Package 'cvCovEst'

February 17, 2024
Title Cross-Validated Covariance Matrix Estimation
Version 1.2.2
Description An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) doi:10.1080/10618600.2022.2110883 to identify the optimal estimator from among a prespecified set of candidates.
Depends R (>= 4.0.0)
Imports matrixStats, Matrix, stats, methods, origami, coop, Rdpack, rlang, dplyr, stringr, purrr, tibble, assertthat, RSpectra, ggplot2, ggpubr, RColorBrewer, RMTstat
Suggests future, future.apply, MASS, testthat, knitr, rmarkdown, covr, spelling

License MIT + file LICENSE
URL https://github.com/PhilBoileau/cvCovEst
BugReports https://github.com/PhilBoileau/cvCovEst/issues
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.3.1
RdMacros Rdpack
Language en-US
NeedsCompilation no
Author Philippe Boileau [aut, cre, cph] (https://orcid.org/0000-0002-4850-2507),
Nima Hejazi [aut] (https://orcid.org/0000-0002-7127-2789), Brian Collica [aut] (https://orcid.org/0000-0003-1127-2557), Jamarcus Liu [ctb],
Mark van der Laan [ctb, ths] (https://orcid.org/0000-0003-1432-5511),
Sandrine Dudoit [ctb, ths] (https://orcid.org/0000-0002-6069-8629)
Maintainer Philippe Boileau philippe_boileau@berkeley.edu
Repository CRAN
Date/Publication 2024-02-17 20:20:02 UTC

R topics documented:

adaptiveLassoEst 2
bandingEst 3
cvCovEst 4
cvFrobeniusLoss 6
cvMatrixFrobeniusLoss 7
cvScaledMatrixFrobeniusLoss 8
denseLinearShrinkEst 10
is.cvCovEst 11
linearShrinkEst 12
linearShrinkLWEst 12
nlShrinkLWEst 13
plot.cvCovEst 14
poetEst 16
robustPoetEst 17
sampleCovEst 18
scadEst 19
spikedFrobeniusShrinkEst 20
spikedOperatorShrinkEst 21
spikedSteinShrinkEst 22
summary.cvCovEst 23
taperingEst 24
thresholdingEst 25
Index 26

adaptiveLassoEst

Adaptive LASSO Estimator

Description

adaptiveLassoEst () applied the adaptive LASSO to the entries of the sample covariance matrix. The thresholding function is inspired by the penalized regression introduced by Zou (2006). The thresholding function assigns a weight to each entry of the sample covariance matrix based on its initial value. This weight then determines the relative size of the penalty resulting in larger values being penalized less and reducing bias (Rothman et al. 2009).

Usage

adaptiveLassoEst(dat, lambda, n)

Arguments

dat
lambda
n

A numeric data. frame, matrix, or similar object.
A non-negative numeric defining the amount of thresholding applied to each element of dat's sample covariance matrix.
A non-negative numeric defining the exponent of the adaptive weight applied to each element of dat's sample covariance matrix.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Rothman AJ, Levina E, Zhu J (2009). "Generalized Thresholding of Large Covariance Matrices." Journal of the American Statistical Association, 104(485), 177-186. doi:10.1198/jasa.2009.0101, https://doi.org/10.1198/jasa.2009.0101.

Zou H (2006). "The Adaptive Lasso and Its Oracle Properties." Journal of the American Statistical Association, 101(476), 1418-1429. doi:10.1198/016214506000000735, https://doi.org/10.1198/0162145060000000735.

Examples

```
adaptiveLassoEst(dat = mtcars, lambda = 0.9, n = 0.9)
```

bandingEst Banding Estimator

Description

bandingEst () estimates the covariance matrix of data with ordered variables by forcing off-diagonal entries to be zero for indices that are far removed from one another. The $\{i, j\}$ entry of the estimated covariance matrix will be zero if the absolute value of $\{i-j\}$ is greater than some non-negative constant k. This estimator was proposed by Bickel and Levina (2008).

Usage

bandingEst(dat, k)

Arguments

dat
A numeric data.frame, matrix, or similar object.
k
A non-negative, numeric integer.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Bickel PJ, Levina E (2008). "Regularized estimation of large covariance matrices." Annals of Statistics, 36(1), 199-227. doi:10.1214/009053607000000758.

Examples

bandingEst(dat $=$ mtcars, $k=2 L$)

```
cvCovEst Cross-Validated Covariance Matrix Estimator Selector
```


Description

cvCovEst() identifies the optimal covariance matrix estimator from among a set of candidate estimators.

