Package ‘gasper’

February 28, 2024

Type Package
Title Graph Signal Processing
Version 1.1.6

Description Provides the standard operations for signal processing on graphs:
graph Fourier transform, spectral graph wavelet transform,
visualization tools. It also implements a data driven method
for graph signal denoising/regression, for details see
De Loynes, Navarro, Olivier (2019) <arxiv:1906.01882>.
The package also provides an interface to the SuiteSparse Matrix Collection,
<https://sparse.tamu.edu/>, a large and widely used set of sparse matrix
benchmarks collected from a wide range of applications.

URL https://github.com/fabnavarro/gasper

BugReports https://github.com/fabnavarro/gasper/issues
License LGPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>=3.5.0)

Imports Rcpp, ggplot2, methods, Matrix, RSpectra, httr, curl
LinkingTo Rcpp, ReppArmadillo

Suggests knitr, kableExtra, rmarkdown, rvest
VignetteBuilder knitr

NeedsCompilation yes

Author Basile de Loynes [aut] (<https://orcid.org/0000-0002-5397-6811>),
Fabien Navarro [aut, cre] (<https://orcid.org/0000-0002-4979-2745>),
Baptiste Olivier [aut] (<https://orcid.org/0000-0002-5853-0341>)

Maintainer Fabien Navarro <fabien.navarro@math.cnrs.fr>
Repository CRAN
Date/Publication 2024-02-28 11:10:02 UTC

https://arxiv.org/abs/1906.01882
https://sparse.tamu.edu/
https://github.com/fabnavarro/gasper
https://github.com/fabnavarro/gasper/issues
https://orcid.org/0000-0002-5397-6811
https://orcid.org/0000-0002-4979-2745
https://orcid.org/0000-0002-5853-0341

2

R topics documented:

R topics documented:

Index

adjacency_mat e e e e e e e e 3
analysis L 4
betathresh 5
download_graph. 6
eigendec L 7
CIZENSOTL .« . v v vt ot e e e e e e e e e e e e e e 8
forward_gft 8
forward_sgwt L e e e 10
full . . . 12
fullup e e 12
get_graph_info 13
gridl . . . 14
GVN . . e 15
HPEVN . . e 16
verse_gft. L e e 18
INVEISE_SEWE . . . o v v it e e e e 19
laplacian_mat L. e e e e e 21
LD_SUREthresh e 23
localize_gft e e 25
localize_sgwt e 26
MINNESOLA o v v v e et e e e e e e e e e 28
NYCdata e 29
pittsburgh 30
plot_filter e e 30
plot_graph L e e 32
plot_signal e e e 33
PSNR . . . e 34
randsignal oL 35
rlogo . . . L e 36
smoothmodulus L 37
SNR . e 38
spectral_coords 39
SuiteSparseData e e 40
SUREthresh e 41
SURE_MSEthresh e e 43
swissroll e e e e 45
SYNthesis e 46
tight_frame e 48
ZREAV . . v o e e e e e e e e e e e e e e e e e 49

adjacency_mat 3

adjacency_mat Compute the Adjacency Matrix of a Gaussian Weighted Graph

Description

adjacency_mat calculates the adjacency matrix of a Gaussian weighted graph based on the distance
between points in R3.

Usage

adjacency_mat(
pts,
f = function(x) {
exp(-x*2/8)

b
s =0
)
Arguments
pts Matrix representing the coordinates of N points in R3. Each row should corre-
spond to a point.
f A scalar potential function. By default, the Gaussian potential exp(—xz2/8) is
used.
s Numeric threshold used to sparsify the adjacency matrix. Any value below this
threshold will be set to zero. Default is 0.
Details

The function computes pairwise distances between each point in pts and weights the adjacency
matrix based on the scalar potential f. The final adjacency matrix can be sparsified by setting
values below the threshold s to zero.

Value

A matrix representing the adjacency matrix of the Gaussian weighted graph.

See Also

laplacian_mat for calculating the Laplacian matrix, swissroll for generating a Swiss roll dataset.

Examples

pts <- swissroll(N=100, seed=0, a=1, b=4)
W <- adjacency_mat(pts)

4 analysis

analysis Compute the Analysis Operator for a Graph Signal

Description
analysis computes the transform coefficients of a given graph signal using the provided frame
coefficients.

Usage
analysis(y, tf)

Arguments
y Numeric vector or matrix representing the graph signal to analyze.
tf Numeric matrix of frame coefficients.

Details

The analysis operator uses the frame coefficients to transform a given graph signal into its repre-
sentation in the transform domain. It is defined by the linear map T% : RV — RZ. Given a function
f € RY, the analysis operation is defined as:

Tsf = ({f;ri))ier

where r; are the frame vectors.

