140, 145, 153, 158, 159, 174, 175,
180, 184, 189, 195, 201, 205, 209,
214, 218, 226, 230, 231, 234, 239,
243, 248, 252, 257, 261, 274, 309,
378, 379, 391, 394, 396, 397, 400,
403, 406, 441, 442, 447, 454, 460,
470

stats::quantile(), 113
stub, 8, 16, 19, 21, 23, 26, 28, 30, 33, 34, 37,

40, 43, 45, 47, 49, 52, 107, 120–122,

269, 273, 305, 311, 325, 332, 360,
365, 389, 415

sub_large_vals, 119, 132, 135, 138, 144,
152, 158, 173, 179, 183, 188, 194,
200, 204, 208, 214, 217, 224, 230,
233, 238, 241, 247, 251, 256, 260,
266, 390, 396, 399, 403, 405

sub_missing, 119, 132, 135, 138, 144, 152,
158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 393, 399, 403, 405

sub_missing(), 70, 73, 77, 79, 118, 265, 272,
381, 465, 467

sub_small_vals, 119, 132, 135, 138, 144,
152, 158, 173, 179, 183, 188, 194,
200, 204, 208, 214, 217, 224, 230,
233, 238, 241, 247, 251, 256, 260,
266, 393, 396, 396, 403, 405

sub_values, 119, 132, 135, 138, 144, 152,
158, 173, 179, 183, 188, 194, 200,
204, 208, 214, 217, 224, 230, 233,
238, 241, 247, 251, 256, 260, 266,
393, 396, 399, 399, 405

sub_zero, 119, 132, 135, 138, 144, 152, 158,
173, 179, 183, 188, 194, 200, 204,
208, 214, 217, 224, 230, 233, 238,
241, 247, 251, 256, 260, 266, 393,
396, 399, 403, 403

sub_zero(), 396
summary_rows, 278, 383, 384, 405
summary_rows(), 28, 31, 37, 40, 127, 128,

276, 333, 335, 343, 348, 355, 356,
358, 439, 461

system_fonts, 8, 16, 19, 21, 23, 26, 28, 30,
33, 34, 37, 40, 43, 45, 47, 49, 52,
107, 120–122, 269, 273, 305, 311,
325, 332, 360, 365, 390, 411

system_fonts(), 351, 352
sza, 18, 22, 32, 93, 100, 105, 106, 118, 123,

300, 313, 327, 338, 353, 363, 370,
386, 388, 389, 415, 420, 421, 485

tab_caption, 416, 423, 426, 427, 441, 445,
446, 453, 458, 460, 462, 468, 473

tab_caption(), 368
tab_footnote, 417, 417, 426, 427, 441, 445,

446, 453, 458, 460, 462, 468, 473
tab_footnote(), 14–23, 25–38, 40, 42–45,

570 INDEX

60, 275, 338, 370, 407, 426, 442,
447, 450

tab_header, 417, 423, 424, 427, 441, 445,
446, 453, 458, 460, 462, 468, 473

tab_header(), 9, 10, 12, 13, 43, 311, 325,
346, 368, 371, 372, 417, 558

tab_info, 417, 423, 426, 426, 441, 445, 446,
453, 458, 460, 462, 468, 473

tab_info(), 456
tab_options, 417, 423, 426, 427, 427, 445,

446, 453, 458, 460, 462, 468, 473
tab_options(), 98, 103, 309, 336, 342, 344,

354, 358, 360, 364, 366, 419, 420,
443

tab_row_group, 417, 423, 426, 427, 441, 441,
446, 453, 458, 460, 462, 468, 473

tab_row_group(), 26, 287, 297, 434
tab_source_note, 417, 423, 426, 427, 441,

445, 445, 453, 458, 460, 462, 468,
473

tab_source_note(), 29, 30, 346, 373
tab_spanner, 417, 423, 426, 427, 441, 445,

446, 446, 458, 460, 462, 468, 473
tab_spanner(), 19, 20, 64, 92, 100, 213,

374–376, 426, 452, 458
tab_spanner_delim, 417, 423, 426, 427, 441,

445, 446, 453, 453, 460, 462, 468,
473

tab_spanner_delim(), 19, 374, 375, 426,
453

tab_stub_indent, 417, 423, 426, 427, 441,
445, 446, 453, 458, 460, 460, 468,
473

tab_stub_indent(), 266, 267, 287, 435
tab_stubhead, 417, 423, 426, 427, 441, 445,

