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Introduction

This is an introduction to the Lexis machinery in the Epi package. The machinery is
intended for representation and manipulation of follow-up data (event history data) from
studies where exact dates of events are known. It accommodates follow-up through
multiple states and on multiple time scales.

This vignette uses an example from the Epi package to illustrate the set-up of a simple
Lexis object (a data frame of follow-up intervals), as well as the subdivision of follow-up
intervals needed for multistate representation and analysis of transition rates by flexible
parametric functions.

The first chapter is exclusively on manipulation of the follow-up representation, but it
points to the subsequent chapter where analysis is based on a Lexis representation with
very small follow-up intervals.

Chapter 2 uses analysis of mortality rates among Danish diabetes patients (available in
the Epi package) currently on insulin treatment or not to illustrate the use of the the
Lexis machinery.

0.1 History

The Lexis machinery in the Epi package was first conceived by Martyn Plummer|3, 1],
and since its first appearance in the Epi package in 2008 it has been expanded with a
number of utilities. An overview of these can be found in the last chapter of this note,
“Lexis functions”.



Chapter 1

Representation of follow-up data in the
Epi package

In the Epi-package, follow-up data is represented by adding some extra variables and a few
attributes to a data frame. Such a data frame is called a Lexis object. The tools for
handling follow-up data then use the structure of this for special plots, tabulations and
modeling.

Follow-up data basically consists of a time of entry, a time of exit and an indication of
the status at exit (normally either “alive” or “dead”) for each person. Implicitly is also
assumed a status during the follow-up (usually “alive”).
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Figure 1.1: Follow-up of two persons

1.1 Time scales

A time scale is a variable that varies deterministically within each person during follow-up,
e.g..

o Age

e Calendar time

e Time since start of treatment
e Time since relapse

All time scales advance at the same pace, so the time followed is the same on all time scales.
Therefore, it will suffice to use only the entry point on each of the time scales, for example:

e Age at entry
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e Date of entry
e Time at treatment (at treatment this is 0)
e Time at relapse (af relapse this is 0)

For illustration we need to load the Epi package:

> library(Epi)

> print( sessionInfo(), 1 = F)

R version 4.3.2 (2023-10-31 ucrt)

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default
attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] tidyr_1.3.1 dplyr_1.1.4 popEpi_0.4.11 Epi_2.48

loaded via a namespace (and not attached):

[1] etm_1.1.1 vctrs_0.6.5 nlme_3.1-163 cli_3.6.2

[5] rlang_1.1.3 purrr_1.0.2 cmprsk_2.2-11 generics_0.1.3

[9] data.table_1.15.2 zo00_1.8-12 glue_1.7.0 plyr_1.8.9
[13] fansi_1.0.6 grid_4.3.2 tibble_3.2.1 MASS_7.3-60
[17] numDeriv_2016.8-1.1 lifecycle_1.0.4 compiler_4.3.2 Rcpp_1.0.12
[21] pkgconfig 2.0.3 mgev_1.9-0 lattice_0.21-9 R6_2.5.1
[25] tidyselect_1.2.1 utf8_1.2.4 pillar_1.9.0 parallel_4.3.2
[29] splines_4.3.2 magrittr_2.0.3 Matrix_1.6-1.1 withr_3.0.0
[33] tools_4.3.2 survival_3.5-7

In the Epi package, follow-up in a cohort is represented in a Lexis object. As mentioned, a
Lexis object is a data frame with some extra structure representing the follow-up. For the
DMlate data — follow-up of diabetes patients in Denmark recording date of birth, date of
diabetes, date of insulin use, date of first oral drug use and date of death — we can
construct a Lexis object by:

> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923
> dmL <- Lexis(entry = list(per = dodm,
+ age = dodm-dobth,
+ tfD = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM", "Dead")),
+ data = DMlate)
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NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> timeScales(dmL)
[1] Ilperll Ilagell Ilthll

(The excluded persons are persons with date of diabetes equal to date of death.)

The entry argument is a named list with the entry points on each of the time scales we
want to use. It defines the names of the time scales and the entry points of the follow-up of
each person. The exit argument gives the exit time on one of the time scales, so the name
of the element in this list must match one of the names of the entry list. This is sufficient,
because the follow-up time on all time scales is the same, in this case dox-dodm.

The exit.status is a categorical variable (a factor) that indicates the exit status — in
this case whether the person (still) is in state DM or exits to Dead at the end of follow-up.
In principle we should also indicate the entry.status, but the default is to assume that
all persons enter in the first of the mentioned exit.states — in this case DM, because
FALSE < TRUE.