The transform is computed as:
coef =tf.y
Value

coef Numeric vector or matrix of transform coefficients of the graph signal.

See Also

synthesis, tight_frame

Examples

Not run:
Extract the adjacency matrix from the gridl and compute the Laplacian
L <- laplacian_mat(gridi1$sA)

Compute the spectral decomposition of L
decomp <- eigensort(L)

Generate the tight frame coefficients using the tight_frame function
tf <- tight_frame(decomp$evalues, decomp$evectors)

betathresh 5

Create a random graph signal.
f <= rnorm(nrow(L))

Compute the transform coefficients using the analysis operator
coef <- analysis(f, tf)

End(Not run)

betathresh Apply Beta Threshold to Data

Description
betathresh performs a generalized thresholding operation on the data y. The thresholding opera-
tion is parameterized by the parameter beta.

Usage

betathresh(y, t, beta = 2)

Arguments
y Numeric vector or matrix representing the noisy data.
t Non-negative numeric value representing the threshold.
beta Numeric value indicating the type of thresholding.
Details

The function offers flexibility by allowing for different types of thresholding based on the beta
parameter. Soft thresholding, commonly used in wavelet-based denoising corresponds to beta=1
. James-Stein thresholding corresponds to beta=2. The implementation includes a small constant
for numerical stability when computing the thresholding operation.

The thresholding operator is defined as:
7(z,t) = rmax (1 — t’[z[~",0)
with 6 > 1.

Value

x Numeric vector or matrix of the filtered result.

References
Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., & Olivier, B. (2021). Data-driven thresholding in denoising with spectral
graph wavelet transform. Journal of Computational and Applied Mathematics, 389, 113319.

6 download_graph

Examples

Define a 2x2 matrix
mat <- matrix(c(2, -3, 1.5, -0.5), 2, 2)

Apply soft thresholding with a threshold of 1
betathresh(mat, 1, 1)

download_graph Download Sparse Matrix form the SuiteSparse Matrix Collection

Description

download_graph allows to download sparse matrices from the SuiteSparse Matrix Collection.

Usage

download_graph(matrixname, groupname, svd = FALSE, add_info = FALSE)

Arguments
matrixname Name of the graph to download.
groupname Name of the group that provides the graph.
svd Logical, if TRUE, a ".mat" file containing the singular values of the matrix is
downloaded (if available). Default is FALSE.
add_info Logical, if TRUE, additional information about the graph will be fetched and
included in the output. Default is FALSE.
Details

download_graph automatically converts the downloaded matrix into a sparse matrix format. If
coordinates are associated with the graphs, they are downloaded and included in the output. Visit
https://sparse.tamu.edu/ or see SuiteSparseData to explore groups and matrix names.

Value

A list containing several components:

* sA: A sparse matrix representation of the downloaded graph.
* xy: Coordinates associated with the graph nodes (if available).
e dim: A data frame with the number of rows, columns, and numerically nonzero elements.

 temp: The path to the temporary directory where the matrix and downloaded files (including
singular values if requested) are stored.

* info: Additional information about the graph (included when add_info is TRUE).

https://sparse.tamu.edu/

eigendec 7

Note

This temporary directory can be accessed, for example, via list.files(gridi$temp). To open
the read .mat files (containing singular values), "R.matlab" or "foreign" packages can be used. After
using the downloaded data, you can delete the content of the temporary folder.

When add_info is set to TRUE, the function retrieves comprehensive information about the graph
using get_graph_info.

References

Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 1-25.

Kolodziej, S. P, Aznaveh, M., Bullock, M., David, J., Davis, T. A., Henderson, M., Hu, Y., &
Sandstrom, R. (2019). The suitesparse matrix collection website interface. Journal of Open Source
Software, 4(35), 1244.

See Also

get_graph_info, SuiteSparseData

Examples

Not run:

matrixname <- "grid1”

groupname <- "AG-Monien”
download_graph(matrixname, groupname)
list.files(gridi$temp)

End(Not run)

eigendec Spectral decomposition of a symetric matrix

Description

Eigen decomposition of dense symmetric/hermitian matrix M using divide-and-conquer methods
that provides slightly different results than the standard method, but is considerably faster for large
matrices.

Usage

eigendec(M)

Arguments

M a matrix.

8 forward_gft

eigensort Spectral Decomposition of a Symmetric Matrix

Description
eigensort performs the spectral decomposition of a symmetric matrix. The eigenvalues and eigen-
vectors are sorted in increasing order by eigenvalues.

Usage

eigensort(M)

Arguments

M Symmetric matrix, either sparse or dense, to be decomposed.

