
Package ‘dbscan’
November 28, 2023

Version 1.1-12

Date 2023-11-28

Title Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Related Algorithms

Description A fast reimplementation of several density-based algorithms of
the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based
spatial clustering of applications with noise) and HDBSCAN (hierarchical
DBSCAN), the ordering algorithm OPTICS (ordering points to identify the
clustering structure), shared nearest neighbor clustering, and the outlier
detection algorithms LOF (local outlier factor) and GLOSH (global-local
outlier score from hierarchies). The implementations use the kd-tree data
structure (from library ANN) for faster k-nearest neighbor search. An R
interface to fast kNN and fixed-radius NN search is also provided.
Hahsler, Piekenbrock and Doran (2019) <doi:10.18637/jss.v091.i01>.

Imports Rcpp (>= 1.0.0), graphics, stats

LinkingTo Rcpp

Suggests fpc, microbenchmark, testthat, dendextend, igraph, knitr,
rmarkdown

VignetteBuilder knitr

URL https://github.com/mhahsler/dbscan

BugReports https://github.com/mhahsler/dbscan/issues

License GPL (>= 2)

Copyright ANN library is copyright by University of Maryland, Sunil
Arya and David Mount. All other code is copyright by Michael
Hahsler and Matthew Piekenbrock.

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Michael Hahsler [aut, cre, cph],
Matthew Piekenbrock [aut, cph],
Sunil Arya [ctb, cph],
David Mount [ctb, cph]

1

https://doi.org/10.18637/jss.v091.i01
https://github.com/mhahsler/dbscan
https://github.com/mhahsler/dbscan/issues

2 dbscan-package

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>

Repository CRAN

Date/Publication 2023-11-28 17:10:05 UTC

R topics documented:
dbscan-package . 2
comps . 3
dbscan . 5
dendrogram . 9
DS3 . 10
extractFOSC . 10
frNN . 14
glosh . 16
hdbscan . 18
hullplot . 21
jpclust . 23
kNN . 25
kNNdist . 27
lof . 29
moons . 30
NN . 31
optics . 32
pointdensity . 36
reachability . 38
sNN . 41
sNNclust . 43

Index 46

dbscan-package dbscan: Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Related Algorithms

Description

A fast reimplementation of several density-based algorithms of the DBSCAN family. Includes the
clustering algorithms DBSCAN (density-based spatial clustering of applications with noise) and
HDBSCAN (hierarchical DBSCAN), the ordering algorithm OPTICS (ordering points to identify
the clustering structure), shared nearest neighbor clustering, and the outlier detection algorithms
LOF (local outlier factor) and GLOSH (global-local outlier score from hierarchies). The imple-
mentations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search.
An R interface to fast kNN and fixed-radius NN search is also provided. Hahsler, Piekenbrock and
Doran (2019) .

comps 3

Key functions

• Clustering: dbscan(), hdbscan(), optics(), jpclust(), sNNclust()

• Outliers: lof(), glosh(), pointdensity()

• Nearest Neighbors: kNN(), frNN(), sNN()

Author(s)

Michael Hahsler and Matthew Piekenbrock

References

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi:10.18637/jss.v091.i01

comps Find Connected Components in a Nearest-neighbor Graph

Description

Generic function and methods to find connected components in nearest neighbor graphs.

Usage

comps(x, ...)

S3 method for class 'dist'
comps(x, eps, ...)

S3 method for class 'kNN'
comps(x, mutual = FALSE, ...)

S3 method for class 'sNN'
comps(x, ...)

S3 method for class 'frNN'
comps(x, ...)

Arguments

x the NN object representing the graph or a dist object

... further arguments are currently unused.

eps threshold on the distance

mutual for a pair of points, do both have to be in each other’s neighborhood?

https://doi.org/10.18637/jss.v091.i01

4 comps

Details

Note that for kNN graphs, one point may be in the kNN of the other but nor vice versa. mutual =
TRUE requires that both points are in each other’s kNN.

Value

a integer vector with component assignments.

Author(s)

Michael Hahsler

See Also

Other NN functions: NN, frNN(), kNNdist(), kNN(), sNN()

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd = 0.4),
y=runif(10, 0, 5) + rnorm(n, sd = 0.4)
)

plot(x, pch = 16)

Connected components on a graph where each pair of points
with a distance less or equal to eps are connected
d <- dist(x)
components <- comps(d, eps = .8)
plot(x, col = components, pch = 16)

Connected components in a fixed radius nearest neighbor graph
Gives the same result as the threshold on the distances above
frnn <- frNN(x, eps = .8)
components <- comps(frnn)
plot(frnn, data = x, col = components)

Connected components on a k nearest neighbors graph
knn <- kNN(x, 3)
components <- comps(knn, mutual = FALSE)
plot(knn, data = x, col = components)

components <- comps(knn, mutual = TRUE)
plot(knn, data = x, col = components)

Connected components in a shared nearest neighbor graph
snn <- sNN(x, k = 10, kt = 5)
components <- comps(snn)
plot(snn, data = x, col = components)

dbscan 5

dbscan Density-based Spatial Clustering of Applications with Noise (DB-
SCAN)

Description

Fast reimplementation of the DBSCAN (Density-based spatial clustering of applications with noise)
clustering algorithm using a kd-tree.

Usage

dbscan(x, eps, minPts = 5, weights = NULL, borderPoints = TRUE, ...)

is.corepoint(x, eps, minPts = 5, ...)

S3 method for class 'dbscan_fast'
predict(object, newdata, data, ...)

Arguments

x a data matrix, a data.frame, a dist object or a frNN object with fixed-radius
nearest neighbors.

eps size (radius) of the epsilon neighborhood. Can be omitted if x is a frNN object.

minPts number of minimum points required in the eps neighborhood for core points
(including the point itself).

weights numeric; weights for the data points. Only needed to perform weighted cluster-
ing.

borderPoints logical; should border points be assigned to clusters. The default is TRUE for
regular DBSCAN. If FALSE then border points are considered noise (see DB-
SCAN* in Campello et al, 2013).

... additional arguments are passed on to the fixed-radius nearest neighbor search
algorithm. See frNN() for details on how to control the search strategy.

object clustering object.

newdata new data points for which the cluster membership should be predicted.

data the data set used to create the clustering object.

Details

The implementation is significantly faster and can work with larger data sets than fpc::dbscan()
in fpc. Use dbscan::dbscan() (with specifying the package) to call this implementation when you
also load package fpc.

The algorithm
This implementation of DBSCAN follows the original algorithm as described by Ester et al (1996).
DBSCAN performs the following steps:

6 dbscan

1. Estimate the density around each data point by counting the number of points in a user-
specified eps-neighborhood and applies a used-specified minPts thresholds to identify core,
border and noise points.

2. Core points are joined into a cluster if they are density-reachable (i.e., there is a chain of core
points where one falls inside the eps-neighborhood of the next).

3. Border points are assigned to clusters. The algorithm needs parameters eps (the radius of the
epsilon neighborhood) and minPts (the density threshold).

Border points are arbitrarily assigned to clusters in the original algorithm. DBSCAN* (see Campello
et al 2013) treats all border points as noise points. This is implemented with borderPoints =
FALSE.

Specifying the data
If x is a matrix or a data.frame, then fast fixed-radius nearest neighbor computation using a kd-tree
is performed using Euclidean distance. See frNN() for more information on the parameters related
to nearest neighbor search. Note that only numerical values are allowed in x.

Any precomputed distance matrix (dist object) can be specified as x. You may run into memory
issues since distance matrices are large.

A precomputed frNN object can be supplied as x. In this case eps does not need to be specified.
This option us useful for large data sets, where a sparse distance matrix is available. See frNN()
how to create frNN objects.

Setting parameters for DBSCAN
The parameters minPts and eps depend on each other and changing one typically requires changing
the other one as well. The original DBSCAN paper suggests to start by setting minPts to the
dimensionality of the data plus one or higher. minPts defines the minimum density around a core
point (i.e., the minimum density for non-noise areas). Increase the parameter to suppress more noise
in the data and require more points to form a cluster. A suitable neighborhood size parameter eps
given a fixed value for minPts can be found visually by inspecting the kNNdistplot() of the data
using k = minPts - 1 (minPts includes the point itself, while the k-nearest neighbors distance does
not). The k-nearest neighbor distance plot sorts all data points by their k-nearest neighbor distance.
A sudden increase of the kNN distance (a knee) indicates that the points to the right are most likely
outliers. Choose eps for DBSCAN where the knee is.

Predict cluster memberships
predict() can be used to predict cluster memberships for new data points. A point is considered a
member of a cluster if it is within the eps neighborhood of a core point of the cluster. Points which
cannot be assigned to a cluster will be reported as noise points (i.e., cluster ID 0). Important note:
predict() currently can only use Euclidean distance to determine the neighborhood of core points.
If dbscan() was called using distances other than Euclidean, then the neighborhood calculation will
not be correct and only approximated by Euclidean distances. If the data contain factor columns
(e.g., using Gower’s distance), then the factors in data and query first need to be converted to
numeric to use the Euclidean approximation.