Now take a look at the result:

> str(dmL)
Classes 'Lexis' and 'data.frame': 9996 obs. of 14 variables:
$ per : num 1999 2003 2005 2009 2009 ...
$ age : num b58.7 64.1 86.3 44 75.8 ...
$ tfD :num 0 000000O0O0O0 ...
$ lex.dur: num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst: Factor w/ 2 levels "DM","Dead": 1 111111111 ...
$ lex.Xst: Factor w/ 2 levels "DM","Dead": 1 111121121 ...
$ lex.id : int 123456789 10 ...
$ sex : Factor w/ 2 levels "M","F": 2122121121 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

attr(*, "time.scales")= chr [1:3] "per" "age" "tfD"
attr(*, "time.since")= chr [1:3] """ mm nn
attr(x, "breaks")=List of 3

..$ per: NULL
..$ age: NULL
..$ tfD: NULL
> head(dmL)[, 1:10]
lex.id per age tfD lex.dur lex.Cst lex.Xst sex dobth dodm
1 1998.92 58.66 0 11.08 DM DM F 1940.256 1998.917
2 2003.31 64.09 O 6.69 DM DM M 1939.218 2003.309
3 2004.55 86.25 0 5.45 DM DM F 1918.301 2004.552
4 2009.26 44.04 O 0.74 DM DM F 1965.225 2009.261
5 2008.65 75.78 0 1.34 DM DM M 1932.877 2008.653
6 2007.89 80.02 O 2.04 DM Dead F 1927.870 2007.886

The Lexis object dmL has a variable for each time scale which is the entry point on this
time scale. The follow-up time is in the variable lex.dur (duration). Note that the exit
status is in the variable lex.Xst (eXit state. The variable lex.Cst is the state where the
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follow-up takes place (Current state), in this case DM (alive with diabetes) for all persons.
This implies that censored observations are characterized by having lex.Cst = lex.Xst.

There is a summary function for Lexis objects that lists the number of transitions and
records as well as the total amount of follow-up time; it also (optionally) prints information
about the names of the variables that constitute the time scales:

> summary (dmL, timeScales = TRUE)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
Timescales:
per age tfD

It is possible to get a visualization of the follow-up along the time scales chosen by using
the plot method for Lexis objects. dmL is an object of class Lexis, so using the function
plot () on it means that R will look for the function plot.Lexis and use this function.

> plot(dmL)

The function allows quite a bit of control over the output, and a points.Lexis function
allows plotting of the endpoints of follow-up:

> par(mar = ¢(3, 3, 1, 1), mgp = c(3, 1, 0) / 1.6)

> plot(dmL, 1:2, 1wd = 1, col = c("blue", "red")[dmL$sex],
+ grid = TRUE, lty.grid = 1, col.grid = gray(0.7),

+ xlim = 1960 + c(0, 60), xaxs = "i",

+ ylim = 40 + c(0, 60), yaxs = "i", las = 1)

> points(dmL, 1:2, pch = c(NA, 3)[duL$lex.Xst],

+ col = "lightgray", lwd = 3, cex = 0.3)

> points(dmL, 1:2, pch = c(NA, 3)[duL$lex.Xst],
+ col = c("blue", "red")[dmL$sex], lwd = 1, cex = 0.3)
> box(bty = 'o')

In the above code you will note that the values of the arguments col and pch are indexed
by factors, using the convention in R that the index is taken as number of the level of the
supplied factor. Thus c("blue", "red")[dmL$sex] is "blue" when sex is M (the first
level).

The results of these two plotting commands are in figure 1.2, p. 6.

1.2 Splitting the follow-up time along a time scale

In next chapter we shall conduct statistical analysis of mortality rates, and a prerequisite
for parametric analysis of rates is that follow-up time is subdivided in smaller intervals,
where we can reasonably assume that rates are constant.

The follow-up time in a cohort can be subdivided (“split”) along a time scale, for example
current age. This is achieved by the splitLexis (note that it is not called split.Lexis).
This requires that the time scale and the breakpoints on this time scale are supplied. Try:

> dmS1 <- splitlexis(dmL, "age", breaks = seq(0, 100, 5))
> summary (dmL)
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Figure 1.2: Lexis diagram of the DMlate dataset; left panel is the default version, right panel:
plot with some bells and whistles. The red lines are for women, blue for men, crosses indicate
deaths.

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
> summary (dmS1)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 18328 2499 20827 2499 54273.27 9996

We see that the number of persons and events and the amount of follow-up is the same in
the two data sets; only the number of records differ — the extra records all have lex.Cst
= DM and lex.Xst = DM.