Value

A list containing:

* evalues: A vector of sorted eigenvalues in increasing order.

* evectors: A matrix of corresponding eigenvectors.

Examples

A <- matrix(1, ncol=2, nrow=2)
dec <- eigensort(A)

forward_gft Compute Forward Graph Fourier Transform

Description

forward_gf't computes the Graph Fourier Transform (GFT) of a given graph signal f.

Usage
forward_gft(L, f, U = NULL)

Arguments
L Laplacian matrix of the graph.
f Numeric vector of the graph signal to analyze.
u Matrix of the Eigenvectors of the Laplacian matrix. If NULL (default), the

function will compute the eigendecomposition of the Laplacian.

forward_gft 9

Details

The GFT is the representation of the graph signal on an orthonormal basis of the graph’s Laplacian
matrix. It allows to analyze the frequency content of signals defined on graphs. In this context,
the "frequency" of a graph signal refers to its decomposition in terms of the graph’s Laplacian
eigenvectors, which are similar to the harmonics of classical Fourier analysis.

The GFT of a graph signal f is given by:

f=U"f
where U denotes the matrix of eigenvectors of the graph’s Laplacian.

When the eigenvectors U are not provided, the function computes them using the Laplacian matrix
L.

Value

hatf Numeric vector. Graph Fourier Transform of f.

References

Ortega, A., Frossard, P., Kovacevié, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828.

Shuman, D. I, Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine, 30(3), 83-98.

See Also

inverse_gft

Examples

Not run:
Extract the adjacency matrix from the gridl and compute the Laplacian
L <- laplacian_mat(gridi1$sA)

Create a sample graph signal
f <= rnorm(nrow(L))

Compute the forward GFT
hatf <- forward_gft(L, f)

End(Not run)

10

forward_sgwt

forward_sgwt

Compute Forward Spectral Graph Wavelet Transform

Description

forward_sgwt computes the forward Spectral Graph Wavelet Transform (SGWT) for a given graph

signal f.

Usage

forward_sgwt (
f,
evalues,
evectors,
b =2,

filter_func = zetav,
filter_params = list()

Arguments

.F
evalues
evectors

b

filter_func

filter_params

Details

Numeric vector representing the graph signal to analyze.
Numeric vector of eigenvalues of the Laplacian matrix.
Matrix of eigenvectors of the Laplacian matrix.

Numeric scalar that controls the number of scales in the SGWT. It must be
greater than 1.

Function used to compute the filter values. By default, it uses the zetav function
but other frame filters can be pass.

List of additional parameters required by filter_func. Default is an empty
list.

The transform is constructed based on the frame defined by the tight_frame function, without the
need for its explicit calculation. Other filters can be passed as parameters. The SGWT provides a
multi-scale analysis of graph signals.

Given a graph signal f of length N, forward_sgwt computes the wavelet coefficients using SGWT.

The eigenvalues and eigenvectors of the graph Laplacian, are denoted as A and U respectively. The
parameter b controls the number of scales, and A, is the largest eigenvalue.

For each scale j = 0,...,J, where

forward_sgwt 11

the wavelet coefficients are computed as:

w; =U(g9; 0 (U"f))
where
9;(A) = /i (V)
and © denotes element-wise multiplication.

The final result is a concatenated vector of these coefficients for all scales.

Value

wc A concatenated vector of wavelet coefficients.

Note
forward_sgwt can be adapted for other filters by passing a different filter function to the filter_func
parameter.

The computation of ky,.x using Anax and b applies primarily to the default zetav filter. It can be
overridden by providing it in the filter_params list for other filters.

References

Gobel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

See Also

inverse_sgwt, tight_frame

Examples

Not run:
Extract the adjacency matrix from the gridl and compute the Laplacian
L <- laplacian_mat(gridi1$sA)

Compute the spectral decomposition of L
decomp <- eigensort(L)

Create a sample graph signal
f <= rnorm(nrow(L))

Compute the forward Spectral Graph Wavelet Transform
wc <- forward_sgwt(f, decomp$evalues, decomp$evectors)

End(Not run)

12 fullup

full Conversion of Symmetric Sparse Matrix to Full Matrix

Description

full converts a symmetric sparse matrix, represented as sA, into a full matrix A.

Usage
full(sA)
Arguments
SA Symmetric sparse matrix, either in a sparse matrix format or in a three-column
format, that needs to be converted into a full matrix.
Value

A Full matrix constructed from the symmetric sparse matrix sA.

See Also
fullup

Examples

sA <- pittsburgh$sA
A <= full(sA)

fullup Convert Symmetric Sparse Matrix to Full Matrix

Description
fullup converts a symmetric sparse matrix sA, stored as an upper triangular matrix, to a full matrix
A.