Usage

cvCovEst(
dat,
estimators = c(linearShrinkEst, thresholdingEst, sampleCovEst),
estimator_params = list(linearShrinkEst = list(alpha = 0), thresholdingEst = list(gamma
= 0)),
cv_loss = cvMatrixFrobeniusLoss,
cv_scheme = "v_fold",
mc_split $=0.5$,
v_folds = 10L,
parallel = FALSE,
)

Arguments

dat A numeric data. frame, matrix, or similar object.
estimators A list of estimator functions to be considered in the cross-validated estimator selection procedure.
estimator_params
A named list of arguments corresponding to the hyperparameters of covariance matrix estimators in estimators. The name of each list element should match the name of an estimator passed to estimators. Each element of the estimator_params is itself a named list, with the names corresponding to a given estimator's hyperparameter(s). The hyperparameter(s) may be in the form of a single numeric or a numeric vector. If no hyperparameter is needed for a given estimator, then the estimator need not be listed.

cv_loss	A function indicating the loss function to be used. This defaults to the Frobe- nius loss, cvMatrixFrobeniusLoss(). An observation-based version, cvFrobeniusLoss(), is also made available. Additionally, the cvScaledMatrixFrobeniusLoss() is included for situations in which dat's variables are of different scales.
cv_scheme	A character indicating the cross-validation scheme to be employed. There are two options: (1) V-fold cross-validation, via " v _folds"; and (2) Monte Carlo cross-validation, via "mc". Defaults to Monte Carlo cross-validation.
mc_split	A numeric between 0 and 1 indicating the proportion of observations to be included in the validation set of each Monte Carlo cross-validation fold.
v_folds	An integer larger than or equal to 1 indicating the number of folds to use for cross-validation. The default is 10, regardless of the choice of cross-validation
parallel	scheme.
A logical option indicating whether to run the main cross-validation loop with	
future_lapply (). This is passed directly to cross_validate().	

Value

A list of results containing the following elements:

- estimate - A matrix corresponding to the estimate of the optimal covariance matrix estimator.
- estimator - A character indicating the optimal estimator and corresponding hyperparameters, if any.
- risk_df - A tibble providing the cross-validated risk estimates of each estimator.
- cv_df - A tibble providing each estimators' loss over the folds of the cross-validated procedure.
- args - A named list containing arguments passed to cvCovEst.

Examples

```
cvCovEst(
    dat = mtcars,
    estimators = c(
        linearShrinkLWEst, thresholdingEst, sampleCovEst
    ),
    estimator_params = list(
        thresholdingEst = list(gamma = seq(0.1, 0.3, 0.1))
    )
)
```


Description

cvFrobeniusLoss() evaluates the aggregated Frobenius loss over a fold object (from 'origami' (Coyle and Hejazi 2018)).

Usage

cvFrobeniusLoss(fold, dat, estimator_funs, estimator_params = NULL)

Arguments

fold A fold object (from make_folds()) over which the estimation procedure is to be performed.
dat A data.frame containing the full (non-sample-split) data, on which the crossvalidated procedure is performed.
estimator_funs An expression corresponding to a vector of covariance matrix estimator functions to be applied to the training data.
estimator_params
A named list of arguments corresponding to the hyperparameters of covariance matrix estimators, estimator_funs. The name of each list element should be the name of an estimator passed to estimator_funs. Each element of the estimator_params is itself a named list, with names corresponding to an estimators' hyperparameter(s). These hyperparameters may be in the form of a single numeric or a numeric vector. If no hyperparameter is needed for a given estimator, then the estimator need not be listed.

Value

A tibble providing information on estimators, their hyperparameters (if any), and their scaled Frobenius loss evaluated on a given fold.

References

Coyle J, Hejazi N (2018). "origami: A Generalized Framework for Cross-Validation in R." Journal of Open Source Software, 3(21), 512. doi:10.21105/joss. 00512.

Examples

```
library(MASS)
library(origami)
library(rlang)
# generate 10x10 covariance matrix with unit variances and off-diagonal
# elements equal to 0.5
```

```
Sigma <- matrix(0.5, nrow = 10, ncol = 10) + diag(0.5, nrow = 10)
# sample 50 observations from multivariate normal with mean = 0, var = Sigma
dat <- mvrnorm(n = 50, mu = rep(0, 10), Sigma = Sigma)
# generate a single fold using MC-cv
resub <- make_folds(dat,
    fold_fun = folds_vfold,
    V = 2
)[[1]]
cvFrobeniusLoss(
    fold = resub,
    dat = dat,
    estimator_funs = rlang::quo(c(
        linearShrinkEst, thresholdingEst, sampleCovEst
    )),
    estimator_params = list(
        linearShrinkEst = list(alpha = c(0, 1)),
        thresholdingEst = list(gamma = c(0, 1))
    )
)
```

cvMatrixFrobeniusLoss Cross-Validation Function for Matrix Frobenius Loss

Description

cvMatrixFrobeniusLoss() evaluates the matrix Frobenius loss over a fold object (from 'origami' (Coyle and Hejazi 2018)). This loss function is equivalent to that presented in cvFrobeniusLoss() in terms of estimator selections, but is more computationally efficient.