Value

dbscan() returns an object of class dbscan_fast with the following components:

eps value of the eps parameter.

dbscan 7

minPts value of the minPts parameter.

cluster A integer vector with cluster assignments. Zero indicates noise points.

is.corepoint() returns a logical vector indicating for each data point if it is a core point.

Author(s)

Michael Hahsler

References

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi:10.18637/jss.v091.i01

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. Institute for Computer Science,
University of Munich. Proceedings of 2nd International Conference on Knowledge Discovery and
Data Mining (KDD-96), 226-231. https://dl.acm.org/doi/10.5555/3001460.3001507

Campello, R. J. G. B.; Moulavi, D.; Sander, J. (2013). Density-Based Clustering Based on Hierar-
chical Density Estimates. Proceedings of the 17th Pacific-Asia Conference on Knowledge Discov-
ery in Databases, PAKDD 2013, Lecture Notes in Computer Science 7819, p. 160. doi:10.1007/
9783642374562_14

See Also

Other clustering functions: extractFOSC(), hdbscan(), jpclust(), optics(), sNNclust()

Examples

Example 1: use dbscan on the iris data set
data(iris)
iris <- as.matrix(iris[, 1:4])

Find suitable DBSCAN parameters:
1. We use minPts = dim + 1 = 5 for iris. A larger value can also be used.
2. We inspect the k-NN distance plot for k = minPts - 1 = 4
kNNdistplot(iris, minPts = 5)

Noise seems to start around a 4-NN distance of .7
abline(h=.7, col = "red", lty = 2)

Cluster with the chosen parameters
res <- dbscan(iris, eps = .7, minPts = 5)
res

pairs(iris, col = res$cluster + 1L)

Use a precomputed frNN object
fr <- frNN(iris, eps = .7)
dbscan(fr, minPts = 5)

Example 2: use data from fpc

https://doi.org/10.18637/jss.v091.i01
https://dl.acm.org/doi/10.5555/3001460.3001507
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14

8 dbscan

set.seed(665544)
n <- 100
x <- cbind(

x = runif(10, 0, 10) + rnorm(n, sd = 0.2),
y = runif(10, 0, 10) + rnorm(n, sd = 0.2)
)

res <- dbscan(x, eps = .3, minPts = 3)
res

plot clusters and add noise (cluster 0) as crosses.
plot(x, col = res$cluster)
points(x[res$cluster == 0,], pch = 3, col = "grey")

hullplot(x, res)

Predict cluster membership for new data points
(Note: 0 means it is predicted as noise)
newdata <- x[1:5,] + rnorm(10, 0, .3)
hullplot(x, res)
points(newdata, pch = 3 , col = "red", lwd = 3)
text(newdata, pos = 1)

pred_label <- predict(res, newdata, data = x)
pred_label
points(newdata, col = pred_label + 1L, cex = 2, lwd = 2)

Compare speed against fpc version (if microbenchmark is installed)
Note: we use dbscan::dbscan to make sure that we do now run the
implementation in fpc.
Not run:
if (requireNamespace("fpc", quietly = TRUE) &&

requireNamespace("microbenchmark", quietly = TRUE)) {
t_dbscan <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3), times = 10, unit = "ms")
t_dbscan_linear <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3, search = "linear"), times = 10, unit = "ms")
t_dbscan_dist <- microbenchmark::microbenchmark(

dbscan::dbscan(x, .3, 3, search = "dist"), times = 10, unit = "ms")
t_fpc <- microbenchmark::microbenchmark(

fpc::dbscan(x, .3, 3), times = 10, unit = "ms")

r <- rbind(t_fpc, t_dbscan_dist, t_dbscan_linear, t_dbscan)
r

boxplot(r,
names = c('fpc', 'dbscan (dist)', 'dbscan (linear)', 'dbscan (kdtree)'),
main = "Runtime comparison in ms")

speedup of the kd-tree-based version compared to the fpc implementation
median(t_fpc$time) / median(t_dbscan$time)

}
End(Not run)

dendrogram 9

Example 3: manually create a frNN object for dbscan (dbscan only needs ids and eps)
nn <- structure(list(ids = list(c(2,3), c(1,3), c(1,2,3), c(3,5), c(4,5)), eps = 1),

class = c("NN", "frNN"))
nn
dbscan(nn, minPts = 2)

dendrogram Coersions to Dendrogram

Description

Provides a new generic function to coerce objects to dendrograms with stats::as.dendrogram()
as the default. Additional methods for hclust, hdbscan and reachability objects are provided.

Usage

as.dendrogram(object, ...)

Default S3 method:
as.dendrogram(object, ...)

S3 method for class 'hclust'
as.dendrogram(object, ...)

S3 method for class 'hdbscan'
as.dendrogram(object, ...)

S3 method for class 'reachability'
as.dendrogram(object, ...)

Arguments

object the object

... further arguments

Details

Coersion methods for hclust, hdbscan and reachability objects to dendrogram are provided.

The coercion from hclust is a faster C++ reimplementation of the coercion in package stats. The
original implementation can be called using stats::as.dendrogram().

The coersion from hdbscan builds the non-simplified HDBSCAN hierarchy as a dendrogram object.

10 extractFOSC

DS3 DS3: Spatial data with arbitrary shapes

Description

Contains 8000 2-d points, with 6 "natural" looking shapes, all of which have an sinusoid-like shape
that intersects with each cluster. The data set was originally used as a benchmark data set for
the Chameleon clustering algorithm (Karypis, Han and Kumar, 1999) to illustrate the a data set
containing arbitrarily shaped spatial data surrounded by both noise and artifacts.

Format

A data.frame with 8000 observations on the following 2 columns:

X a numeric vector

Y a numeric vector

Source

Obtained from http://cs.joensuu.fi/sipu/datasets/

References

Karypis, George, Eui-Hong Han, and Vipin Kumar (1999). Chameleon: Hierarchical clustering
using dynamic modeling. Computer 32(8): 68-75.

Examples

data(DS3)
plot(DS3, pch = 20, cex = 0.25)

extractFOSC Framework for the Optimal Extraction of Clusters from Hierarchies

Description

Generic reimplementation of the Framework for Optimal Selection of Clusters (FOSC; Campello
et al, 2013) to extract clusterings from hierarchical clustering (i.e., hclust objects). Can be param-
eterized to perform unsupervised cluster extraction through a stability-based measure, or semisuper-
vised cluster extraction through either a constraint-based extraction (with a stability-based tiebreaker)
or a mixed (weighted) constraint and stability-based objective extraction.

http://cs.joensuu.fi/sipu/datasets/

extractFOSC 11

Usage

extractFOSC(
x,
constraints,
alpha = 0,
minPts = 2L,
prune_unstable = FALSE,
validate_constraints = FALSE

)

Arguments

x a valid hclust object created via hclust() or hdbscan().

constraints Either a list or matrix of pairwise constraints. If missing, an unsupervised mea-
sure of stability is used to make local cuts and extract the optimal clusters. See
details.

alpha numeric; weight between [0, 1] for mixed-objective semi-supervised extraction.
Defaults to 0.

minPts numeric; Defaults to 2. Only needed if class-less noise is a valid label in the
model.

prune_unstable logical; should significantly unstable subtrees be pruned? The default is FALSE
for the original optimal extraction framework (see Campello et al, 2013). See
details for what TRUE implies.

validate_constraints

logical; should constraints be checked for validity? See details for what are
considered valid constraints.

Details

Campello et al (2013) suggested a Framework for Optimal Selection of Clusters (FOSC) as a frame-
work to make local (non-horizontal) cuts to any cluster tree hierarchy. This function implements
the original extraction algorithms as described by the framework for hclust objects. Traditional
cluster extraction methods from hierarchical representations (such as hclust objects) generally rely
on global parameters or cutting values which are used to partition a cluster hierarchy into a set of
disjoint, flat clusters. This is implemented in R in function cutree(). Although such methods
are widespread, using global parameter settings are inherently limited in that they cannot capture
patterns within the cluster hierarchy at varying local levels of granularity.

Rather than partitioning a hierarchy based on the number of the cluster one expects to find (k)
or based on some linkage distance threshold (H), the FOSC proposes that the optimal clusters
may exist at varying distance thresholds in the hierarchy. To enable this idea, FOSC requires one
parameter (minPts) that represents the minimum number of points that constitute a valid cluster.
The first step of the FOSC algorithm is to traverse the given cluster hierarchy divisively, recording
new clusters at each split if both branches represent more than or equal to minPts. Branches that
contain less than minPts points at one or both branches inherit the parent clusters identity. Note that
using FOSC, due to the constraint that minPts must be greater than or equal to 2, it is possible that
the optimal cluster solution chosen makes local cuts that render parent branches of sizes less than
minPts as noise, which are denoted as 0 in the final solution.