Usage
fullup(sA)

Arguments

SA Matrix (sparseMatrix). Symmetric upper triangular matrix to be converted.

get_graph_info 13

Details

This function can be used for transforming matrices that have been stored in a memory-efficient
format (i.e., the upper triangle portion of a symmetric matrix) to their full format. The conversion
is done either by directly transforming the sparse matrix or by leveraging the full function.

Value

A Full symmetric matrix.

See Also
full

Examples

data(grid1)
A <= fullup(gridi1$sA)

get_graph_info Retrieve Information Tables about a Specific Graph from the SuiteS-
parse Matrix Collection

Description
get_graph_info fetches the overview tables about a specified graph/matrix from the SuiteSparse
Matrix Collection.

Usage

get_graph_info(matrixname, groupname)

Arguments
matrixname Name of the matrix/graph for which to fetch information.
groupname Name of the group that provides the matrix/graph.
Details

The tables contain detailed information and properties about the graph/matrix, such as its size,
number of non-zero elements, etc. Visit https://sparse.tamu.edu/ of see SuiteSparseData to
explore groups and matrix names.

Value

A list of tables with detailed information about the specified matrix/graph:

e "Matrix Information"
* "Matrix Properties"
¢ "SVD Statistics" (if available)

https://sparse.tamu.edu/

14 gridl

Note

The rvest package is used for parsing HTML, if it is not installed, the function will prompt for
installation.

References

Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 1-25.

Kolodziej, S. P, Aznaveh, M., Bullock, M., David, J., Davis, T. A., Henderson, M., Hu, Y., &
Sandstrom, R. (2019). The suitesparse matrix collection website interface. Journal of Open Source
Software, 4(35), 1244.

Examples

Not run:

matrixname <- "grid1l”

groupname <- "AG-Monien”

info_tables <- get_graph_info(matrixname, groupname)

Matrix Information
info_tables[[1]]

Matrix Properties
info_tables[[2]]

SVD Statistics
info_tables[[3]]

End(Not run)
#' @seealso \code{\link{download_graph}}, \code{\link{SuiteSparseData}}

gridi Gridl Graph from AG-Monien Graph Collection

Description

This dataset represents the "grid1" graph sourced from the AG-Monien Graph Collection, a col-
lection of test graphs provided by Ralf Diekmann and Robert Preis. The AG-Monien collection
encompasses graphs from various origins, including the Harwell-Boeing collection, NASA matri-
ces, and other graphs.

Usage

gridi

GVN 15

Format

list of 3 elements

* xy: A matrix with the coordinates for each node in the graph.
* sA: A sparse matrix representation of the graph’s adjacency matrix.

e dim: A numeric vector containing the numbers of rows, columns, and numerically nonzero
elements in the adjacency matrix.

* temp: empty list (the path to the temporary directory where the matrix and downloaded files
from download_graph function).

e info: info: Additional information about the graph.

Source

AG-Monien Graph Collection by Ralf Diekmann and Robert Preis.

GVN Graph Von Neumann Variance Estimator

Description

GVN computes graph equivalent of the Von Neummann variance estimator.

Usage
GVN(y, A, L)
Arguments
Numeric vector that represents the noisy data.
Adjacency matrix of the graph.
L Laplacian matrix of the graph.
Details

In many real-world scenarios, the noise level o2 remains generally unknown. Given any function
g : Ry — R, astraightforward computation gives:

E[fTg(L)f] = fTo(L)f + E[Tg(L)E] = fTg(L)f + o> Tr(g(L))

A biased estimator of the variance o2 can be given by:

52 = ng(L)J?
b Te(g(L))

16

HPFVN

Assuming the original graph signal is smooth enough that fZ7g(L)f is negligible compared to
Tr(g(L)), 5% provides a reasonably accurate estimate of 2. For this function, a common choice is
g(z) = x. Thanks to Dirichlet’s formula, it follows:

o fTLf_ > ijev w23|f(l) — F()1?
T L) T 9Tr(L)

This is the graph adaptation of the Von Neumann estimator, hence the term Graph Von Neumann
estimator (GVN).

Value

The Graph Von Neumann variance estimate for the given noisy data.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the
variance. Ann. Math. Statistics, 35(3), 433-451.

See Also

HPFVN

Examples

Not run:
data(minnesota)

A <- minnesota$A

L <- laplacian_mat(A)
X <- minnesota$xy[,1]
n <- length(x)

f <= sin(x)

sigma <- 0.1

noise <- rnorm(n, sd = sigma)
y <- f + noise
sigma*2

GVN(y, A, L)

End(Not run)

HPFVN High Pass Filter Von Neumann Estimator

Description

HPFVN computes graph extension of the Von Neummann variance estimator using finest scale coef-
ficients (as in classical wavelet approaches).