446, 453, 458, 458, 462, 468, 473
tab_stubhead(), 15, 17, 20, 22, 24, 27, 29,

31, 33–35, 38, 41, 44, 302, 376, 377
tab_style, 417, 423, 426, 427, 441, 445, 446,

453, 458, 460, 462, 462, 473
tab_style(), 14, 15, 17–23, 25, 26, 28–40,

42–46, 48, 49, 51, 119, 268, 271,
272, 275, 277, 317, 347, 351, 354,
360, 364, 381, 407, 410, 411, 426,
442–444, 447, 450, 456, 464, 469

tab_style_body, 417, 423, 426, 427, 441,
445, 446, 453, 458, 460, 462, 468,
469

tab_style_body(), 119, 351
test_image, 271, 324, 474, 559
test_image(), 323
text_case_match, 474, 479, 480, 483
text_case_match(), 318, 468
text_case_when, 477, 477, 480, 483
text_case_when(), 381
text_replace, 477, 479, 479, 483
text_transform, 477, 479, 480, 480
text_transform(), 14, 269, 323, 456, 557,

558
towny, 54, 64, 90, 92, 100, 105, 106, 123, 198,

207, 213, 223, 263, 300, 313, 327,
346, 363, 386, 388, 389, 416, 421,
450, 452, 456, 465, 476, 483

vec_fmt_bytes, 485, 494, 497, 513, 517, 521,
524, 527, 530, 532, 536, 541, 545,
547, 551, 553, 557

vec_fmt_bytes(), 144
vec_fmt_currency, 489, 489, 497, 513, 517,

521, 524, 527, 530, 532, 536, 541,
545, 547, 551, 553, 557

vec_fmt_currency(), 152
vec_fmt_date, 489, 494, 494, 513, 517, 521,

524, 527, 530, 532, 536, 541, 545,
547, 551, 553, 557

vec_fmt_date(), 157, 481
vec_fmt_datetime, 489, 494, 497, 498, 517,

521, 524, 527, 530, 532, 536, 541,
545, 547, 551, 553, 557

vec_fmt_datetime(), 173, 481
vec_fmt_duration, 489, 494, 497, 513, 513,

521, 524, 527, 530, 532, 536, 541,
545, 547, 551, 553, 557

vec_fmt_duration(), 178
vec_fmt_engineering, 489, 494, 497, 513,

517, 518, 524, 527, 530, 532, 536,
541, 545, 547, 551, 553, 557

vec_fmt_engineering(), 183
vec_fmt_fraction, 489, 494, 497, 513, 517,

521, 522, 527, 530, 532, 536, 541,
545, 547, 551, 553, 557

vec_fmt_fraction(), 193
vec_fmt_index, 489, 494, 497, 513, 517, 521,

524, 525, 530, 532, 536, 541, 545,
547, 551, 553, 557

vec_fmt_index(), 208

INDEX 571

vec_fmt_integer, 489, 494, 497, 513, 517,
521, 524, 527, 527, 532, 536, 541,
545, 547, 551, 553, 557