Usage

cvMatrixFrobeniusLoss(fold, dat, estimator_funs, estimator_params = NULL)

Arguments

fold A fold object (from make_folds()) over which the estimation procedure is to be performed.
dat A data.frame containing the full (non-sample-split) data, on which the crossvalidated procedure is performed.
estimator_funs An expression corresponding to a vector of covariance matrix estimator functions to be applied to the training data.
estimator_params
A named list of arguments corresponding to the hyperparameters of covariance matrix estimators, estimator_funs. The name of each list element should be the name of an estimator passed to estimator_funs. Each element of the
estimator_params is itself a named list, with names corresponding to an estimators' hyperparameter(s). These hyperparameters may be in the form of a single numeric or a numeric vector. If no hyperparameter is needed for a given estimator, then the estimator need not be listed.

Value

A tibble providing information on estimators, their hyperparameters (if any), and their matrix Frobenius loss evaluated on a given fold.

References

Coyle J, Hejazi N (2018). "origami: A Generalized Framework for Cross-Validation in R." Journal of Open Source Software, 3(21), 512. doi:10.21105/joss. 00512.

Examples

```
library(MASS)
library(origami)
library(rlang)
# generate 10x10 covariance matrix with unit variances and off-diagonal
# elements equal to 0.5
Sigma <- matrix(0.5, nrow = 10, ncol = 10) + diag(0.5, nrow = 10)
# sample 50 observations from multivariate normal with mean = 0, var = Sigma
dat <- mvrnorm(n = 50, mu = rep(0, 10), Sigma = Sigma)
# generate a single fold using MC-cv
resub <- make_folds(dat,
        fold_fun = folds_vfold,
        V = 2
)[[1]]
cvMatrixFrobeniusLoss(
        fold = resub,
        dat = dat,
        estimator_funs = rlang::quo(c(
            linearShrinkEst, thresholdingEst, sampleCovEst
        )),
        estimator_params = list(
            linearShrinkEst = list(alpha = c(0, 1)),
            thresholdingEst = list(gamma = c(0, 1))
        )
)
```


Description

cvScaledMatrixFrobeniusLoss() evaluates the scaled matrix Frobenius loss over a fold object (from 'origami' (Coyle and Hejazi 2018)). The squared error loss computed for each entry of the estimated covariance matrix is scaled by the training set's sample variances of the variable associated with that entry's row and column variables. This loss should be used instead of cvMatrixFrobeniusLoss() when a dataset's variables' values are of different magnitudes.

Usage

cvScaledMatrixFrobeniusLoss(fold, dat, estimator_funs, estimator_params = NULL)

Arguments

fold A fold object (from make_folds()) over which the estimation procedure is to be performed.
dat A data.frame containing the full (non-sample-split) data, on which the crossvalidated procedure is performed.
estimator_funs An expression corresponding to a vector of covariance matrix estimator functions to be applied to the training data.
estimator_params
A named list of arguments corresponding to the hyperparameters of covariance matrix estimators, estimator_funs. The name of each list element should be the name of an estimator passed to estimator_funs. Each element of the estimator_params is itself a named list, with names corresponding to an estimators' hyperparameter(s). These hyperparameters may be in the form of a single numeric or a numeric vector. If no hyperparameter is needed for a given estimator, then the estimator need not be listed.

Value

A tibble providing information on estimators, their hyperparameters (if any), and their scaled matrix Frobenius loss evaluated on a given fold.

References

Coyle J, Hejazi N (2018). "origami: A Generalized Framework for Cross-Validation in R." Journal of Open Source Software, 3(21), 512. doi:10.21105/joss. 00512.

Examples

```
library(MASS)
library(origami)
library(rlang)
# generate 10x10 covariance matrix with unit variances and off-diagonal
# elements equal to 0.5
Sigma <- matrix(0.5, nrow = 10, ncol = 10) + diag(0.5, nrow = 10)
# sample 50 observations from multivariate normal with mean = 0, var = Sigma
```

```
dat <- mvrnorm(n = 50, mu = rep(0, 10), Sigma = Sigma)
# generate a single fold using MC-cv
resub <- make_folds(dat,
        fold_fun = folds_vfold,
        V = 2
)[[1]]
cvScaledMatrixFrobeniusLoss(
    fold = resub,
    dat = dat,
    estimator_funs = rlang::quo(c(
            linearShrinkEst, thresholdingEst, sampleCovEst
    )),
    estimator_params = list(
        linearShrinkEst = list(alpha = c(0, 1)),
        thresholdingEst = list(gamma = c(0, 1))
    )
)
```

denseLinearShrinkEst Linear Shrinkage Estimator, Dense Target

Description

denseLinearShrinkEst () computes the asymptotically optimal convex combination of the sample covariance matrix and a dense target matrix. This target matrix's diagonal elements are equal to the average of the sample covariance matrix estimate's diagonal elements, and its off-diagonal elements are equal to the average of the sample covariance matrix estimate's off-diagonal elements. For information on this estimator's derivation, see Ledoit and Wolf (2020) and Schäfer and Strimmer (2005).