HPFVN 17

Usage

HPFVN(wcn, evalues, b, filter_func = zetav, filter_params = list())

Arguments
wen Numeric vector of noisy wavelet coefficients.
evalues Numeric vector corresponding to Laplacian spectrum.
b numeric parameter that control the number of scales.
filter_func Function used to compute the filter values. By default, it uses the zetav function

but other frame filters can be passed.

filter_params List of additional parameters required by filter_func. Default is an empty list.

Details

The High Pass Filter Von Neumann Estimator (HPFVN) is the graph analog of the classical Von
Neumann estimator, focusing on the finest scale coefficients. It leverages the characteristics of the
graph signal’s wavelet coefficients to estimate the variance:

n(J+1
52 — E:;inJ+L(VVy)?
Tr 45 (L)

Note

HPFVN can be adapted for other filters by passing a different filter function to the filter_func
parameter.

The computation of ky.x using An.x and b applies primarily to the default zetav filter. It can be
overridden by providing it in the filter_params list for other filters.

References

Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. biometrika,
81(3), 425-455.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the
variance. Ann. Math. Statistics, 35(3), 433-451.

See Also
GVN

Examples

Not run:

A <- grid1$sA

L <- laplacian_mat(A)
x <- gridi$xy[,11]

18 inverse_gft

n <- length(x)

vall <- eigensort(L)

evalues <- vall$evalues
evectors <- vall$evectors

f <= sin(x)

sigma <- 0.1

noise <- rnorm(n, sd = sigma)
y <- f + noise

b <-2

wen <- forward_sgwt(y, evalues, evectors, b=b)
sigma*2

HPFVN(wcn, evalues, b)

End(Not run)

inverse_gft Compute Inverse Graph Fourier Transform

Description
inverse_gft computes the Inverse Graph Fourier Transform (IGFT) of a given transformed graph
signal f.

Usage
inverse_gft(L, hatf, U = NULL)

Arguments
L Laplacian matrix of the graph (matrix).
hatf Numeric vector. Graph Fourier Transform of the signal to be inverted.
U Matrix of the eigenvectors of the Laplacian matrix. If NULL (default), the func-
tion will compute the eigendecomposition of the Laplacian.
Details

The IGFT enables the reconstruction of graph signals from their frequency domain representation.
The "frequency” in the context of graph signal processing refers to the decomposition of the signal
using the graph’s Laplacian eigenvectors.

The IGFT of a transformed graph signal f is given by:
r=uf
where U represents the matrix of eigenvectors of the graph’s Laplacian.

When the eigenvectors U are not provided, the function computes them from the Laplacian matrix
L.

Value

f Numeric vector. Original graph signal obtained from the inverse transform of f .

inverse_sgwt 19

References

Ortega, A., Frossard, P.,, Kovacevi¢, J., Moura, J. M., & Vandergheynst, P. (2018). Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808-828.

Shuman, D. I, Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine, 30(3), 83-98.

See Also

forward_gft

Examples

Not run:
Extract the adjacency matrix from the gridl and compute the Laplacian
L <- laplacian_mat(gridi1$sA)

Create a sample graph signal
f <= rnorm(nrow(L))

Compute the forward GFT
hatf <- forward_gft(L, f)

Compute the forward GFT
recf <- inverse_gft(L, hatf)

End(Not run)

inverse_sgwt Compute Inverse Spectral Graph Wavelet Transform

Description

inverse_sgwt computes the pseudo-inverse Spectral Graph Wavelet Transform (SGWT) for wavelet
coefficients wc.

Usage

inverse_sgwt(
wc,
evalues,
evectors,
b =2,
filter_func = zetav,
filter_params = list()

20

inverse_sgwt

Arguments

we Numeric vector representing the spectral graph wavelet coefficients to recon-
struct the graph signal from.

evalues Numeric vector of eigenvalues of the Laplacian matrix.

evectors Matrix of eigenvectors of the Laplacian matrix.

b Numeric scalar that control the number of scales in the SGWT. It must be greater
than 1.

filter_func Function used to compute the filter values. By default, it uses the zetav function

but other frame filters can be passed.

filter_params List of additional parameters required by filter_func. Default is an empty list.

Details

The computation corresponds to the frame defined by the tight_frame function. Other filters can
be passed as parameters. Given the tightness of the frame, the inverse is simply the application of
the adjoint linear transformation to the wavelet coefficients.