To see how records are split for each individual, it is useful to list the results for a few
individuals (whom we selected with a view to the illustrative usefulness):

> wh.id <- c(9, 27, 52, 484)
> subset(dmL , lex.id %inJ wh.id)[, 1:10]

lex.id per age tfD lex.dur lex.Cst lex.Xst sex dobth dodm
9 1998.96 61.87 O 9.51 DM Dead F 1937.083 1998.956

27 2000.04 52.71 0 9.95 DM DM M 1947.331 2000.042

52 1998.25 61.86 0 11.75 DM DM F 1936.393 1998.249

484 1998.26 62.38 0 10.93 DM Dead F 1935.881 1998.260

> subset(dmS1, lex.id Jin), wh.id)[, 1:10]
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lex.id per age tfD lex.dur lex.Cst lex.Xst sex do
9 1998.96 61.87 0.00 3.13 DM DM F 1937.

9 2002.08 65.00 3.13 5.00 DM DM F 1937.

9 2007.08 70.00 8.13 1.38 DM Dead F 1937.
27 2000.04 52.71 0.00 2.29 DM DM M 1947.
27 2002.33 55.00 2.29 5.00 DM DM M 1947.
27 2007.33 60.00 7.29 2.67 DM DM M 1947.
52 1998.25 61.86 0.00 3.14 DM DM F 1936.
52 2001.39 65.00 3.14 5.00 DM DM F 1936.
52 2006.39 70.00 8.14 3.60 DM DM F 1936.
484 1998.26 62.38 0.00 2.62 DM DM F 1935.
484 2000.88 65.00 2.62 5.00 DM DM F 1935.
484 2005.88 70.00 7.62 3.31 DM Dead F 1935.

bth
083
083
083
331
331
331
393
393
393
881
881
881

d
1998.
1998.
1998.
2000.
2000.
2000.
1998.
1998.
1998.
1998.
1998.
1998.

odm
956
956
956
042
042
042
249
249
249
260
260
260

The resulting object, dmS1, is again a Lexis object, and the follow-up may be split further
along another time scale, for example diabetes duration, t£fD. Subsequently

results for the chosen individuals:

> dmS2 <- splitLexis(dmS1, "tfD", breaks = c(0, 1, 2, 5, 10,
> subset(dmS2, lex.id JinJ wh.id)[, 1:10]

lex.id per age tfD lex.dur lex.Cst lex.Xst sex d
9 1998.96 61.87 0.00 1.00 DM DM F 1937.

9 1999.96 62.87 1.00 1.00 DM DM F 1937.

9 2000.96 63.87 2.00 1.13 DM DM F 1937.

9 2002.08 65.00 3.13 1.87 DM DM F 1937.

9 2003.96 66.87 5.00 3.13 DM DM F 1937.

9 2007.08 70.00 8.13 1.38 DM Dead F 1937.
27 2000.04 52.71 0.00 1.00 DM DM M 1947.
27 2001.04 53.71 1.00 1.00 DM DM M 1947.
27 2002.04 54.71 2.00 0.29 DM DM M 1947.
27 2002.33 55.00 2.29 2.71 DM DM M 1947.
27 2005.04 57.71 5.00 2.29 DM DM M 1947.
27 2007.33 60.00 7.29 2.67 DM DM M 1947.
52 1998.25 61.86 0.00 1.00 DM DM F 1936.
52 1999.25 62.86 1.00 1.00 DM DM F 1936.
52 2000.25 63.86 2.00 1.14 DM DM F 1936.
52 2001.39 65.00 3.14 1.86 DM DM F 1936.
52 2003.25 66.86 5.00 3.14 DM DM F 1936.
52 2006.39 70.00 8.14 1.86 DM DM F 1936.
52 2008.25 71.86 10.00 1.75 DM DM F 1936.
484 1998.26 62.38 0.00 1.00 DM DM F 1935.
484 1999.26 63.38 1.00 1.00 DM DM F 1935.
484 2000.26 64.38 2.00 0.62 DM DM F 1935.
484 2000.88 65.00 2.62 2.38 DM DM F 1935.
484 2003.26 67.38 5.00 2.62 DM DM F 1935.
484 2005.88 70.00 7.62 2.38 DM DM F 1935.
484 2008.26 72.38 10.00 0.93 DM Dead F 1935.

20,

obth
083
083
083
083
083
083
331
331
331
331
331
331
393
393
393
393
393
393
393
881
881
881
881
881
881
881

30,

1998.
1998.
1998.
1998.
1998.
1998.
2000.
2000.
2000.
2000.
2000.
2000.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.
1998.

we list the

40))

dodm
956
956
956
956
956
956
042
042
042
042
042
042
249
249
249
249
249
249
249
260
260
260
260
260
260
260

A more efficient (and more intuitive) way of making this double split is to use the

splitMulti function from the popEpi package
> if (require(popEpi, quietly = TRUE))
{

options("popEpi.datatable" = FALSE)
dmM <- splitMulti(dmL,
age = seq(0, 100, 5),
tfD = c¢c(0, 1, 2, 5, 10, 20, 30, 40),

+ + + + +
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+ drop = FALSE)
+ summary (dmS2)
+ summary (dmM)
+ }
Transitions:
To

From DM Dead Records: Events: Risk time: Persons:

DM 40897 2499 43396 2499 54273.27 9996

Note we used the argument drop = FALSE which will retain follow-up also outside the
window defined by the range of the breaks. Otherwise, the default for splitMulti would
be to drop follow-up outside age [0, 100] and t£D [0, 40]. This clipping behaviour is not
available in splitLexis, nevertheless this may be exactly what we want in some situations.