Usage

denseLinearShrinkEst(dat)

Arguments

dat
A numeric data.frame, matrix, or similar object.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Ledoit O, Wolf M (2020). "The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation." Journal of Financial Econometrics. ISSN 1479-8409, doi:10.1093/jjfinec/ nbaa007, nbaa007, https://academic.oup.com/jfec/advance-article-pdf/doi/10.1093/jjfinec/nbaa007/33416890/nbaa007.pdf.

Schäfer J, Strimmer K (2005). "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics." Statistical Applications in Genetics and Molecular Biology, 4(1). doi:10.2202/15446115.1175, https://www.degruyter.com/view/journals/ sagmb/4/1/article-sagmb.2005.4.1.1175.xml.xml.

Examples

```
    denseLinearShrinkEst(dat = mtcars)
```

```
is.cvCovEst Check for cvCovEst Class
```


Description

is. cvCovEst() provides a generic method for checking if input is of class cvCovEst.

Usage

is.cvCovEst(x)

Arguments

x
The specific object to test.

Value

A logical indicating TRUE if x inherits from class cvCovEst.

Examples

```
cv_dat <- cvCovEst(
    dat = mtcars,
    estimators = c(
        thresholdingEst, sampleCovEst
    ),
    estimator_params = list(
        thresholdingEst = list(gamma = seq(0.1, 0.3, 0.1))
    ),
    center = TRUE,
    scale = TRUE
)
is.cvCovEst(cv_dat)
```


Description

linearShrinkEst() computes the linear shrinkage estimate of the covariance matrix for a given value of alpha. The linear shrinkage estimator is defined as the convex combination of the sample covariance matrix and the identity matrix. The choice of alpha determines the bias-variance tradeoff of the estimators in this class: values near 1 are more likely to exhibit high variance but low bias, and values near 0 are more likely to be be very biased but have low variance.

Usage

linearShrinkEst(dat, alpha)

Arguments

dat A numeric data.frame, matrix, or similar object.
alpha A numeric between 0 and 1 defining convex combinations of the sample covariance matrix and the identity. alpha $=1$ produces the sample covariance matrix, and alpha $=0$ returns the identity.

Value

A matrix corresponding to the estimate of the covariance matrix.

Examples

linearShrinkEst(dat = mtcars, alpha = 0.1)
linearShrinkLWEst Ledoit-Wolf Linear Shrinkage Estimator

Description

linearShrinkLWEst () computes an asymptotically optimal convex combination of the sample covariance matrix and the identity matrix. This convex combination effectively shrinks the eigenvalues of the sample covariance matrix towards the identity. This estimator is more accurate than the sample covariance matrix in high-dimensional settings under fairly loose assumptions. For more information, consider reviewing the manuscript by Ledoit and Wolf (2004).

Usage

linearShrinkLWEst(dat)

Arguments

dat
A numeric data.frame, matrix, or similar object.

Value

A matrix corresponding to the Ledoit-Wolf linear shrinkage estimate of the covariance matrix.

References

Ledoit O, Wolf M (2004). "A well-conditioned estimator for large-dimensional covariance matrices." Journal of Multivariate Analysis, 88(2), 365-411. ISSN 0047-259X, doi:10.1016/S0047259X(03)000964, https://www.sciencedirect.com/science/article/pii/S0047259X03000964.

Examples

linearShrinkLWEst(dat = mtcars)
nlShrinkLWEst Analytical Non-Linear Shrinkage Estimator

Description

nlShrinkLWEst() invokes the analytical estimator presented by Ledoit and Wolf (2018) for applying a nonlinear shrinkage function to the sample eigenvalues of the covariance matrix. The shrinkage function relies on an application of the Hilbert Transform to an estimate of the sample eigenvalues' limiting spectral density. This estimated density is computed with the Epanechnikov kernel using a global bandwidth parameter of $n^{\wedge}(-1 / 3)$. The resulting shrinkage function pulls eigenvalues towards the nearest mode of their empirical distribution, thus creating a localized shrinkage effect rather than a global one.
We do not recommend that this estimator be employed when the estimand is the correlation matrix. The diagonal entries of the resulting estimate are not guaranteed to be equal to one.