Given wavelet coefficients wc, inverse_sgwt reconstructs the original graph signal using the in-
verse SGWT.

The eigenvalues and eigenvectors of the graph Laplacian are denoted as A and U respectively. The
parameter b controls the number of scales, and \n,x is the largest eigenvalue.

For each scale j = 0, ..., J, where

the reconstructed signal for that scale is computed as:
f; = (Uwc; © g))UT

where
gi(A) = /¥ (A)
and © denotes element-wise multiplication.

The final result is the sum of f; across all scales to reconstruct the entire graph signal.

Value

f A graph signal obtained by applying the SGWT adjoint to wc.

Note

inverse_sgwt can be adapted for other filters by passing a different filter function to the filter_func
parameter. The computation of ky,.x using A, and b applies primarily to the default zetav filter.
It can be overridden by providing it in the filter_params list for other filters.

laplacian_mat 21

References

Gobel, F., Blanchard, G., von Luxburg, U. (2018). Construction of tight frames on graphs and
application to denoising. In Handbook of Big Data Analytics (pp. 503-522). Springer, Cham.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

See Also

forward_sgwt, tight_frame

Examples

Not run:
Extract the adjacency matrix from the gridl and compute the Laplacian
L <- laplacian_mat(gridi1$sA)

Compute the spectral decomposition of L
decomp <- eigensort(L)

Create a sample graph signal
f <= rnorm(nrow(L))

Compute the forward Spectral Graph Wavelet Transform
wc <- forward_sgwt(f, decomp$evalues, decomp$evectors)

Reconstruct the graph signal using the inverse SGWT
f_rec <- inverse_sgwt(wc, decomp$evalues, decomp$evectors)

End(Not run)

laplacian_mat Compute the Graph Laplacian Matrix

Description
laplacian_mat computes various forms of the graph Laplacian matrix for a given adjacency matrix
W.

Usage

laplacian_mat(W, type = "unnormalized")

22 laplacian_mat

Arguments
W Adjacency matrix (dense or sparseMatrix).
type Character string, type of Laplacian matrix to compute. Can be "unnormalized"
(default), "normalized", or "randomwalk".
Details

The function supports three types of Laplacian matrices:

* Unnormalized Laplacian:
L=D-W

* Normalized Laplacian:
Lyorm =1 — D~Y2WpD=1/2

* Random Walk Laplacian:
Lyw=1-D"'W

Where:

* D is the degree matrix, a diagonal matrix where each diagonal element D;; represents the sum
of the weights of all edges connected to node .

* TV is the adjacency matrix of the graph.

* [is the identity matrix.

The function supports both standard and sparse matrix representations of the adjacency matrix.

Value

L The graph Laplacian matrix.

References

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.

Examples

Define the 3x3 adjacency matrix
W <- matrix(c(o, 1, 0,

1, 0, 1,

9, 1, 0), ncol=3)

Non-sparse cases
laplacian_mat(W, "unnormalized")
laplacian_mat(W, "normalized")
laplacian_mat(W, "randomwalk")

Convert W to a sparse matrix
W_sparse <- as(W, "sparseMatrix")

Sparse cases

LD_SUREthresh

23

laplacian_mat(W_sparse, "unnormalized")
laplacian_mat(W_sparse, "normalized")
laplacian_mat(W_sparse, "randomwalk")

LD_SUREthresh

Level Dependent Stein’s Unbiased Risk Estimate Thresholding

Description

Adaptive threshold selection using the Level Dependent Stein’s Unbiased Risk Estimate.

Usage

LD_SUREthresh(

J,
wen,

diagWWt,

beta =
sigma,

2,

hatsigma = NA,
policy = "uniform”,
keepSURE = FALSE

Arguments

J
wen

diagWWt
beta

sigma
hatsigma

policy

keepSURE

Details

Integer. The finest scale, or the highest frequency. This parameter determines
the total number of scales that the function will process.

A numeric vector of noisy spectral graph wavelet coefficients that need to be
thresholded.

Numeric vector of weights.

Numeric. The type of thresholding to be used. If beta=1, soft thresholding is
applied. If beta=2, James-Stein thresholding is applied (Default is 2).

Numeric. The standard deviation of the noise present in the wavelet coefficients.
Numeric. An optional estimator of the noise standard deviation. If provided, the
function will also compute wavelet coefficient estimates using this estimator.
The policy for threshold setting. It can be either "uniform" (default) or "depen-
dent".

A logical flag. If TRUE, the function will also return a list containing the results
of the SURE thresholding for each scale.

This function applies SURE in a level dependent manner to wavelet coefficients, which aims to
minimize SURE at each wavelet scale.