So we see that the two ways of splitting data yields the same amount of follow-up, but
the results are not necessarily identical on all machines:

> if (require(popEpi, quietly = TRUE))
+ {

+ identical(dmS2, dmM)

+ class(dmS2)

+ class (dmM)

+ }

[1] "Lexis" "data.frame"

As we see, this is because the dmM object also is a data.table object; the splitMulti uses
the data.table machinery which makes the splitting substantially faster — this is of
particular interest if you operate on large data sets (> 100,000 records).

Thus the recommended way of splitting follow-up time is by splitMulti. But you
should be aware that the result is a data.table object, which in some circumstances
behaves slightly different from data.frames. See the manual for data.table.

1.3 Cutting follow up time at dates of intermediate
events

If we have a recording of the date of a specific event as for example recovery or relapse, we
may classify follow-up time as being before or after this intermediate event, but it requires
that follow-up records that straddle the event be cut in two and placed in separate records,
one representing follow-up before the intermediate event, and another representing
follow-up after the intermediate event. This is achieved with the function cutLexis, which
takes three arguments: the time point of the intermediate event, the time scale that this
point refers to, and the value of the (new) state following the date. Optionally, we may also
define a new time scale with the argument new.scale = .

We are interested in the time before and after inception of insulin use, which occurs at
the date doins:

> subset(dmL, lex.id Jinj, wh.id)

lex.id per age tfD lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad
9 1998.96 61.87 O 9.51 DM Dead F 1937.083 1998.956 2008.464 NA
27 2000.04 52.71 0 9.95 DM DM M 1947.331 2000.042 NA 2000.125

52 1998.25 61.86 O 11.75 DM DM F 1936.393 1998.249 NA 2002.402
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484 1998.26 62.38 0 10.93 DM Dead F 1935.881 1998.260 2009.190 1998.260
doins dox
NA 2008.464
NA 2009.997
2004 .804 2009.997
2003.960 2009.190

> dmC <- cutlexis(data = dmL,

+ cut = dmL$doins,
+ timescale = "per",
+ new.state = "Ins",
+ new.scale = "tfI")
> subset(dmC, lex.id Jinj, wh.id)[, 1:10]
lex.id per age tfD tfl lex.dur lex.Cst lex.Xst sex dobth
9 1998.96 61.87 0.00 NA 9.51 DM Dead F 1937.083
27 2000.04 52.71 0.00 NA 9.95 DM DM M 1947.331
52 1998.25 61.86 0.00 NA 6.55 DM Ins F 1936.393
52 2004.80 68.41 6.55 0 5.19 Ins Ins F 1936.393
484 1998.26 62.38 0.00 NA 5.70 DM Ins F 1935.881
484 2003.96 68.08 5.70 0 5.23 Ins Dead F 1935.881

Note that the process of cutting time is simplified by having all types of events referred to
the calendar time scale. This is a generally applicable advice in handling follow-up data:
Get all event times as dates, location of events and follow-up on other time scales can then
easily be derived from this.

Note that individual 52 has had his follow-up cut at 6.55 years from diabetes diagnosis
and individual 484 at 5.70 years from diabetes diagnosis. This dataset could then be split
along the time scales as we did before with dmL.

The result of this can also be achieved by cutting the split dataset dmS2 instead of dmL.:

> dmS2C <- cutLexis(data = dmS2,

+ cut = dmS2$doins,

+ timescale = "per",

+ new.state = "Ins",

+ new.scale = "tfI")

> subset (dmS2C, lex.id Jinj, wh.id)