12 extractFOSC

Traversing the original cluster tree using minPts creates a new, simplified cluster tree that is then
post-processed recursively to extract clusters that maximize for each cluster Ci the cost function

max
δ2,...,δk

J =

k∑
i=2

δiS(Ci)

where S(Ci) is the stability-based measure as

S(Ci) =
∑
xj∈Ci

(
1

hmin(xj , Ci)
− 1

hmax(Ci)
)

δi represents an indicator function, which constrains the solution space such that clusters must be
disjoint (cannot assign more than 1 label to each cluster). The measure S(Ci) used by FOSC is
an unsupervised validation measure based on the assumption that, if you vary the linkage/distance
threshold across all possible values, more prominent clusters that survive over many threshold vari-
ations should be considered as stronger candidates of the optimal solution. For this reason, using
this measure to detect clusters is referred to as an unsupervised, stability-based extraction approach.
In some cases it may be useful to enact instance-level constraints that ensure the solution space con-
forms to linkage expectations known a priori. This general idea of using preliminary expectations
to augment the clustering solution will be referred to as semisupervised clustering. If constraints
are given in the call to extractFOSC(), the following alternative objective function is maximized:

J =
1

2nc

n∑
j=1

γ(xj)

nc is the total number of constraints given and γ(xj) represents the number of constraints involving
object xj that are satisfied. In the case of ties (such as solutions where no constraints were given),
the unsupervised solution is used as a tiebreaker. See Campello et al (2013) for more details.

As a third option, if one wishes to prioritize the degree at which the unsupervised and semisuper-
vised solutions contribute to the overall optimal solution, the parameter α can be set to enable the
extraction of clusters that maximize the mixed objective function

J = αS(Ci) + (1− α)γ(Ci))

FOSC expects the pairwise constraints to be passed as either 1) an n(n − 1)/2 vector of integers
representing the constraints, where 1 represents should-link, -1 represents should-not-link, and 0
represents no preference using the unsupervised solution (see below for examples). Alternatively,
if only a few constraints are needed, a named list representing the (symmetric) adjacency list can
be used, where the names correspond to indices of the points in the original data, and the values
correspond to integer vectors of constraints (positive indices for should-link, negative indices for
should-not-link). Again, see the examples section for a demonstration of this.

The parameters to the input function correspond to the concepts discussed above. The minPts
parameter to represent the minimum cluster size to extract. The optional constraints param-
eter contains the pairwise, instance-level constraints of the data. The optional alpha parame-
ters controls whether the mixed objective function is used (if alpha is greater than 0). If the
validate_constraints parameter is set to true, the constraints are checked (and fixed) for sym-
metry (if point A has a should-link constraint with point B, point B should also have the same
constraint). Asymmetric constraints are not supported.

extractFOSC 13

Unstable branch pruning was not discussed by Campello et al (2013), however in some data sets
it may be the case that specific subbranches scores are significantly greater than sibling and parent
branches, and thus sibling branches should be considered as noise if their scores are cumulatively
lower than the parents. This can happen in extremely nonhomogeneous data sets, where there exists
locally very stable branches surrounded by unstable branches that contain more than minPts points.
prune_unstable = TRUE will remove the unstable branches.

Value

A list with the elements:

cluster A integer vector with cluster assignments. Zero indicates noise points (if any).

hc The original hclust object with additional list elements "stability", "constraint",
and "total" for the n− 1 cluster-wide objective scores from the extraction.

Author(s)

Matt Piekenbrock

References

Campello, Ricardo JGB, Davoud Moulavi, Arthur Zimek, and Joerg Sander (2013). A framework
for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Mining
and Knowledge Discovery 27(3): 344-371. doi:10.1007/s1061801303114

See Also

hclust(), hdbscan(), stats::cutree()

Other clustering functions: dbscan(), hdbscan(), jpclust(), optics(), sNNclust()

Examples

data("moons")

Regular HDBSCAN using stability-based extraction (unsupervised)
cl <- hdbscan(moons, minPts = 5)
cl$cluster

Constraint-based extraction from the HDBSCAN hierarchy
(w/ stability-based tiebreaker (semisupervised))
cl_con <- extractFOSC(cl$hc, minPts = 5,

constraints = list("12" = c(49, -47)))
cl_con$cluster

Alternative formulation: Constraint-based extraction from the HDBSCAN hierarchy
(w/ stability-based tiebreaker (semisupervised)) using distance thresholds
dist_moons <- dist(moons)
cl_con2 <- extractFOSC(cl$hc, minPts = 5,

constraints = ifelse(dist_moons < 0.1, 1L,
ifelse(dist_moons > 1, -1L, 0L)))

https://doi.org/10.1007/s10618-013-0311-4

14 frNN

cl_con2$cluster # same as the second example

frNN Find the Fixed Radius Nearest Neighbors

Description

This function uses a kd-tree to find the fixed radius nearest neighbors (including distances) fast.

Usage

frNN(
x,
eps,
query = NULL,
sort = TRUE,
search = "kdtree",
bucketSize = 10,
splitRule = "suggest",
approx = 0

)

S3 method for class 'frNN'
sort(x, decreasing = FALSE, ...)

S3 method for class 'frNN'
adjacencylist(x, ...)

S3 method for class 'frNN'
print(x, ...)

Arguments

x a data matrix, a dist object or a frNN object.

eps neighbors radius.

query a data matrix with the points to query. If query is not specified, the NN for all
the points in x is returned. If query is specified then x needs to be a data matrix.

sort sort the neighbors by distance? This is expensive and can be done later using
sort().

search nearest neighbor search strategy (one of "kdtree", "linear" or "dist").

bucketSize max size of the kd-tree leafs.

splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT", "SL_FAIR"
or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs best guess.

frNN 15

approx use approximate nearest neighbors. All NN up to a distance of a factor of 1 +
approx eps may be used. Some actual NN may be omitted leading to spuri-
ous clusters and noise points. However, the algorithm will enjoy a significant
speedup.

decreasing sort in decreasing order?

... further arguments

Details

If x is specified as a data matrix, then Euclidean distances an fast nearest neighbor lookup using a
kd-tree are used.

To create a frNN object from scratch, you need to supply at least the elements id with a list of
integer vectors with the nearest neighbor ids for each point and eps (see below).

Self-matches: Self-matches are not returned!

Value

frNN() returns an object of class frNN (subclass of NN) containing a list with the following com-
ponents:

id a list of integer vectors. Each vector contains the ids of the fixed radius nearest
neighbors.

dist a list with distances (same structure as id).

eps neighborhood radius eps that was used.

adjacencylist() returns a list with one entry per data point in x. Each entry contains the id of the
nearest neighbors.

Author(s)

Michael Hahsler

References

David M. Mount and Sunil Arya (2010). ANN: A Library for Approximate Nearest Neighbor
Searching, http://www.cs.umd.edu/~mount/ANN/.

See Also

Other NN functions: NN, comps(), kNNdist(), kNN(), sNN()

Examples

data(iris)
x <- iris[, -5]

Example 1: Find fixed radius nearest neighbors for each point
nn <- frNN(x, eps = .5)

http://www.cs.umd.edu/~mount/ANN/

16 glosh

Number of neighbors
hist(sapply(adjacencylist(nn), length),

xlab = "k", main="Number of Neighbors",
sub = paste("Neighborhood size eps =", nn$eps))

Explore neighbors of point i = 10
i <- 10
nn$id[[i]]
nn$dist[[i]]
plot(x, col = ifelse(1:nrow(iris) %in% nn$id[[i]], "red", "black"))

get an adjacency list
head(adjacencylist(nn))

plot the fixed radius neighbors (and then reduced to a radius of .3)
plot(nn, x)
plot(frNN(nn, eps = .3), x)

Example 2: find fixed-radius NN for query points
q <- x[c(1,100),]
nn <- frNN(x, eps = .5, query = q)

plot(nn, x, col = "grey")
points(q, pch = 3, lwd = 2)

glosh Global-Local Outlier Score from Hierarchies

Description

Calculate the Global-Local Outlier Score from Hierarchies (GLOSH) score for each data point using
a kd-tree to speed up kNN search.

Usage

glosh(x, k = 4, ...)

Arguments

x an hclust object, data matrix, or dist object.

k size of the neighborhood.

... further arguments are passed on to kNN().

Details

GLOSH compares the density of a point to densities of any points associated within current and
child clusters (if any). Points that have a substantially lower density than the density mode (cluster)
they most associate with are considered outliers. GLOSH is computed from a hierarchy a clusters.

glosh 17

Specifically, consider a point x and a density or distance threshold lambda. GLOSH is calculated by
taking 1 minus the ratio of how long any of the child clusters of the cluster x belongs to "survives"
changes in lambda to the highest lambda threshold of x, above which x becomes a noise point.

Scores close to 1 indicate outliers. For more details on the motivation for this calculation, see
Campello et al (2015).

Value

A numeric vector of length equal to the size of the original data set containing GLOSH values for
all data points.