In the "uniform" policy, the thresholds are set based on the absolute value of the wavelet coefficients.
In the "dependent” policy, the thresholds are set based on the wavelet coefficients normalized by the
weights from diagWWt.

24 LD_SUREthresh

Value
A list containing the wavelet coefficient estimates after applying the SURE thresholding.

* wcLDSURE: The wavelet coefficient estimates obtained by minimizing SURE.

* wcLDhatSURE: If hatsigma is provided, this component contains the wavelet coefficient esti-
mates obtained using the hatsigma estimator.

e lev_thresh: If keepSURE is TRUE, this component contains a list of results similar to the
output of SUREthresh for each scale.

References

Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432), 1200-1224.

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, 1135-1151.

See Also

SUREthresh for the underlying thresholding method used at each scale.

Examples

Not run:

Compute the Laplacian matrix and its eigen-decomposition
L <- laplacian_mat(gridi1$sA)

U <- eigensort(L)

Compute the tight frame coefficients
tf <- tight_frame(U$evalues, U$evectors)

Generate some noisy observation
n <- nrow(L)

f <- randsignal(0.01, 3, gridi1$sA)
sigma <- 0.01

noise <- rnorm(n, sd = sigma)
tilde_f <- f + noise

Compute the transform coefficients
wen <- forward_sgwt(f, U$evalues, U$evectors)
wcf <- forward_sgwt(f, U$evalues, U$evectors)

Compute the weights
diagWWt <- colSums(t(tf)*2)

Compute to optimal threshold

Imax <- max(U$evalues)

J <- floor(log(lmax)/log(b)) + 2
LD_opt_thresh_u <- LD_SUREthresh(J=J,

localize_gft 25

wcn=wcn,
diagWWt=diagWWt,
beta=2,
sigma=sigma,
hatsigma=NA,

policy = "uniform”,
keepSURE = FALSE)

Get the graph signal estimator
hatf_LD_SURE_u <- synthesis(LD_opt_thresh_u$wcLDSURE, tf)

End(Not run)

localize_gft Localize Kernel at a Graph Vertex Using GFT

Description

This function localizes a kernel at a specific vertex using the Graph Fourier Transform (GFT).

Usage

localize_gft(i, L, evectors = NULL)

Arguments
i Integer index of the node where to localize the kernel.
L Laplacian matrix of the graph.
evectors Numeric matrix of the eigenvectors of the Laplacian matrix. If NULL (default),
the function will compute the eigendecomposition of the Laplacian.
Details

The GFT represents the signal in the graph’s frequency domain through the eigendecomposition of
the Laplacian matrix.

The kernel is localized by transforming an impulse signal centered at vertex ¢ using the GFT. The
impulse for vertex ¢ is represented by a vector s with all zeros except for a single one at the i-th
position. The GFT of a signal s is given by:

§=UTs

where U is the matrix of eigenvectors of the Laplacian.

Applying the GFT to the impulse signal provides a spatial representation of the eigenvector (or
kernel) associated with a specific frequency (eigenvalue) centered around vertex ¢. This depicts
how the kernel influences the local neighborhood of the vertex.

26 localize_sgwt

Value

s Kernel localized at vertex i using GFT.

See Also

forward_gft,localize_sgwt

Examples

Not run:

L <- laplacian_mat(gridi1$sA)

vertex_i <- sample(1:nrow(L), 1)

s <- localize_gft(vertex_i, L=L)

plot_signal(gridl, s)

s_gft <- forward_gft(L, s)

barplot(abs(s_gft), main="GFT of Localized Signal”,
xlab="Eigenvalue Index", ylab="Magnitude")

End(Not run)

localize_sgwt Localize a Kernel at a Specific Vertex using SGWT

Description

This function localizes a kernel at a specific vertex using the Spectral Graph Wavelet Transform
(SGWT).

Usage

localize_sgwt(i, evalues, evectors, b = 2)

Arguments
i Integer index of the node where to localize the kernel.
evalues Numeric vector of the eigenvalues of the Laplacian matrix.
evectors Numeric matrix of the eigenvectors of the Laplacian matrix.
b Numeric scalar that controls the number of scales in the SGWT. It must be
greater than 1.
Details

The SGWT offers a comprehensive understanding of graph signals by providing insights into both
vertex (spatial) and spectral (frequency) domains.

The kernel is localized by transforming an impulse signal centered at vertex ¢ using the SGWT. The
SGWT leverages a wavelet function ¥(\) to provide a multi-resolution analysis of the graph signal.

localize_sgwt 27

The impulse signal at vertex ¢ is a vector f with a one at the i-th position and zeros elsewhere. The
SGWT is given by:

Wi(\) = f*9(X) = Up(MUT f
where U is the matrix of eigenvectors of the Laplacian and A is the diagonal matrix of eigenvalues.