lex.id per age tfD tfI lex.dur lex.Cst lex.Xst sex dobth dodm dodth
9 1998.96 61.87 0.00 NA 1.00 DM DM F 1937.083 1998.956 2008.464
9 1999.96 62.87 1.00 NA 1.00 DM DM F 1937.083 1998.956 2008.464
9 2000.96 63.87 2.00 NA 1.13 DM DM F 1937.083 1998.956 2008.464
9 2002.08 65.00 3.13 NA 1.87 DM DM F 1937.083 1998.956 2008.464
9 2003.96 66.87 5.00 NA 3.13 DM DM F 1937.083 1998.956 2008.464
9 2007.08 70.00 8.13 NA 1.38 DM Dead F 1937.083 1998.956 2008.464
27 2000.04 52.71 0.00 NA 1.00 DM DM M 1947.331 2000.042 NA
27 2001.04 53.71 1.00 NA 1.00 DM DM M 1947.331 2000.042 NA
27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.331 2000.042 NA
27 2002.33 55.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA
27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA
27 2007.33 60.00 7.29 NA 2.67 DM DM M 1947.331 2000.042 NA
52 1998.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1998.249 NA
52 1999.25 62.86 1.00 NA 1.00 DM DM F 1936.393 1998.249 NA
52 2000.25 63.86 2.00 NA 1.14 DM DM F 1936.393 1998.249 NA
52 2001.39 65.00 3.14 NA 1.86 DM DM F 1936.393 1998.249 NA
52 2003.25 66.86 5.00 NA 1.556 DM Ins F 1936.393 1998.249 NA
52 2004.80 68.41 6.55 0.00 1.59 Ins Ins F 1936.393 1998.249 NA
52 2006.39 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1998.249 NA
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52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 1936.393 1998.249
484 1998.26 62.38 0.00 NA 1.00 DM DM F 1935.881 1998.260 2009.
484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1998.260 2009.
484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.
484 2000.88 65.00 2.62 NA 2.38 DM DM F 1935.881 1998.260 2009.
484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.
484 2003.96 68.08 5.70 0.00 1.92 Ins Ins F 1935.881 1998.260 2009.
484 2005.88 70.00 7.62 1.92 2.38 Ins Ins F 1935.881 1998.260 2009.
484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.
dooad doins dox
NA NA 2008.464
NA NA 2008.464
NA NA 2008.464
NA NA 2008.464
NA NA 2008.464
NA NA 2008.464
2000.125 NA 2009.997
2000.125 NA 2009.997
2000.125 NA 2009.997
2000.125 NA 2009.997
2000.125 NA 2009.997
2000.125 NA 2009.997

2002.402 2004.804 2009.997
2002.402 2004.804 2009.997
2002.402 2004.804 2009.997
2002.402 2004.804 2009.997
2002.402 2004 .804 2009.997
2002.402 2004.804 2009.997
2002.402 2004.804 2009.997
2002.402 2004.804 2009.997
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190
1998.260 2003.960 2009.190

Thus it does not matter in which order we use splitLexis and cutLexis. Mathematicians
would say that splitLexis and cutLexis are commutative.

Note in lex.id = 484, that follow-up subsequent to the event is classified as being in
state Ins, but that the final transition to state Dead is preserved. This is the point of the
precursor.states = argument. It names the states (in this case DM) that will be
over-written by new.state (in this case Ins), while the state Dead should not be updated
even if it is after the time where the persons moves to state Ins. In other words, only state
DM is a precursor to state Ins, state Dead is always subsequent to state Ins.

Note that we defined a new time scale, t£I, using the argument new.scale = tfI. This
has a special status relative to the other three time scales, it is defined as time since entry
into a state, namely Ins, this is noted in the time scale part of the summary of Lexis
object — the information sits in the attribute time.since of the Lexis object, which can
be accessed by the function timeSince () or through the summary ()

> summary (dmS2C, timeScales = TRUE)

NA
190
190
190
190
190
190
190
190
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Transitions:
To
From DM Ins Dead Records: Events: Risk time: Persons:
DM 35135 1694 2048 38877 3742 45885.49 9899
Ins 0 5762 451 6213 451 8387.77 1791
Sum 35135 7456 2499 45090 4193 54273.27 9996
Timescales:
per age tfD tfI

mnn nn nn IIInSII

Finally we can get a quick overview of the states and transitions by using boxes —
scale.R scales transition rates to rates per 1000 PY:

> boxes(dmC, boxpos = TRUE, scale.R = 1000, show.BE = TRUE)

DM
45,885.5
9,899 6,157 1694
(36.9)
2,048
(44.6) Ins
8,387.8
97 1,340
451
\i 4
Dead
0 2,499

Figure 1.3: States, person years, transitions and rates in the cut dataset. The numbers in
the bozes are person-years and the number of persons Beginning, resp. Ending their follow-up
in each state (triggered by show.BE = TRUE). The numbers at the arrows are the number of
transitions and transition rates per 1000 (triggered by scale.R = 1000). ./f1lup-box1



Chapter 2

Modeling rates from Lexis objects

2.1 Covariates

In the dataset dmS2C there are three types of covariates that can be used to describe
mortality rates:

1. time-dependent covariates
2. time scales
3. fixed covariates

There is only one time-dependent covariate here, namely lex.Cst, the current state of
the person’s follow up; it takes the values DM and Ins according to whether the person has
ever purchased insulin at a given time of follow-up.