Author(s)

Matt Piekenbrock

References

Campello, Ricardo JGB, Davoud Moulavi, Arthur Zimek, and Joerg Sander. Hierarchical density
estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge
Discovery from Data (TKDD) 10, no. 1 (2015). doi:10.1145/2733381

See Also

Other Outlier Detection Functions: kNNdist(), lof(), pointdensity()

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd = 0.4),
y=runif(10, 0, 5) + rnorm(n, sd = 0.4)
)

calculate GLOSH score
glosh <- glosh(x, k = 3)

distribution of outlier scores
summary(glosh)
hist(glosh, breaks = 10)

simple function to plot point size is proportional to GLOSH score
plot_glosh <- function(x, glosh){

plot(x, pch = ".", main = "GLOSH (k = 3)")
points(x, cex = glosh*3, pch = 1, col = "red")
text(x[glosh > 0.80,], labels = round(glosh, 3)[glosh > 0.80], pos = 3)

}
plot_glosh(x, glosh)

GLOSH with any hierarchy
x_dist <- dist(x)

https://doi.org/10.1145/2733381

18 hdbscan

x_sl <- hclust(x_dist, method = "single")
x_upgma <- hclust(x_dist, method = "average")
x_ward <- hclust(x_dist, method = "ward.D2")

Compare what different linkage criterion consider as outliers
glosh_sl <- glosh(x_sl, k = 3)
plot_glosh(x, glosh_sl)

glosh_upgma <- glosh(x_upgma, k = 3)
plot_glosh(x, glosh_upgma)

glosh_ward <- glosh(x_ward, k = 3)
plot_glosh(x, glosh_ward)

GLOSH is automatically computed with HDBSCAN
all(hdbscan(x, minPts = 3)$outlier_scores == glosh(x, k = 3))

hdbscan Hierarchical DBSCAN (HDBSCAN)

Description

Fast C++ implementation of the HDBSCAN (Hierarchical DBSCAN) and its related algorithms.

Usage

hdbscan(
x,
minPts,
gen_hdbscan_tree = FALSE,
gen_simplified_tree = FALSE,
verbose = FALSE

)

S3 method for class 'hdbscan'
print(x, ...)

S3 method for class 'hdbscan'
plot(
x,
scale = "suggest",
gradient = c("yellow", "red"),
show_flat = FALSE,
...

)

coredist(x, minPts)

hdbscan 19

mrdist(x, minPts, coredist = NULL)

S3 method for class 'hdbscan'
predict(object, newdata, data, ...)

Arguments

x a data matrix (Euclidean distances are used) or a dist object calculated with an
arbitrary distance metric.

minPts integer; Minimum size of clusters. See details.
gen_hdbscan_tree

logical; should the robust single linkage tree be explicitly computed (see cluster
tree in Chaudhuri et al, 2010).

gen_simplified_tree

logical; should the simplified hierarchy be explicitly computed (see Campello et
al, 2013).

verbose report progress.

... additional arguments are passed on.

scale integer; used to scale condensed tree based on the graphics device. Lower scale
results in wider trees.

gradient character vector; the colors to build the condensed tree coloring with.

show_flat logical; whether to draw boxes indicating the most stable clusters.

coredist numeric vector with precomputed core distances (optional).

object clustering object.

newdata new data points for which the cluster membership should be predicted.

data the data set used to create the clustering object.

Details

This fast implementation of HDBSCAN (Campello et al., 2013) computes the hierarchical cluster
tree representing density estimates along with the stability-based flat cluster extraction. HDBSCAN
essentially computes the hierarchy of all DBSCAN* clusterings, and then uses a stability-based
extraction method to find optimal cuts in the hierarchy, thus producing a flat solution.

HDBSCAN performs the following steps:

1. Compute mutual reachability distance mrd between points (based on distances and core dis-
tances).

2. Use mdr as a distance measure to construct a minimum spanning tree.

3. Prune the tree using stability.

4. Extract the clusters.

Additional, related algorithms including the "Global-Local Outlier Score from Hierarchies" (GLOSH;
see section 6 of Campello et al., 2015) is available in function glosh() and the ability to cluster
based on instance-level constraints (see section 5.3 of Campello et al. 2015) are supported. The
algorithms only need the parameter minPts.

20 hdbscan

Note that minPts not only acts as a minimum cluster size to detect, but also as a "smoothing" factor
of the density estimates implicitly computed from HDBSCAN.

coredist(): The core distance is defined for each point as the distance to the MinPts’s neighbor.
It is a density estimate.

mrdist(): The mutual reachability distance is defined between two points as mrd(a, b) = max(coredist(a),
coredist(b), dist(a, b)). This distance metric is used by HDBSCAN. It has the effect of in-
creasing distances in low density areas.

predict() assigns each new data point to the same cluster as the nearest point if it is not more than
that points core distance away. Otherwise the new point is classified as a noise point (i.e., cluster
ID 0).

Value

hdbscan() returns object of class hdbscan with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

minPts value of the minPts parameter.
cluster_scores

The sum of the stability scores for each salient (flat) cluster. Corresponds to
cluster IDs given the in "cluster" element.

membership_prob

The probability or individual stability of a point within its clusters. Between 0
and 1.

outlier_scores

The GLOSH outlier score of each point.

hc An hclust object of the HDBSCAN hierarchy.

coredist() returns a vector with the core distance for each data point.

mrdist() returns a dist object containing pairwise mutual reachability distances.

Author(s)

Matt Piekenbrock

References

Campello RJGB, Moulavi D, Sander J (2013). Density-Based Clustering Based on Hierarchical
Density Estimates. Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery in
Databases, PAKDD 2013, Lecture Notes in Computer Science 7819, p. 160. doi:10.1007/9783642-
374562_14

Campello RJGB, Moulavi D, Zimek A, Sander J (2015). Hierarchical density estimates for data
clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from
Data (TKDD), 10(5):1-51. doi:10.1145/2733381

See Also

Other clustering functions: dbscan(), extractFOSC(), jpclust(), optics(), sNNclust()

https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1145/2733381

hullplot 21

Examples

cluster the moons data set with HDBSCAN
data(moons)

res <- hdbscan(moons, minPts = 5)
res

plot(res)
plot(moons, col = res$cluster + 1L)

cluster the moons data set with HDBSCAN using Manhattan distances
res <- hdbscan(dist(moons, method = "manhattan"), minPts = 5)
plot(res)
plot(moons, col = res$cluster + 1L)

DS3 from Chameleon
data("DS3")

res <- hdbscan(DS3, minPts = 50)
res

Plot the simplified tree, highlight the most stable clusters
plot(res, show_flat = TRUE)

Plot the actual clusters (noise has cluster id 0 and is shown in black)
plot(DS3, col = res$cluster + 1L, cex = .5)

hullplot Plot Convex Hulls of Clusters

Description

This function produces a two-dimensional scatter plot with added convex hulls for clusters.

Usage

hullplot(
x,
cl,
col = NULL,
cex = 0.5,
hull_lwd = 1,
hull_lty = 1,
solid = TRUE,
alpha = 0.2,
main = "Convex Cluster Hulls",
...

)

22 hullplot

Arguments

x a data matrix. If more than 2 columns are provided, then the data is plotted using
the first two principal components.

cl a clustering. Either a numeric cluster assignment vector or a clustering object (a
list with an element named cluster).

col colors used for clusters. Defaults to the standard palette. The first color (default
is black) is used for noise/unassigned points (cluster id 0).

cex expansion factor for symbols.
hull_lwd, hull_lty

line width and line type used for the convex hull.

solid, alpha draw filled polygons instead of just lines for the convex hulls? alpha controls
the level of alpha shading.

main main title.

... additional arguments passed on to plot.

Author(s)

Michael Hahsler

Examples

set.seed(2)
n <- 400

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd = 0.1),
y = runif(4, 0, 1) + rnorm(n, sd = 0.1)
)

cl <- rep(1:4, time = 100)

original data with true clustering
hullplot(x, cl, main = "True clusters")
use differnt symbols
hullplot(x, cl, main = "True clusters", pch = cl)
just the hulls
hullplot(x, cl, main = "True clusters", pch = NA)
a version suitable for b/w printing)
hullplot(x, cl, main = "True clusters", solid = FALSE, col = "black", pch = cl)

run some clustering algorithms and plot the resutls
db <- dbscan(x, eps = .07, minPts = 10)
hullplot(x, db, main = "DBSCAN")

op <- optics(x, eps = 10, minPts = 10)
opDBSCAN <- extractDBSCAN(op, eps_cl = .07)
hullplot(x, opDBSCAN, main = "OPTICS")

opXi <- extractXi(op, xi = 0.05)

jpclust 23

hullplot(x, opXi, main = "OPTICSXi")

Extract minimal 'flat' clusters only
opXi <- extractXi(op, xi = 0.05, minimum = TRUE)
hullplot(x, opXi, main = "OPTICSXi")

km <- kmeans(x, centers = 4)
hullplot(x, km, main = "k-means")

hc <- cutree(hclust(dist(x)), k = 4)
hullplot(x, hc, main = "Hierarchical Clustering")

jpclust Jarvis-Patrick Clustering

Description

Fast C++ implementation of the Jarvis-Patrick clustering which first builds a shared nearest neigh-
bor graph (k nearest neighbor sparsification) and then places two points in the same cluster if they
are in each other’s nearest neighbor list and they share at least kt nearest neighbors.

Usage

jpclust(x, k, kt, ...)

Arguments

x a data matrix/data.frame (Euclidean distance is used), a precomputed dist object
or a kNN object created with kNN().

k Neighborhood size for nearest neighbor sparsification. If x is a kNN object then
k may be missing.

kt threshold on the number of shared nearest neighbors (including the points them-
selves) to form clusters. Range: [1, k]

... additional arguments are passed on to the k nearest neighbor search algorithm.
See kNN() for details on how to control the search strategy.