Usage

nlShrinkLWEst(dat)

Arguments

dat A numeric data. frame, matrix, or similar object.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Ledoit O, Wolf M (2018). "Analytical nonlinear shrinkage of large-dimensional covariance matrices." Technical Report 264, Department of Economics - University of Zurich. https: //EconPapers. repec.org/RePEc:zur:econwp: 264.

Examples

nlShrinkLWEst(dat = mtcars)

```
plot.cvCovEst Generic Plot Method for cvCovEst
```


Description

The plot method is a generic method for plotting objects of class, "cvCovEst". The method is designed as a tool for diagnostic and exploratory analysis purposes when selecting a covariance matrix estimator using cvCovEst.

Usage

```
    ## S3 method for class 'cvCovEst'
    plot(
        x,
        dat_orig,
        estimator = NULL,
        plot_type = c("summary"),
        stat = c("min"),
        k = NULL,
        leading = TRUE,
        abs_v = TRUE,
        switch_vars = FALSE,
        min_max = FALSE,
    )
```


Arguments

x
dat_orig The numeric data. frame, matrix, or similar object originally passed to cvCovEst.
estimator A character vector specifying one or more classes of estimators to compare. If NULL, the class of estimator associated with optimal cvCovEst selection is used.
plot_type A character vector specifying one of four choices of diagnostic plots. Default is "summary". See Details for more about each plotting choice.
stat A character vector of one or more summary statistics to use when comparing estimators. Default is "min" for minimum cross-validated risk. See Details for more options.
$\mathrm{k} \quad$ A integer indicating the number of leading/trailing eigenvalues to plot. If NULL,
leading
An object of class, "cvCovEst". Specifically, this is the standard output of the function cvCovEst. will default to the number of columns in dat_orig.

A logical indicating if the leading eigenvalues should be used. Default is TRUE. If FALSE, the trailing eigenvalues are used instead.
$\begin{array}{ll}\text { abs_v } & \begin{array}{l}\text { A logical determining if the absolute value of the matrix entries should be used } \\ \text { for plotting the matrix heat map. Default is TRUE. }\end{array} \\ \text { switch_vars } \quad \begin{array}{l}\text { A logical. If TRUE, the hyperparameters used for the x-axis and factor variables } \\ \text { are switched in the plot of the cross-validated risk. Only applies to estimators } \\ \text { with more than one hyperparameter. Default is FALSE. }\end{array} \\ \text { min_max } & \begin{array}{l}\text { A logical. If TRUE, only the minimum and maximum values of the factor } \\ \text { hyperparameter will be used. Only applies to estimators with more than one } \\ \text { hyperparameter. Default is FALSE. }\end{array} \\ \ldots & \begin{array}{l}\text { Additional arguments passed to the plot method. These are not explicitly used } \\ \text { and should be ignored by the user. }\end{array}\end{array}$

Details

This plot method is designed to aide users in understanding the estimation procedure carried out in cvCovEst (). There are currently four different values for plot_type that can be called:

- "eigen" - Plots the eigenvalues associated with the specified estimator and stat arguments in decreasing order.
- "risk" - Plots the cross-validated risk of the specified estimator as a function of the hyperparameter values passed to cvCovEst(). This type of plot is only compatible with estimators which take hyperparameters as arguments.
- "heatmap" - Plots a covariance heat map associated with the specified estimator and stat arguments. Multiple estimators and performance stats may be specified to produce grids of heat maps.
- "summary" - Specifying this plot type will run all of the above plots for the best performing estimator selected by cvCovEst(). These plots are then combined into a single panel along with a table containing the best performing estimator within each class. If the optimal estimator selected by cvCovEst () does not have hyperparameters, then the risk plot is replaced with a table displaying the minimum, first quartile, median, third quartile, and maximum of the cross-validated risk associated with each class of estimator.

The stat argument accepts five values. They each correspond to a summary statistic of the crossvalidated risk distribution within a class of estimator. Possible values are:

- "min" - minimum
- "Q1" - first quartile
- "median" - median
- "Q3" - third quartile
- "max" - maximum

Value

A plot object

Examples

```
cv_dat <- cvCovEst(
    dat = mtcars,
    estimators = c(
        thresholdingEst, sampleCovEst
    ),
    estimator_params = list(
        thresholdingEst = list(gamma = seq(0.1, 0.9, 0.1))
    )
)
plot(x = cv_dat, dat_orig = mtcars)
```

poetEst POET Estimator

Description

poetEst() implements the Principal Orthogonal complEment Thresholding (POET) estimator, a nonparametric, unobserved-factor-based estimator of the covariance matrix (Fan et al. 2013). The estimator is defined as the sum of the sample covariance matrix' rank-k approximation and its postthresholding principal orthogonal complement. The hard thresholding function is used here, though others could be used instead.