The time-scales are obvious candidates for explanatory variables for the rates, notably
age and time from diagnosis (duration of diabetes) and insulin.

2.1.1 Time scales as covariates

If we want to model the effect of the time scale variables on occurrence rates, we will for
each interval use either the value of the left endpoint in each interval or the middle. There
is a function timeBand which returns either of these:

> timeBand(dmS2C, "age", '"middle")[1:10]
[1] 57.5 57.5 62.5 62.5 62.5 67.5 67.5 62.5 67.5 67.5

> # For nice printing and column labelling we use the data.frame() function:
> data.frame(dmS2C[, c("per", "age", "tfD", "lex.dur")],
+ mid.age = timeBand(dmS2C, "age', "middle"),
+ mid.t = timeBand(dmS2C, "tfD'", "middle'),
+ left.t = timeBand(dmS2C, "tfD", "left" ),
+ right.t = timeBand(dmS2C, "tfD", "right" ),
+ fact.t = timeBand(dmS2C, "tfD", "factor'"))[1:15, ]

per age tfD lex.dur mid.age mid.t left.t right.t fact.t
1 1998.917 58.66119 0.0000000 1.00000000 57.5 0.5 0 1 (0,1]
2 1999.917 59.66119 1.0000000 0.33880903 57.5 1.5 1 2 (1,2]
3 2000.256 60.00000 1.3388090 0.66119097 62.5 1.5 1 2 (1,2]
4 2000.917 60.66119 2.0000000 3.00000000 62.5 3.5 2 5 (2,5]
5 2003.917 63.66119 5.0000000 1.33880903 62.5 7.5 5 10 (5,10]

12
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6 2005.256 65.00000 6.3388090 3.66119097 67.5 7.5 5 10 (5,10]
7 2008.917 68.66119 10.0000000 1.08008214 67.5 15.0 10 20 (10,20]
8 2003.309 64.09035 0.0000000 0.90965092 62.5 0.5 0 1 (0,1]
9 2004.218 65.00000 0.9096509 0.09034908 67.5 0.5 0 1 (0,1]
10 2004.309 65.09035 1.0000000 1.00000000 67.5 1.5 1 2 (1,2]
11 2005.309 66.09035 2.0000000 3.00000000 67.5 3.5 2 5 (2,5]
12 2008.309 69.09035 5.0000000 0.90965092 67.5 7.5 5 10 (5,10]
13 2009.218 70.00000 5.9096509 0.77891855 72.5 7.5 5 10 (5,10]
14 2004.552 86.25051 0.0000000 1.00000000 87.5 0.5 0 1 (0,1]
15 2005.552 87.25051 1.0000000 1.00000000 87.5 1.5 1 2 (1,2]

Note that the values of these functions are characteristics of the intervals defined by
breaks = , not the midpoints nor left or right endpoints of the actual follow-up intervals
(which would be tfD and tfD+lex.dur, respectively).

These functions are intended for modeling time scale variables as factors (categorical
variables) in which case the coding must be independent of the censoring and mortality
pattern — it should only depend on the chosen grouping of the time scale. Modeling time
scales as quantitative should not be based on these codings but directly on the values of the
time-scale variables, notably the left endpoints of the intervals.

2.1.2 Differences between time scales

Apparently, the only fixed variable is sex, but formally the dates of birth (dobth),
diagnosis (dodm) and first insulin purchase (doins) are fixed covariates too. They can be
constructed as origins of time scales referred to the calendar time scale. Likewise, and
possibly of greater interest, we can consider these origins on the age scale, calculated as the
difference between age and another time scale.

These would then be age at birth (hardly relevant since it is the same for all persons),
age at diabetes diagnosis and age at insulin treatment.

2.1.3 Keeping the relation between time scales

The midpoint (as well as the right interval endpoint) should be used with caution if the
variable age at diagnosis dodm-dobth is modeled too; the age at diabetes is logically equal
to the difference between current age (age) and time since diabetes diagnosis (t£D):

> summary ((dmS2$age - dmS2$tfD) - (dmS2%dodm - dmS2$dobth))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

This calculation refers to the start of each interval — which are in the time scale variables
in the Lexis object. But when using the middle of the intervals, this relationship is not
preserved:

> summary (timeBand (dmS2, "age", "middle") -

+ timeBand (dmS2, "tfD", "middle") -
+ (dmS2$dodm - dmS2$dobth))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.4870 -2.0862 -0.3765 Inf 1.3641 Inf

If all three variables are to be included in a model, we must make sure that the substantial
relationship between the variables be maintained. One way is to recompute age at diabetes
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diagnosis from the two midpoint variables, but more straightforward would be to use the
left endpoint of the intervals, that is the time scale variables in the Lexis object.