Details

Following the original paper, the shared nearest neighbor list is constructed as the k neighbors plus
the point itself (as neighbor zero). Therefore, the threshold kt needs to be in the range [1, k].

Fast nearest neighbors search with kNN() is only used if x is a matrix. In this case Euclidean distance
is used.

24 jpclust

Value

A object of class general_clustering with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

type name of used clustering algorithm.

param list of used clustering parameters.

Author(s)

Michael Hahsler

References

R. A. Jarvis and E. A. Patrick. 1973. Clustering Using a Similarity Measure Based on Shared
Near Neighbors. IEEE Trans. Comput. 22, 11 (November 1973), 1025-1034. doi:10.1109/T-
C.1973.223640

See Also

Other clustering functions: dbscan(), extractFOSC(), hdbscan(), optics(), sNNclust()

Examples

data("DS3")

use a shared neighborhood of 20 points and require 12 shared neighbors
cl <- jpclust(DS3, k = 20, kt = 12)
cl

plot(DS3, col = cl$cluster+1L, cex = .5)
Note: JP clustering does not consider noise and thus,
the sine wave points chain clusters together.

use a precomputed kNN object instead of the original data.
nn <- kNN(DS3, k = 30)
nn

cl <- jpclust(nn, k = 20, kt = 12)
cl

cluster with noise removed (use low pointdensity to identify noise)
d <- pointdensity(DS3, eps = 25)
hist(d, breaks = 20)
DS3_noiseless <- DS3[d > 110,]

cl <- jpclust(DS3_noiseless, k = 20, kt = 10)
cl

plot(DS3_noiseless, col = cl$cluster+1L, cex = .5)

https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640

kNN 25

kNN Find the k Nearest Neighbors

Description

This function uses a kd-tree to find all k nearest neighbors in a data matrix (including distances)
fast.

Usage

kNN(
x,
k,
query = NULL,
sort = TRUE,
search = "kdtree",
bucketSize = 10,
splitRule = "suggest",
approx = 0

)

S3 method for class 'kNN'
sort(x, decreasing = FALSE, ...)

S3 method for class 'kNN'
adjacencylist(x, ...)

S3 method for class 'kNN'
print(x, ...)

Arguments

x a data matrix, a dist object or a kNN object.

k number of neighbors to find.

query a data matrix with the points to query. If query is not specified, the NN for all
the points in x is returned. If query is specified then x needs to be a data matrix.

sort sort the neighbors by distance? Note that some search methods already sort the
results. Sorting is expensive and sort = FALSE may be much faster for some
search methods. kNN objects can be sorted using sort().

search nearest neighbor search strategy (one of "kdtree", "linear" or "dist").

bucketSize max size of the kd-tree leafs.

splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT", "SL_FAIR"
or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs best guess.

26 kNN

approx use approximate nearest neighbors. All NN up to a distance of a factor of 1 +
approx eps may be used. Some actual NN may be omitted leading to spuri-
ous clusters and noise points. However, the algorithm will enjoy a significant
speedup.

decreasing sort in decreasing order?

... further arguments

Details

Ties: If the kth and the (k+1)th nearest neighbor are tied, then the neighbor found first is returned
and the other one is ignored.

Self-matches: If no query is specified, then self-matches are removed.

Details on the search parameters:

• search controls if a kd-tree or linear search (both implemented in the ANN library; see Mount
and Arya, 2010). Note, that these implementations cannot handle NAs. search = "dist"
precomputes Euclidean distances first using R. NAs are handled, but the resulting distance
matrix cannot contain NAs. To use other distance measures, a precomputed distance matrix
can be provided as x (search is ignored).

• bucketSize and splitRule influence how the kd-tree is built. approx uses the approximate
nearest neighbor search implemented in ANN. All nearest neighbors up to a distance of eps
/ (1 + approx) will be considered and all with a distance greater than eps will not be con-
sidered. The other points might be considered. Note that this results in some actual nearest
neighbors being omitted leading to spurious clusters and noise points. However, the algorithm
will enjoy a significant speedup. For more details see Mount and Arya (2010).

Value

An object of class kNN (subclass of NN) containing a list with the following components:

dist a matrix with distances.

id a matrix with ids.

k number k used.

Author(s)

Michael Hahsler

References

David M. Mount and Sunil Arya (2010). ANN: A Library for Approximate Nearest Neighbor
Searching, http://www.cs.umd.edu/~mount/ANN/.

See Also

Other NN functions: NN, comps(), frNN(), kNNdist(), sNN()

http://www.cs.umd.edu/~mount/ANN/

kNNdist 27

Examples

data(iris)
x <- iris[, -5]

Example 1: finding kNN for all points in a data matrix (using a kd-tree)
nn <- kNN(x, k = 5)
nn

explore neighborhood of point 10
i <- 10
nn$id[i,]
plot(x, col = ifelse(1:nrow(iris) %in% nn$id[i,], "red", "black"))

visualize the 5 nearest neighbors
plot(nn, x)

visualize a reduced 2-NN graph
plot(kNN(nn, k = 2), x)

Example 2: find kNN for query points
q <- x[c(1,100),]
nn <- kNN(x, k = 10, query = q)

plot(nn, x, col = "grey")
points(q, pch = 3, lwd = 2)

Example 3: find kNN using distances
d <- dist(x, method = "manhattan")
nn <- kNN(d, k = 1)
plot(nn, x)

kNNdist Calculate and Plot k-Nearest Neighbor Distances

Description

Fast calculation of the k-nearest neighbor distances for a dataset represented as a matrix of points.
The kNN distance is defined as the distance from a point to its k nearest neighbor. The kNN distance
plot displays the kNN distance of all points sorted from smallest to largest. The plot can be used to
help find suitable parameter values for dbscan().

Usage

kNNdist(x, k, all = FALSE, ...)

kNNdistplot(x, k, minPts, ...)

28 kNNdist

Arguments

x the data set as a matrix of points (Euclidean distance is used) or a precalculated
dist object.

k number of nearest neighbors used for the distance calculation.

all should a matrix with the distances to all k nearest neighbors be returned?

... further arguments (e.g., kd-tree related parameters) are passed on to kNN().

minPts to use a k-NN plot to determine a suitable eps value for dbscan(), minPts used
in dbscan can be specified and will set k = minPts - 1.

Value

kNNdist() returns a numeric vector with the distance to its k nearest neighbor. If all = TRUE then a
matrix with k columns containing the distances to all 1st, 2nd, ..., kth nearest neighbors is returned
instead.

Author(s)

Michael Hahsler

See Also

Other Outlier Detection Functions: glosh(), lof(), pointdensity()

Other NN functions: NN, comps(), frNN(), kNN(), sNN()

Examples

data(iris)
iris <- as.matrix(iris[, 1:4])

Find the 4-NN distance for each observation (see ?kNN
for different search strategies)
kNNdist(iris, k = 4)

Get a matrix with distances to the 1st, 2nd, ..., 4th NN.
kNNdist(iris, k = 4, all = TRUE)

Produce a k-NN distance plot to determine a suitable eps for
DBSCAN with MinPts = 5. Use k = 4 (= MinPts -1).
The knee is visible around a distance of .7
kNNdistplot(iris, k = 4)

cl <- dbscan(iris, eps = .7, minPts = 5)
pairs(iris, col = cl$cluster + 1L)
Note: black points are noise points

lof 29

lof Local Outlier Factor Score

Description

Calculate the Local Outlier Factor (LOF) score for each data point using a kd-tree to speed up kNN
search.

Usage

lof(x, minPts = 5, ...)

Arguments

x a data matrix or a dist object.
minPts number of nearest neighbors used in defining the local neighborhood of a point

(includes the point itself).
... further arguments are passed on to kNN(). Note: sort cannot be specified here

since lof() uses always sort = TRUE.

Details

LOF compares the local readability density (lrd) of an point to the lrd of its neighbors. A LOF score
of approximately 1 indicates that the lrd around the point is comparable to the lrd of its neighbors
and that the point is not an outlier. Points that have a substantially lower lrd than their neighbors are
considered outliers and produce scores significantly larger than 1.

If a data matrix is specified, then Euclidean distances and fast nearest neighbor search using a
kd-tree is used.

Note on duplicate points: If there are more than minPts duplicates of a point in the data, then
LOF the local readability distance will be 0 resulting in an undefined LOF score of 0/0. We set
LOF in this case to 1 since there is already enough density from the points in the same location
to make them not outliers. The original paper by Breunig et al (2000) assumes that the points are
real duplicates and suggests to remove the duplicates before computing LOF. If duplicate points are
removed first, then this LOF implementation in dbscan behaves like the one described by Breunig
et al.

Value

A numeric vector of length ncol(x) containing LOF values for all data points.