Usage

poetEst(dat, k, lambda)

Arguments

dat A numeric data.frame, matrix, or similar object.
$k \quad$ An integer indicating the number of unobserved latent factors. Empirical evidence suggests that the POET estimator is robust to overestimation of this hyperparameter (Fan et al. 2013). In practice, it is therefore preferable to use larger values.
lambda A non-negative numeric defining the amount of thresholding applied to each element of sample covariance matrix's orthogonal complement.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Fan J, Liao Y, Mincheva M (2013). "Large covariance estimation by thresholding principal orthogonal complements." Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(4), 603-680. ISSN 13697412, 14679868, https://www.jstor.org/stable/24772450.

Examples

```
    poetEst(dat = mtcars, k = 2L, lambda = 0.1)
```


Description

robustPoetEst() implements the robust version of Principal Orthogonal complEment Thresholding (POET) estimator, a nonparametric, unobserved-factor-based estimator of the covariance matrix when the underlying distribution is elliptical (Fan et al. 2018). The estimator is defined as the sum of the sample covariance matrix's rank-k approximation and its post-thresholding principal orthogonal complement. The rank-k approximation is constructed from the sample covariance matrix, its leading eigenvalues, and its leading eigenvectors. The sample covariance matrix and leading eigenvalues are initially estimated via an M-estimation procedure and the marginal Kendall's tau estimator. The leading eigenvectors are estimated using spatial Kendall's tau estimator. The hard thresholding function is used to regularize the idiosyncratic errors' estimated covariance matrix, though other regularization schemes could be used.
We do not recommend that this estimator be employed when the estimand is the correlation matrix. The diagonal entries of the resulting estimate are not guaranteed to be equal to one.

Usage

robustPoetEst(dat, k, lambda, var_est = c("sample", "mad", "huber"))

Arguments

dat A numeric data.frame, matrix, or similar object.
k
An integer indicating the number of unobserved latent factors. Empirical evidence suggests that the POET estimator is robust to overestimation of this hyperparameter (Fan et al. 2013). In practice, it is therefore preferable to use larger values.
lambda A non-negative numeric defining the amount of thresholding applied to each element of sample covariance matrix's orthogonal complement.
var_est A character dictating which variance estimator to use. This must be one of the strings "sample", "mad", or "huber". "sample" uses sample variances; "mad" estimates variances via median absolute deviation; "huber" uses an M-estimator for variance under the Huber loss.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Fan J, Liao Y, Mincheva M (2013). "Large covariance estimation by thresholding principal orthogonal complements." Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(4), 603-680. ISSN 13697412, 14679868, https://www. jstor.org/stable/24772450.

Fan J, Liu H, Wang W (2018). "Large covariance estimation through elliptical factor models." Ann. Statist., 46(4), 1383-1414. doi:10.1214/17AOS1588.

Examples

```
robustPoetEst(dat = mtcars, k = 2L, lambda = 0.1, var_est = "sample")
```

sampleCovEst Sample Covariance Matrix

Description

sampleCovEst () computes the sample covariance matrix. This function is a simple wrapper around covar().

Usage

sampleCovEst(dat)

Arguments

dat A numeric data.frame, matrix, or similar object.

Value

A matrix corresponding to the estimate of the covariance matrix.

Examples

```
sampleCovEst(dat = mtcars)
```

scadEst Smoothly Clipped Absolute Deviation Estimator

Description

scadEst() applies the SCAD thresholding function of Fan and Li (2001) to each entry of the sample covariance matrix. This penalized estimator constitutes a compromise between hard and soft thresholding of the sample covariance matrix: it is a linear interpolation between soft thresholding up to 2 * lambda and hard thresholding after 3.7 * lambda (Rothman et al. 2009).

Usage

scadEst(dat, lambda)

Arguments

dat A numeric data.frame, matrix, or similar object.
lambda A non-negative numeric defining the degree of thresholding applied to each element of dat's sample covariance matrix.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Fan J, Li R (2001). "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties." Journal of the American Statistical Association, 96(456), 1348-1360. doi:10.1198/ 016214501753382273, https://doi.org/10.1198/016214501753382273.

Rothman AJ, Levina E, Zhu J (2009). "Generalized Thresholding of Large Covariance Matrices." Journal of the American Statistical Association, 104(485), 177-186. doi:10.1198/jasa.2009.0101, https://doi.org/10.1198/jasa.2009.0101.