If we dissolve the relationship between the variables age, tfD and age at diagnosis by
grouping we may obtain identifiability of the three separate effects, but it will be at the
price of an arbitrary allocation of a linear trend between them.

For the sake of clarity, consider current age, a, duration of disease, d and age at
diagnosis e, where

current age = age at diagnosis + disease duration, ie. a=e+d <& e+d—a=0

If we model the effect of the quantitative variables a, e and d on the log-rates by three
functions f, g and h: log(\) = f(a) + g(d) + h(e) then for any x:

log(A) = f(a) + g(d) + h(e) + k(e + d —a)
(f(a) Ka ) + (g(d) - /@d) + (h(e) - Ke)
+§(d) + he)

In practical modeling this will turn up as a singular model matrix with one parameter
aliased, corresponding to some arbitrarily chosen value of x (depending on software
conventions for singular models). This phenomenon is well known from age-period-cohort
models.

Thus we see that we can move any slope around between the three terms, so if we
achieve identifiability by using grouping of one of the variables we will in reality have
settled for a particular value of k, without known why we chose just that. The solution is
to resort to predictions which are independent of the particular parametrization or choose
a particular parametrization with explicit constraints.

2.2 Modeling of rates

As mentioned, the purpose of subdividing follow-up data in smaller intervals is to be able
to model effects of time scale variables as parametric functions. When we split along a time
scale we can get intervals that are as small as we want; if they are sufficiently small, an
assumption of constant rates in each interval becomes reasonable.

In a model that assumes a constant occurrence rate in each of the intervals the likelihood
contribution from each interval is the same as the likelihood contribution from a Poisson
variate D, say, with mean Al where A\ is the rate and / is the interval length, and where the
value of the variate D is 1 or 0 according to whether an event has occurred or not.
Moreover, the likelihood contributions from all follow-up intervals from a single person are
conditionally independent (conditional on having survived till the start of the interval in
question). This implies that the total contribution to the likelihood from a single person is
a product of terms, and hence the same as the likelihood of a number of independent
Poisson terms, one from each interval.

Note that variables are neither Poisson distributed (e.g. they can only ever assume
values 0 or 1) nor independent — it is only the likelihood for the follow-up data that
happens to be the same as the likelihood from independent Poisson variates. Different
models can have the same likelihood, a model cannot be inferred from the likelihood.
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Parametric modeling of the rates is obtained by using the values of the time scales for
each interval as quantitative explanatory variables, using for example splines. And of
course also the values of the fixed covariates and the time-dependent variables for each
interval. Thus the model will be one where the rate is assumed constant in each (small)
interval, but where a parametric form of the size of the rate in each interval is imposed by
the model, using the time scale as a quantitative covariate.

2.2.1 Interval length

In the first chapter we illustrated cutting and splitting by listing the results for a few
individuals across a number of intervals. For illustrational purposes we used 5-year age
bands to avoid excessive listings, but since the doubling time for mortality on the age scale
is only slightly larger than 5 years, the assumption about constant rates in each interval
would be pretty far fetched if we were to use 5 year intervals.

Thus, for modeling purposes we split the follow-up in 3 month intervals. When we use
intervals of 3 months length it is superfluous to split along multiple time scales — the
precise location of tightly spaced splits will be irrelevant from any practical point of view.
splitLexis and splitMulti will allocate the actual split times for all of the time scale
variables, so these can be used directly in modeling.

So we split the cut dataset in 3 months intervals along the age scale:

> dmCs <- splitLexis(dmC, time.scale = "age", breaks = seq(0, 110, 1/4))
> summary(dmCs, t = T)

Transitions:
To
From DM Ins Dead Records: Events: Risk time: Persons:
DM 189669 1694 2048 193411 3742 45885.49 9899
Ins 0 34886 451 35337 451 8387.77 1791
Sum 189669 36580 2499 228748 4193 54273.27 9996
Timescales:
per age tfD tflI

nn nn nn llInsll

We see that we now have 228, 748 records and 9996 persons, so about 23 records per
person. The total risk time is 54, 275 years, a bit less than 3 months on average per record
as expected.

2.2.2 Practicalities for splines

In this study we want to look at how mortality depend on age (age) and time since start of
insulin use (t£fI). If we want to use splines in the description we must allocate knots for
anchoring the splines at each of the time scales, either by some ad hoc method or by using
some sort of penalized splines as for example by gam; the latter will not be treated here; it
belongs in the realm of the mgcv package.