The localized spatial view of the kernel’s behavior around vertex i is achieved by transforming this
impulse signal using the above expression.

To gain insights into the spectral localization of this localized kernel, one can analyze its GFT to
understand how the energy of the kernel is distributed across various graph frequencies. As SGWT
scales move from coarse to fine, energy concentration of the localized kernel shifts from lower to
higher graph frequencies, indicating tighter spectral localization.

Value

f Kernel localized at vertex i using SGWT.

See Also

forward_sgwt, forward_gft, forward_gft

Examples

Not run:

Compute the Laplacian matrix and its eigen-decomposition
L <- laplacian_mat(gridi1$sA)

decomp <- eigensort(L)

Randomly select a vertex
vertex_i <- sample(1:nrow(L), 1)

f_sgwt <- localize_sgwt(vertex_i, evalues=decomp$evalues, evectors=decomp$evectors, b=2)

Select one scale j from f_sgwt.

<- nrow(grid1$sA)

<- 5 # change scale j to view other scales
<- f_sgwtl[((3-1)*N+1):(j*N)]

-G Z #

Plot the localized kernel (for the chosen scale) as a signal on the graph
plot_signal(gridl, f)

Plot the magnitude of the GFT coefficients
barplot(abs(f_gft), main="GFT of Localized Signal”,
xlab="Eigenvalue Index", ylab="Magnitude")

End(Not run)

28 minnesota

minnesota Minnesota Road Network

Description

A dataset representing the Minnesota road network along with two associated synthetic signals.

Usage

minnesota

Format

A list with 5 elements:

* xy A matrix indicating the spatial location of each node.

* sA A sparse matrix representation of the road network’s adjacency matrix.
» f1 Synthetic signal generated with parameters = 0.01 and k& = 2.

» f2 Synthetic signal generated with parameters = 0.001 and k = 4.

* labels A character vector with labels that represent various points of entry, border cross-
ings, and notable cities within Minnesota, with some nodes possibly lacking specific location
identifiers.

Details

The Minnesota roads graph represents a planar structure consisting of 2642 vertices and 6606 edges.

The signals come from the referenced paper generated using randsignal with parameters n =
0.01,k =2and n = 0.001,k = 4.

Source

D. Gleich. The MatlabBGL Matlab library.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

NYCdata 29

NYCdata NYC Taxi Network Dataset

Description

A dataset derived from NYC taxi trip records. Additionally, the dataset includes a signal f that
represents the total amount with added noise.

Usage

NYCdata

Format

A list with 2 elements:
* A: NYC adjacency matrix, constructed using Gaussian weights based on mean distances be-
tween locations.

 f: Signal representing the "total amount" with added artificial noise.

Details

The graph constructed represents the connectivity based on taxi trips between different locations.
The weights of the edges represent the frequency and distances of trips between locations.

The data comes from the methodology in the referenced paper. It is constructed from real-world
data fetched from NYC taxis databases. The graph consists of 265 vertices which correspond to
different LocationID (both Pick-Up and Drop-Off points). Gaussian weights are defined by

Wij = eXP(*szz,j)

, where d; ; represents the mean distance taken on all the trips between locations ¢ and j or j and 1.

The signal f is constructed based on the "total amount" variable from the taxi dataset, with added
artificial noise.

References

de Loynes, B., Navarro, F., Olivier, B. (2021). Data-driven thresholding in denoising with Spectral
Graph Wavelet Transform. Journal of Computational and Applied Mathematics, Vol. 389.

30 plot_filter

pittsburgh Pittsburgh Census Tracts Network.

Description

A dataset representing the graph structure of 402 census tracts of Allegheny County, PA.

Usage

pittsburgh

Format

A list with 4 elements:
* sA A sparse matrix capturing the connections between spatially adjacent census tracts in Al-
legheny County.
* xy A matrix indicating the spatial location of each census tract.

» f Artificial signal with inhomogeneous smoothness across nodes and two sharp peaks near
the center. This signal is formed using a mixture of five Gaussians in the underlying spatial
coordinates.

* y Noisy version of the signal.

Source

Data and associated materials were sourced from codes provided by Yu-Xiang Wang (UC Santa
Barbara) and are associated with the referenced paper.

References

Wang, Y. X., Sharpnack, J., Smola, A. J., & Tibshirani, R. J. (2016). Trend Filtering on Graphs.
Journal of Machine Learning Research, 17, 1-41.

plot_filter Plot Tight-Frame Filters

Description

plot_filter provides a graphical representation of tight-frame filters as functions of the eigenval-
ues of th