Examples

```
scadEst(dat = mtcars, lambda = 0.2)
```


Description

spikedFrobeniusShrinkEst() implements the asymptotically optimal shrinkage estimator with respect to the Frobenius loss in a spiked covariance matrix model. Informally, this model admits Gaussian data-generating processes whose covariance matrix is a scalar multiple of the identity, save for a few number of large "spikes". A thorough review of this estimator, or more generally spiked covariance matrix estimation, is provided in Donoho et al. (2018).

Usage

spikedFrobeniusShrinkEst(dat, p_n_ratio, num_spikes = NULL, noise = NULL)

Arguments

dat A numeric data.frame, matrix, or similar object.
p_n_ratio A numeric between 0 and 1 representing the asymptotic ratio of the number of features, p, and the number of observations, n.
num_spikes A numeric integer equal to or larger than one which providing the known number of spikes in the population covariance matrix. Defaults to NULL, indicating that this value is not known and must be estimated.
noise A numeric representing the known scalar multiple of the identity matrix giving the approximate population covariance matrix. Defaults to NULL, indicating that this values is not known and must be estimated.

Value

A matrix corresponding to the covariance matrix estimate.

References

Donoho D, Gavish M, Johnstone I (2018). "Optimal shrinkage of eigenvalues in the spiked covariance model." The Annals of Statistics, 46(4), 1742-1778.

Examples

```
spikedFrobeniusShrinkEst(dat = mtcars, p_n_ratio = 0.1, num_spikes = 2L)
```


spikedOperatorShrinkEst

Operator Norm Shrinkage Estimator, Spiked Covariance Model

Description

spikedOperatorShrinkEst() implements the asymptotically optimal shrinkage estimator with respect to the operator loss in a spiked covariance matrix model. Informally, this model admits Gaussian data-generating processes whose covariance matrix is a scalar multiple of the identity, save for a few number of large "spikes". A thorough review of this estimator, or more generally spiked covariance matrix estimation, is provided in Donoho et al. (2018).

Usage

spikedOperatorShrinkEst(dat, p_n_ratio, num_spikes = NULL, noise = NULL)

Arguments

dat A numeric data.frame, matrix, or similar object.
p_n_ratio A numeric between 0 and 1 representing the asymptotic ratio of the number of features, p, and the number of observations, n.
num_spikes A numeric integer equal to or larger than one which providing the known number of spikes in the population covariance matrix. Defaults to NULL, indicating that this value is not known and must be estimated.
noise A numeric representing the known scalar multiple of the identity matrix giving the approximate population covariance matrix. Defaults to NULL, indicating that this values is not known and must be estimated.

Value

A matrix corresponding to the covariance matrix estimate.

References

Donoho D, Gavish M, Johnstone I (2018). "Optimal shrinkage of eigenvalues in the spiked covariance model." The Annals of Statistics, 46(4), 1742-1778.

Examples

```
spikedOperatorShrinkEst(dat = mtcars, p_n_ratio = 0.1, num_spikes = 2L)
```


Description

spikedSteinShrinkEst() implements the asymptotically optimal shrinkage estimator with respect to the Stein loss in a spiked covariance matrix model. Informally, this model admits Gaussian data-generating processes whose covariance matrix is a scalar multiple of the identity, save for a few number of large "spikes". A thorough review of this estimator, or more generally spiked covariance matrix estimation, is provided in Donoho et al. (2018).

Usage

spikedSteinShrinkEst(dat, p_n_ratio, num_spikes = NULL, noise = NULL)

Arguments

dat A numeric data. frame, matrix, or similar object.
p_n_ratio A numeric between 0 and 1 representing the asymptotic ratio of the number of features, p , and the number of observations, n .
num_spikes A numeric integer equal to or larger than one which providing the known number of spikes in the population covariance matrix. Defaults to NULL, indicating that this value is not known and must be estimated.
noise A numeric representing the known scalar multiple of the identity matrix giving the approximate population covariance matrix. Defaults to NULL, indicating that this values is not known and must be estimated.

Value

A matrix corresponding to the covariance matrix estimate.

References

Donoho D, Gavish M, Johnstone I (2018). "Optimal shrinkage of eigenvalues in the spiked covariance model." The Annals of Statistics, 46(4), 1742-1778.

Examples

```
spikedFrobeniusShrinkEst(dat = mtcars, p_n_ratio = 0.1, num_spikes = 2L)
```


Description

summary () provides summary statistics regarding the performance of cvCovEst() and can be used for diagnostic plotting.