Author(s)

Michael Hahsler

References

Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying density-based local
outliers. In ACM Int. Conf. on Management of Data, pages 93-104. doi:10.1145/335191.335388

https://doi.org/10.1145/335191.335388

30 moons

See Also

Other Outlier Detection Functions: glosh(), kNNdist(), pointdensity()

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd = 0.4),
y=runif(10, 0, 5) + rnorm(n, sd = 0.4)
)

calculate LOF score with a neighborhood of 3 points
lof <- lof(x, minPts = 3)

distribution of outlier factors
summary(lof)
hist(lof, breaks = 10, main = "LOF (minPts = 3)")

plot sorted lof. Looks like outliers start arounf a LOF of 2.
plot(sort(lof), type = "l", main = "LOF (minPts = 3)",

xlab = "Points sorted by LOF", ylab = "LOF")

point size is proportional to LOF and mark points with a LOF > 2
plot(x, pch = ".", main = "LOF (minPts = 3)", asp = 1)
points(x, cex = (lof - 1) * 2, pch = 1, col = "red")
text(x[lof > 2,], labels = round(lof, 1)[lof > 2], pos = 3)

moons Moons Data

Description

Contains 100 2-d points, half of which are contained in two moons or "blobs"" (25 points each
blob), and the other half in asymmetric facing crescent shapes. The three shapes are all linearly
separable.

Format

A data frame with 100 observations on the following 2 variables.

X a numeric vector
Y a numeric vector

Details

This data was generated with the following Python commands using the SciKit-Learn library:
> import sklearn.datasets as data
> moons = data.make_moons(n_samples=50, noise=0.05)
> blobs = data.make_blobs(n_samples=50, centers=[(-0.75,2.25), (1.0, 2.0)], cluster_std=0.25)
> test_data = np.vstack([moons, blobs])

NN 31

Source

See the HDBSCAN notebook from github documentation: http://hdbscan.readthedocs.io/
en/latest/how_hdbscan_works.html

References

Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel et al. Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research 12, no. Oct (2011): 2825-2830.

Examples

data(moons)
plot(moons, pch=20)

NN NN — Nearest Neighbors Superclass

Description

NN is an abstract S3 superclass for the classes of the objects returned by kNN(), frNN() and sNN().
Methods for sorting, plotting and getting an adjacency list are defined.

Usage

adjacencylist(x, ...)

S3 method for class 'NN'
adjacencylist(x, ...)

S3 method for class 'NN'
sort(x, decreasing = FALSE, ...)

S3 method for class 'NN'
plot(x, data, main = NULL, pch = 16, col = NULL, linecol = "gray", ...)

Arguments

x a NN object

... further parameters past on to plot().

decreasing sort in decreasing order?

data that was used to create x

main title

pch plotting character.

col color used for the data points (nodes).

linecol color used for edges.

http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
http://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

32 optics

Subclasses

kNN, frNN and sNN

Author(s)

Michael Hahsler

See Also

Other NN functions: comps(), frNN(), kNNdist(), kNN(), sNN()

Examples

data(iris)
x <- iris[, -5]

finding kNN directly in data (using a kd-tree)
nn <- kNN(x, k=5)
nn

plot the kNN where NN are shown as line conecting points.
plot(nn, x)

show the first few elements of the adjacency list
head(adjacencylist(nn))

Not run:
create a graph and find connected components (if igraph is installed)
library("igraph")
g <- graph_from_adj_list(adjacencylist(nn))
comp <- components(g)
plot(x, col = comp$membership)

detect clusters (communities) with the label propagation algorithm
cl <- membership(cluster_label_prop(g))
plot(x, col = cl)

End(Not run)

optics Ordering Points to Identify the Clustering Structure (OPTICS)

Description

Implementation of the OPTICS (Ordering points to identify the clustering structure) point ordering
algorithm using a kd-tree.

optics 33

Usage

optics(x, eps = NULL, minPts = 5, ...)

S3 method for class 'optics'
print(x, ...)

S3 method for class 'optics'
plot(x, cluster = TRUE, predecessor = FALSE, ...)

S3 method for class 'optics'
as.reachability(object, ...)

S3 method for class 'optics'
as.dendrogram(object, ...)

extractDBSCAN(object, eps_cl)

extractXi(object, xi, minimum = FALSE, correctPredecessors = TRUE)

S3 method for class 'optics'
predict(object, newdata, data, ...)

Arguments

x a data matrix or a dist object.

eps upper limit of the size of the epsilon neighborhood. Limiting the neighborhood
size improves performance and has no or very little impact on the ordering as
long as it is not set too low. If not specified, the largest minPts-distance in the
data set is used which gives the same result as infinity.

minPts the parameter is used to identify dense neighborhoods and the reachability dis-
tance is calculated as the distance to the minPts nearest neighbor. Controls the
smoothness of the reachability distribution. Default is 5 points.

... additional arguments are passed on to fixed-radius nearest neighbor search algo-
rithm. See frNN() for details on how to control the search strategy.

cluster, predecessor

plot clusters and predecessors.

object clustering object.

eps_cl Threshold to identify clusters (eps_cl <= eps).

xi Steepness threshold to identify clusters hierarchically using the Xi method.

minimum logical, representing whether or not to extract the minimal (non-overlapping)
clusters in the Xi clustering algorithm.

correctPredecessors

logical, correct a common artifact by pruning the steep up area for points that
have predecessors not in the cluster–found by the ELKI framework, see details
below.

34 optics

newdata new data points for which the cluster membership should be predicted.

data the data set used to create the clustering object.

Details

The algorithm
This implementation of OPTICS implements the original algorithm as described by Ankerst et al
(1999). OPTICS is an ordering algorithm with methods to extract a clustering from the ordering.
While using similar concepts as DBSCAN, for OPTICS eps is only an upper limit for the neighbor-
hood size used to reduce computational complexity. Note that minPts in OPTICS has a different
effect then in DBSCAN. It is used to define dense neighborhoods, but since eps is typically set
rather high, this does not effect the ordering much. However, it is also used to calculate the reacha-
bility distance and larger values will make the reachability distance plot smoother.

OPTICS linearly orders the data points such that points which are spatially closest become neigh-
bors in the ordering. The closest analog to this ordering is dendrogram in single-link hierarchical
clustering. The algorithm also calculates the reachability distance for each point. plot() (see
reachability_plot) produces a reachability plot which shows each points reachability distance be-
tween two consecutive points where the points are sorted by OPTICS. Valleys represent clusters
(the deeper the valley, the more dense the cluster) and high points indicate points between clusters.

Specifying the data
If x is specified as a data matrix, then Euclidean distances and fast nearest neighbor lookup using a
kd-tree are used. See kNN() for details on the parameters for the kd-tree.

Extracting a clustering
Several methods to extract a clustering from the order returned by OPTICS are implemented:

• extractDBSCAN() extracts a clustering from an OPTICS ordering that is similar to what DB-
SCAN would produce with an eps set to eps_cl (see Ankerst et al, 1999). The only difference
to a DBSCAN clustering is that OPTICS is not able to assign some border points and reports
them instead as noise.

• extractXi() extract clusters hierarchically specified in Ankerst et al (1999) based on the
steepness of the reachability plot. One interpretation of the xi parameter is that it classifies
clusters by change in relative cluster density. The used algorithm was originally contributed
by the ELKI framework and is explained in Schubert et al (2018), but contains a set of fixes.

Predict cluster memberships
predict() requires an extracted DBSCAN clustering with extractDBSCAN() and then uses predict
for dbscan().

Value

An object of class optics with components:

eps value of eps parameter.

minPts value of minPts parameter.

order optics order for the data points in x.

reachdist reachability distance for each data point in x.

optics 35

coredist core distance for each data point in x.

For extractDBSCAN(), in addition the following components are available:

eps_cl the value of the eps_cl parameter.

cluster assigned cluster labels in the order of the data points in x.

For extractXi(), in addition the following components are available:

xi Steepness thresholdx.

cluster assigned cluster labels in the order of the data points in x.

clusters_xi data.frame containing the start and end of each cluster found in the OPTICS
ordering.

Author(s)

Michael Hahsler and Matthew Piekenbrock

References

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander (1999). OPTICS: Ordering
Points To Identify the Clustering Structure. ACM SIGMOD international conference on Manage-
ment of data. ACM Press. pp. doi:10.1145/304181.304187

Hahsler M, Piekenbrock M, Doran D (2019). dbscan: Fast Density-Based Clustering with R. Jour-
nal of Statistical Software, 91(1), 1-30. doi:10.18637/jss.v091.i01

Erich Schubert, Michael Gertz (2018). Improving the Cluster Structure Extracted from OPTICS
Plots. In Lernen, Wissen, Daten, Analysen (LWDA 2018), pp. 318-329.

See Also

Density reachability.