vec_fmt_integer(), 214
vec_fmt_markdown, 489, 494, 497, 513, 517,

521, 524, 527, 530, 530, 536, 541,
545, 547, 551, 553, 557

vec_fmt_markdown(), 217
vec_fmt_number, 489, 494, 497, 513, 517,

521, 524, 527, 530, 532, 532, 541,
545, 547, 551, 553, 557

vec_fmt_number(), 224
vec_fmt_partsper, 489, 494, 497, 513, 517,

521, 524, 527, 530, 532, 536, 537,
545, 547, 551, 553, 557

vec_fmt_partsper(), 230
vec_fmt_percent, 489, 494, 497, 513, 517,

521, 524, 527, 530, 532, 536, 541,
541, 547, 551, 553, 557

vec_fmt_percent(), 238
vec_fmt_roman, 489, 494, 497, 513, 517, 521,

524, 527, 530, 532, 536, 541, 545,
545, 551, 553, 557

vec_fmt_roman(), 241
vec_fmt_scientific, 489, 494, 497, 513,

517, 521, 524, 527, 530, 532, 536,
541, 545, 547, 547, 553, 557

vec_fmt_scientific(), 247
vec_fmt_spelled_num, 489, 494, 497, 513,

517, 521, 524, 527, 530, 532, 536,
541, 545, 547, 551, 551, 557

vec_fmt_spelled_num(), 251, 476
vec_fmt_time, 489, 494, 497, 513, 517, 521,

524, 527, 530, 532, 536, 541, 545,
547, 551, 553, 554

vec_fmt_time(), 256

web_image, 271, 324, 474, 557
webshot2::webshot(), 302

	adjust_luminance
	as_latex
	as_raw_html
	as_rtf
	as_word
	cells_body
	cells_column_labels
	cells_column_spanners
	cells_footnotes
	cells_grand_summary
	cells_row_groups
	cells_source_notes
	cells_stub
	cells_stubhead
	cells_stub_grand_summary
	cells_stub_summary
	cells_summary
	cells_title
	cell_borders
	cell_fill
	cell_text
	cols_add
	cols_align
	cols_align_decimal
	cols_hide
	cols_label
	cols_label_with
	cols_merge
	cols_merge_n_pct
	cols_merge_range
	cols_merge_uncert
	cols_move
	cols_move_to_end
	cols_move_to_start
	cols_nanoplot
	cols_unhide
	cols_units
	cols_width
	constants
	countrypops
	currency
	data_color
	default_fonts
	define_units
	escape_latex
	exibble
	extract_body
	extract_cells
	extract_summary
	fmt
	fmt_auto
	fmt_bins
	fmt_bytes
	fmt_currency
	fmt_date
	fmt_datetime
	fmt_duration
	fmt_engineering
	fmt_flag
	fmt_fraction
	fmt_icon
	fmt_image
	fmt_index
	fmt_integer
	fmt_markdown
	fmt_number
	fmt_partsper
	fmt_passthrough
	fmt_percent
	fmt_roman
	fmt_scientific
	fmt_spelled_num
	fmt_time
	fmt_units
	fmt_url
	from_column
	ggplot_image
	google_font
	grand_summary_rows
	grp_add
	grp_clone
	grp_options
	grp_pull
	grp_replace
	grp_rm
	gt
	gtcars
	gtsave
	gt_group
	gt_latex_dependencies
	gt_output
	gt_preview
	gt_split
	html
	illness
	info_currencies
	info_date_style
	info_flags
	info_google_fonts
	info_icons
	info_locales
	info_paletteer
	info_time_style
	local_image
	md
	metro
	nanoplot_options
	opt_align_table_header
	opt_all_caps
	opt_css
	opt_footnote_marks
	opt_footnote_spec
	opt_horizontal_padding
	opt_interactive
	opt_row_striping
	opt_stylize
	opt_table_font
	opt_table_lines
	opt_table_outline
	opt_vertical_padding
	pct
	pizzaplace
	px
	random_id
	render_gt
	rm_caption
	rm_footnotes
	rm_header
	rm_source_notes
	rm_spanners
	rm_stubhead
	rows_add
	row_group_order
	rx_addv
	rx_adsl
	sp500
	stub
	sub_large_vals
	sub_missing
	sub_small_vals
	sub_values
	sub_zero
	summary_rows
	system_fonts
	sza
	tab_caption
	tab_footnote
	tab_header
	tab_info
	tab_options
	tab_row_group
	tab_source_note
	tab_spanner
	tab_spanner_delim
	tab_stubhead
	tab_stub_indent
	tab_style
	tab_style_body
	test_image
	text_case_match
	text_case_when
	text_replace
	text_transform
	towny
	vec_fmt_bytes
	vec_fmt_currency
	vec_fmt_date
	vec_fmt_datetime
	vec_fmt_duration
	vec_fmt_engineering
	vec_fmt_fraction
	vec_fmt_index
	vec_fmt_integer
	vec_fmt_markdown
	vec_fmt_number
	vec_fmt_partsper
	vec_fmt_percent
	vec_fmt_roman
	vec_fmt_scientific
	vec_fmt_spelled_num
	vec_fmt_time
	web_image
	Index