Usage

```
    ## S3 method for class 'cvCovEst'
    summary(
        object,
        dat_orig,
        summ_fun = c("cvRiskByClass", "bestInClass", "worstInClass", "hyperRisk"),
    )
```


Arguments

object A named list of class "cvCovEst".
dat_orig The numeric data.frame, matrix, or similar object originally passed to cvCovEst().
summ_fun A character vector specifying which summaries to output. See Details for function descriptions.
... Additional arguments passed to summary ()These are not explicitly used and should be ignored by the user.

Details

summary () accepts four different choices for the summ_fun argument. The choices are:

- "cvRiskByClass" - Returns the minimum, first quartile, median, third quartile, and maximum of the cross-validated risk associated with each class of estimator passed to cvCovEst ().
- "bestInClass" - Returns the specific hyperparameters, if applicable, of the best performing estimator within each class along with other metrics.
- "worstInClass" - Returns the specific hyperparameters, if applicable, of the worst performing estimator within each class along with other metrics.
- "hyperRisk" - For estimators that take hyperparameters as arguments, this function returns the hyperparameters associated with the minimum, first quartile, median, third quartile, and maximum of the cross-validated risk within each class of estimator. Each class has its own tibble, which are returned as a list.

Value

A named list where each element corresponds to the output of of the requested summaries.

Examples

```
cv_dat <- cvCovEst(
    dat = mtcars,
    estimators = c(
        linearShrinkEst, thresholdingEst, sampleCovEst
    ),
    estimator_params = list(
        linearShrinkEst = list(alpha = seq(0.1, 0.9, 0.1)),
        thresholdingEst = list(gamma = seq(0.1, 0.9, 0.1))
    ),
    center = TRUE,
    scale = TRUE
)
summary(cv_dat, mtcars)
```

taperingEst Tapering Estimator

Description

taperingEst () estimates the covariance matrix of a data. frame-like object with ordered variables by gradually shrinking the bands of the sample covariance matrix towards zero. The estimator is defined as the Hadamard product of the sample covariance matrix and a weight matrix. The amount of shrinkage is dictated by the weight matrix and is specified by a hyperparameter k . This estimator is attributed to Cai et al. (2010).
The weight matrix is a Toeplitz matrix with entries defined as follows. Let i and j index the rows and columns of the weight matrix, respectively. If abs $(i-j)<=k / 2$, then entry $\{i, j\}$ in the weight matrix is equal to 1 . If $k / 2<\operatorname{abs}(i-j)<k$, then entry $\{i, j\}$ is equal to $2-2 * \operatorname{abs}(i-j) / k$. Otherwise, entry $\{\mathrm{i}, \mathrm{j}\}$ is equal to 0 .

Usage

```
taperingEst(dat, k)
```


Arguments

$$
\text { dat } \quad \text { A numeric data.frame, matrix, or similar object. }
$$

$\mathrm{k} \quad$ A non-negative, even numeric integer.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Cai TT, Zhang C, Zhou HH (2010). "Optimal rates of convergence for covariance matrix estimation." Ann. Statist., 38(4), 2118-2144. doi:10.1214/09AOS752.

Examples

```
    taperingEst(dat = mtcars, k = 0.1)
```

thresholdingEst Hard Thresholding Estimator

Description

thresholdingEst() computes the hard thresholding estimate of the covariance matrix for a given value of gamma. The threshold estimator of the covariance matrix applies a hard thresholding operator to each element of the sample covariance matrix. For more information on this estimator, review Bickel and Levina (2008).

Usage

thresholdingEst(dat, gamma)

Arguments

dat A numeric data. frame, matrix, or similar object.
gamma A non-negative numeric defining the degree of hard thresholding applied to each element of dat's sample covariance matrix.

Value

A matrix corresponding to the estimate of the covariance matrix.

References

Bickel PJ, Levina E (2008). "Covariance regularization by thresholding." Annals of Statistics, 36(6), 2577-2604. doi:10.1214/08AOS600.

Examples

```
thresholdingEst(dat = mtcars, gamma = 0.2)
```


Index

```
adaptiveLassoEst,2
bandingEst, 3
covar, 18
cross_validate,5
cvCovEst, 4, 15,23
cvFrobeniusLoss, 5, 6,7
cvMatrixFrobeniusLoss, 5, 7, 9
cvScaledMatrixFrobeniusLoss, 5, 8
denseLinearShrinkEst,10
future_lapply,5
is.cvCovEst,11
linearShrinkEst,12
linearShrinkLWEst, 12
make_folds, 6, 7, 9
nlShrinkLWEst,13
plot.cvCovEst, 14
poetEst,16
robustPoetEst,17
sampleCovEst,18
scadEst,19
spikedFrobeniusShrinkEst, 20
spikedOperatorShrinkEst,21
spikedSteinShrinkEst, 22
summary.cvCovEst,23
taperingEst, 24
thresholdingEst, 25
tibble, 5, 6, 8, 9, 23
```