Other clustering functions: dbscan(), extractFOSC(), hdbscan(), jpclust(), sNNclust()

Examples

set.seed(2)
n <- 400

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd = 0.1),
y = runif(4, 0, 1) + rnorm(n, sd = 0.1)
)

plot(x, col=rep(1:4, time = 100))

run OPTICS (Note: we use the default eps calculation)
res <- optics(x, minPts = 10)
res

get order

https://doi.org/10.1145/304181.304187
https://doi.org/10.18637/jss.v091.i01

36 pointdensity

res$order

plot produces a reachability plot
plot(res)

plot the order of points in the reachability plot
plot(x, col = "grey")
polygon(x[res$order,])

extract a DBSCAN clustering by cutting the reachability plot at eps_cl
res <- extractDBSCAN(res, eps_cl = .065)
res

plot(res) ## black is noise
hullplot(x, res)

re-cut at a higher eps threshold
res <- extractDBSCAN(res, eps_cl = .07)
res
plot(res)
hullplot(x, res)

extract hierarchical clustering of varying density using the Xi method
res <- extractXi(res, xi = 0.01)
res

plot(res)
hullplot(x, res)

Xi cluster structure
res$clusters_xi

use OPTICS on a precomputed distance matrix
d <- dist(x)
res <- optics(d, minPts = 10)
plot(res)

pointdensity Calculate Local Density at Each Data Point

Description

Calculate the local density at each data point as either the number of points in the eps-neighborhood
(as used in dbscan()) or perform kernel density estimation (KDE) using a uniform kernel. The
function uses a kd-tree for fast fixed-radius nearest neighbor search.

Usage

pointdensity(
x,

pointdensity 37

eps,
type = "frequency",
search = "kdtree",
bucketSize = 10,
splitRule = "suggest",
approx = 0

)

Arguments

x a data matrix.

eps radius of the eps-neighborhood, i.e., bandwidth of the uniform kernel).

type "frequency" or "density". should the raw count of points inside the eps-
neighborhood or the kde be returned.

search, bucketSize, splitRule, approx

algorithmic parameters for frNN().

Details

dbscan() estimates the density around a point as the number of points in the eps-neighborhood
of the point (including the query point itself). Kernel density estimation (KDE) using a uniform
kernel, which is just this point count in the eps-neighborhood divided by (2 eps n), where n is the
number of points in x.

Points with low local density often indicate noise (see e.g., Wishart (1969) and Hartigan (1975)).

Value

A vector of the same length as data points (rows) in x with the count or density values for each data
point.

Author(s)

Michael Hahsler

References

Wishart, D. (1969), Mode Analysis: A Generalization of Nearest Neighbor which Reduces Chain-
ing Effects, in Numerical Taxonomy, Ed., A.J. Cole, Academic Press, 282-311.

John A. Hartigan (1975), Clustering Algorithms, John Wiley & Sons, Inc., New York, NY, USA.

See Also

frNN(), stats::density().

Other Outlier Detection Functions: glosh(), kNNdist(), lof()

38 reachability

Examples

set.seed(665544)
n <- 100
x <- cbind(

x=runif(10, 0, 5) + rnorm(n, sd = 0.4),
y=runif(10, 0, 5) + rnorm(n, sd = 0.4)
)

plot(x)

calculate density
d <- pointdensity(x, eps = .5, type = "density")

density distribution
summary(d)
hist(d, breaks = 10)

plot with point size is proportional to Density
plot(x, pch = 19, main = "Density (eps = .5)", cex = d*5)

Wishart (1969) single link clustering after removing low-density noise
1. remove noise with low density
f <- pointdensity(x, eps = .5, type = "frequency")
x_nonoise <- x[f >= 5,]

2. use single-linkage on the non-noise points
hc <- hclust(dist(x_nonoise), method = "single")
plot(x, pch = 19, cex = .5)
points(x_nonoise, pch = 19, col= cutree(hc, k = 4) + 1L)

reachability Reachability Distances

Description

Reachability distances can be plotted to show the hierarchical relationships between data points.
The idea was originally introduced by Ankerst et al (1999) for OPTICS. Later, Sanders et al (2003)
showed that the visualization is useful for other hierarchical structures and introduced an algorithm
to convert dendrogram representation to reachability plots.

Usage

S3 method for class 'reachability'
print(x, ...)

S3 method for class 'reachability'
plot(
x,
order_labels = FALSE,
xlab = "Order",

reachability 39

ylab = "Reachability dist.",
main = "Reachability Plot",
...

)

as.reachability(object, ...)

S3 method for class 'dendrogram'
as.reachability(object, ...)

Arguments

x object of class reachability.

... graphical parameters are passed on to plot(), or arguments for other methods.

order_labels whether to plot text labels for each points reachability distance.

xlab x-axis label.

ylab y-axis label.

main Title of the plot.

object any object that can be coerced to class reachability, such as an object of class
optics or stats::dendrogram.

Details

A reachability plot displays the points as vertical bars, were the height is the reachability distance
between two consecutive points. The central idea behind reachability plots is that the ordering in
which points are plotted identifies underlying hierarchical density representation as mountains and
valleys of high and low reachability distance. The original ordering algorithm OPTICS as described
by Ankerst et al (1999) introduced the notion of reachability plots.

OPTICS linearly orders the data points such that points which are spatially closest become neigh-
bors in the ordering. Valleys represent clusters, which can be represented hierarchically. Although
the ordering is crucial to the structure of the reachability plot, its important to note that OPTICS,
like DBSCAN, is not entirely deterministic and, just like the dendrogram, isomorphisms may exist

Reachability plots were shown to essentially convey the same information as the more traditional
dendrogram structure by Sanders et al (2003). An dendrograms can be converted into reachability
plots.

Different hierarchical representations, such as dendrograms or reachability plots, may be preferable
depending on the context. In smaller datasets, cluster memberships may be more easily identifi-
able through a dendrogram representation, particularly is the user is already familiar with tree-like
representations. For larger datasets however, a reachability plot may be preferred for visualizing
macro-level density relationships.

A variety of cluster extraction methods have been proposed using reachability plots. Because both
cluster extraction depend directly on the ordering OPTICS produces, they are part of the optics()
interface. Nonetheless, reachability plots can be created directly from other types of linkage trees,
and vice versa.

40 reachability

Note: The reachability distance for the first point is by definition not defined (it has no preceeding
point). Also, the reachability distances can be undefined when a point does not have enough neigh-
bors in the epsilon neighborhood. We represent these undefined cases as Inf and represent them in
the plot as a dashed line.

Value

An object of class reachability with components:

order order to use for the data points in x.

reachdist reachability distance for each data point in x.

Author(s)

Matthew Piekenbrock

References

Ankerst, M., M. M. Breunig, H.-P. Kriegel, J. Sander (1999). OPTICS: Ordering Points To Identify
the Clustering Structure. ACM SIGMOD international conference on Management of data. ACM
Press. pp. 49–60.

Sander, J., X. Qin, Z. Lu, N. Niu, and A. Kovarsky (2003). Automatic extraction of clusters from
hierarchical clustering representations. Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer Berlin Heidelberg.

See Also

optics(), as.dendrogram(), and stats::hclust().

Examples

set.seed(2)
n <- 20

x <- cbind(
x = runif(4, 0, 1) + rnorm(n, sd = 0.1),
y = runif(4, 0, 1) + rnorm(n, sd = 0.1)

)

plot(x, xlim = range(x), ylim = c(min(x) - sd(x), max(x) + sd(x)), pch = 20)
text(x = x, labels = 1:nrow(x), pos = 3)

run OPTICS
res <- optics(x, eps = 10, minPts = 2)
res

plot produces a reachability plot.
plot(res)

Manually extract reachability components from OPTICS
reach <- as.reachability(res)

sNN 41

reach

plot still produces a reachability plot; points ids
(rows in the original data) can be displayed with order_labels = TRUE
plot(reach, order_labels = TRUE)

Reachability objects can be directly converted to dendrograms
dend <- as.dendrogram(reach)
dend
plot(dend)

A dendrogram can be converted back into a reachability object
plot(as.reachability(dend))

sNN Find Shared Nearest Neighbors

Description

Calculates the number of shared nearest neighbors, the shared nearest neighbor similarity and cre-
ates a shared nearest neighbors graph.

Usage

sNN(
x,
k,
kt = NULL,
jp = FALSE,
sort = TRUE,
search = "kdtree",
bucketSize = 10,
splitRule = "suggest",
approx = 0

)

S3 method for class 'sNN'
sort(x, decreasing = TRUE, ...)

S3 method for class 'sNN'
print(x, ...)

Arguments

x a data matrix, a dist object or a kNN object.

k number of neighbors to consider to calculate the shared nearest neighbors.

42 sNN

kt minimum threshold on the number of shared nearest neighbors to build the
shared nearest neighbor graph. Edges are only preserved if kt or more neighbors
are shared.

jp use the definition by Javis and Patrick (1973), where shared neighbors are only
counted between points that are in each other’s neighborhood, otherwise 0 is
returned. If FALSE, then the number of shared neighbors is returned, even if the
points are not neighbors.

sort sort by the number of shared nearest neighbors? Note that this is expensive and
sort = FALSE is much faster. sNN objects can be sorted using sort().

search nearest neighbor search strategy (one of "kdtree", "linear" or "dist").

bucketSize max size of the kd-tree leafs.

splitRule rule to split the kd-tree. One of "STD", "MIDPT", "FAIR", "SL_MIDPT", "SL_FAIR"
or "SUGGEST" (SL stands for sliding). "SUGGEST" uses ANNs best guess.

approx use approximate nearest neighbors. All NN up to a distance of a factor of
(1 + approx) eps may be used. Some actual NN may be omitted leading
to spurious clusters and noise points. However, the algorithm will enjoy a sig-
nificant speedup.

decreasing logical; sort in decreasing order?

... additional parameters are passed on.

Details

The number of shared nearest neighbors is the intersection of the kNN neighborhood of two points.
Note: that each point is considered to be part of its own kNN neighborhood. The range for the
shared nearest neighbors is [0, k].

Javis and Patrick (1973) use the shared nearest neighbor graph for clustering. They only count
shared neighbors between points that are in each other’s kNN neighborhood.

Value

An object of class sNN (subclass of kNN and NN) containing a list with the following components:

id a matrix with ids.

dist a matrix with the distances.

shared a matrix with the number of shared nearest neighbors.

k number of k used.

Author(s)

Michael Hahsler

References

R. A. Jarvis and E. A. Patrick. 1973. Clustering Using a Similarity Measure Based on Shared
Near Neighbors. IEEE Trans. Comput. 22, 11 (November 1973), 1025-1034. doi:10.1109/T-
C.1973.223640

https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640

sNNclust 43

See Also

Other NN functions: NN, comps(), frNN(), kNNdist(), kNN()

Examples

data(iris)
x <- iris[, -5]

finding kNN and add the number of shared nearest neighbors.
k <- 5
nn <- sNN(x, k = k)
nn

shared nearest neighbor distribution
table(as.vector(nn$shared))

explore neighborhood of point 10
i <- 10
nn$shared[i,]

plot(nn, x)

apply a threshold to create a sNN graph with edges
if more than 3 neighbors are shared.
nn_3 <- sNN(nn, kt = 3)
plot(nn_3, x)

get an adjacency list for the shared nearest neighbor graph
adjacencylist(nn_3)

sNNclust Shared Nearest Neighbor Clustering

Description

Implements the shared nearest neighbor clustering algorithm by Ertoz, Steinbach and Kumar (2003).

Usage

sNNclust(x, k, eps, minPts, borderPoints = TRUE, ...)

Arguments

x a data matrix/data.frame (Euclidean distance is used), a precomputed dist object
or a kNN object created with kNN().

k Neighborhood size for nearest neighbor sparsification to create the shared NN
graph.

eps Two objects are only reachable from each other if they share at least eps nearest
neighbors. Note: this is different from the eps in DBSCAN!

44 sNNclust

minPts minimum number of points that share at least eps nearest neighbors for a point
to be considered a core points.

borderPoints should border points be assigned to clusters like in DBSCAN?

... additional arguments are passed on to the k nearest neighbor search algorithm.
See kNN() for details on how to control the search strategy.

Details

Algorithm:

1. Constructs a shared nearest neighbor graph for a given k. The edge weights are the number of
shared k nearest neighbors (in the range of [0, k]).

2. Find each points SNN density, i.e., the number of points which have a similarity of eps or
greater.

3. Find the core points, i.e., all points that have an SNN density greater than MinPts.

4. Form clusters from the core points and assign border points (i.e., non-core points which share
at least eps neighbors with a core point).

Note that steps 2-4 are equivalent to the DBSCAN algorithm (see dbscan()) and that eps has a
different meaning than for DBSCAN. Here it is a threshold on the number of shared neighbors (see
sNN()) which defines a similarity.

Value

A object of class general_clustering with the following components:

cluster A integer vector with cluster assignments. Zero indicates noise points.

type name of used clustering algorithm.

param list of used clustering parameters.

Author(s)

Michael Hahsler

References

Levent Ertoz, Michael Steinbach, Vipin Kumar, Finding Clusters of Different Sizes, Shapes, and
Densities in Noisy, High Dimensional Data, SIAM International Conference on Data Mining, 2003,
47-59. doi:10.1137/1.9781611972733.5

See Also

Other clustering functions: dbscan(), extractFOSC(), hdbscan(), jpclust(), optics()

https://doi.org/10.1137/1.9781611972733.5

sNNclust 45

Examples

data("DS3")

Out of k = 20 NN 7 (eps) have to be shared to create a link in the sNN graph.
A point needs a least 16 (minPts) links in the sNN graph to be a core point.
Noise points have cluster id 0 and are shown in black.
cl <- sNNclust(DS3, k = 20, eps = 7, minPts = 16)
plot(DS3, col = cl$cluster + 1L, cex = .5)

Index

∗ HDBSCAN functions
hdbscan, 18

∗ NN functions
comps, 3
frNN, 14
kNN, 25
kNNdist, 27
NN, 31
sNN, 41

∗ Outlier Detection Functions
glosh, 16
kNNdist, 27
lof, 29
pointdensity, 36

∗ clustering functions
dbscan, 5
extractFOSC, 10
hdbscan, 18
jpclust, 23
optics, 32
sNNclust, 43

∗ clustering
dbscan, 5
extractFOSC, 10
hdbscan, 18
hullplot, 21
jpclust, 23
optics, 32
reachability, 38
sNNclust, 43

∗ datasets
DS3, 10
moons, 30

∗ hierarchical
hdbscan, 18
reachability, 38

∗ model
comps, 3
dbscan, 5

extractFOSC, 10
frNN, 14
glosh, 16
hdbscan, 18
jpclust, 23
kNN, 25
kNNdist, 27
lof, 29
NN, 31
optics, 32
pointdensity, 36
reachability, 38
sNN, 41
sNNclust, 43

∗ plot
hullplot, 21
kNNdist, 27

adjacencylist (NN), 31
adjacencylist.frNN (frNN), 14
adjacencylist.kNN (kNN), 25
as.dendrogram (dendrogram), 9
as.dendrogram(), 40
as.dendrogram.optics (optics), 32
as.reachability (reachability), 38
as.reachability.optics (optics), 32

components (comps), 3
comps, 3, 15, 26, 28, 32, 43
coredist (hdbscan), 18
cutree(), 11

DBSCAN, 44
DBSCAN (dbscan), 5
dbscan, 5, 13, 20, 24, 35, 44
dbscan(), 3, 28, 44
dbscan-package, 2
dendrogram, 9, 9, 38
density (pointdensity), 36
dist, 3, 5, 16, 19, 20, 23, 25, 28, 29, 33, 41, 43

46

INDEX 47

DS3, 10

extractDBSCAN (optics), 32
extractFOSC, 7, 10, 20, 24, 35, 44
extractXi (optics), 32

fpc::dbscan(), 5
frNN, 4, 5, 14, 15, 26, 28, 32, 43
frnn (frNN), 14
frNN(), 3, 5, 6, 31, 33, 37

GLOSH (glosh), 16
glosh, 16, 28, 30, 37
glosh(), 3, 19

hclust, 9–11, 13, 16, 20
hclust(), 11, 13
HDBSCAN (hdbscan), 18
hdbscan, 7, 9, 13, 18, 24, 35, 44
hdbscan(), 3, 11, 13
hullplot, 21

is.corepoint (dbscan), 5

jpclust, 7, 13, 20, 23, 35, 44
jpclust(), 3

kNN, 4, 15, 25, 25, 28, 32, 41–43
knn (kNN), 25
kNN(), 3, 16, 23, 28, 29, 31, 34, 43, 44
kNNdist, 4, 15, 17, 26, 27, 30, 32, 37, 43
kNNdistplot (kNNdist), 27
kNNdistplot(), 6

LOF (lof), 29
lof, 17, 28, 29, 37
lof(), 3

moons, 30
mrdist (hdbscan), 18

NN, 3, 4, 15, 26, 28, 31, 42, 43

OPTICS, 38
OPTICS (optics), 32
optics, 7, 13, 20, 24, 32, 39, 44
optics(), 3, 39, 40

plot(), 31
plot.hdbscan (hdbscan), 18
plot.NN (NN), 31

plot.optics (optics), 32
plot.reachability (reachability), 38
pointdensity, 17, 28, 30, 36
pointdensity(), 3
predict(), 6
predict.dbscan_fast (dbscan), 5
predict.hdbscan (hdbscan), 18
predict.optics (optics), 32
print.dbscan_fast (dbscan), 5
print.frNN (frNN), 14
print.frnn (frNN), 14
print.general_clustering (jpclust), 23
print.hdbscan (hdbscan), 18
print.kNN (kNN), 25
print.optics (optics), 32
print.reachability (reachability), 38
print.sNN (sNN), 41

reachability, 9, 34, 35, 38
reachability_plot, 34
reachability_plot (reachability), 38

sNN, 4, 15, 26, 28, 32, 41
snn (sNN), 41
sNN(), 3, 31, 44
sNNclust, 7, 13, 20, 24, 35, 43
snnclust (sNNclust), 43
sNNclust(), 3
sort.frNN (frNN), 14
sort.kNN (kNN), 25
sort.NN (NN), 31
sort.sNN (sNN), 41
stats::as.dendrogram(), 9
stats::cutree(), 13
stats::dendrogram, 39
stats::density(), 37
stats::hclust(), 40

	dbscan-package
	comps
	dbscan
	dendrogram
	DS3
	extractFOSC
	frNN
	glosh
	hdbscan
	hullplot
	jpclust
	kNN
	kNNdist
	lof
	moons
	NN
	optics
	pointdensity
	reachability
	sNN
	sNNclust
	Index