Here we shall use the former approach and allocate 5 knots on each of the time-scales.
We allocate knots so that we have the events evenly distributed between the knots. Since
the insulin state starts at 0 for all individuals we include 0 as the first knot, such that any
set of natural splines with these knots will have the value 0 at 0 on the time scale.
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> (a.kn <- with(subset(dmCs, lex.Xst == '"Dead'"),
+ quantile(age+lex.dur, (1:5-0.5)/5)))
10% 30% 50% 70% 90%

60.29350 71.31937 77.72758 82.72745 89.86393
> (i.kn <- c(0,

+ with (subset (dmCs, lex.Xst == "Dead" & lex.Cst == "Ins"),
+ quantile(tfI+lex.dur, (1:4)/5))))
20% 40% 60% 80%

0.0000000 0.3093771 1.1307324 2.5489391 4.9117043

In the Epi package there is a convenience wrapper, Ns, for the natural spline generator ns,
that takes the smallest and the largest of a set of supplied knots to be the boundary knots,
so the explicit definition of the boundary knots becomes superfluous.

Note that it is a feature of the Ns (via the features of ns) that any generated spline
function is 0 at the leftmost knot.

2.2.3 Poisson models

A model that describes mortality rates as only a function of age would then be:

> ma <- glm((lex.Xst == "Dead") ~ Ns(age, knots = a.kn),

+ family = poisson,

+ offset = log(lex.dur),

+ data = dmCs)

> summary (ma)

Call:

glm(formula = (lex.Xst == "Dead") ~ Ns(age, knots = a.kn), family = poisson,

data = dmCs, offset = log(lex.dur))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.82830 0.03861 -99.16  <2e-16 *x**
Ns(age, knots = a.kn)l 1.36254 0.08723 15.62  <2e-16 #*x*x
Ns(age, knots = a.kn)2 1.49446 0.06845 21.83 <2e-16 *x*x
Ns(age, knots = a.kn)3 2.63557 0.07058  37.34 <2e-16 #*x
Ns(age, knots = a.kn)4 1.94173 0.05769  33.66 <2e-16 **x
Signif. codes: O '#*x' 0.001 'x' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27719 on 228747 degrees of freedom
Residual deviance: 25423 on 228743 degrees of freedom
AIC: 30431

Number of Fisher Scoring iterations: 8

The offset, log(lex.dur) comes from the fact that the likelihood for the follow-up data
during ¢ time is the same as that for independent Poisson variates with mean A/, and that
the default link function for the Poisson family is the log, so that we are using a linear
model for the log-mean, log(\) + log(¢). But when we want a model for the log-rate
(log(X)), the term log(¢) must still be included as a covariate, but with regression
coefficient fixed to 1; a so-called offset. This is however a technicality; it just exploits that
the likelihood of a particular Poisson model and that of the rates model is the same.
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In the Epi package is a glm family, poisreg that has a more intuitive interface to the
likelihood of rates, namely where the response is a 2-column matrix of events and
person-time, respectively. This is in concert with the fact that the outcome variable in
follow-up studies is bivariate: (event, risk time).

> Ma <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),
+ family = poisreg,
+ data = dmCs)
> summary (Ma)
Call:
glm(formula = cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),

family = poisreg, data = dmCs)
Coefficients:

Estimate Std. Error z value Pr(>|z])

(Intercept) -3.82830 0.03861 -99.15 <2e-16 *x**
Ns(age, knots = a.kn)l 1.36254 0.08723 15.62  <2e-16 #**x
Ns(age, knots = a.kn)2 1.49446 0.06845 21.83 <2e-16 **x
Ns(age, knots = a.kn)3 2.63557 0.07058 37.34 <2e-16 #*x
Ns(age, knots = a.kn)4 1.94173 0.05769 33.66 <2e-16 *xx*x
Signif. codes: O '#*x' 0.001 'sx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27719 on 228747 degrees of freedom
Residual deviance: 25423 on 228743 degrees of freedom
ATC: 30431

Number of Fisher Scoring iterations: 7

Exploiting the multistate structure in the Lexis object there is a multistate convenience
wrapper for glm with the poisreg family, that just requires specification of the transitions
in terms of from and to. Although it is called glm.Lexis it is not an S3 method for Lexis
objects:

> Xa <- glm.Lexis(dmCs, from = "DM", to = "Dead",
+ formula = ~ Ns(age, knots = a.kn))

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
DM->Dead

The result is a glm object but with an extra attribute, Lexis:

> attr(Xa, "Lexis")
$data
[1] "dmCs"

$trans
[1] "DM->Dead"

$formula
“Ns(age, knots = a.kn)
<environment: 0x00000242d949aa70>

$scale
[1] 1
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There are similar wrappers for gam and coxph models, gam.Lexis and coxph.Lexis, but
these will not be elaborated in detail.

The from = and to = can even be omitted, in which case all possible transitions into
any of the absorbing states is modeled:

> xa <- glm.Lexis(dmCs, formula = ~ Ns(age, knots = a.kn))

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for transitions:

DM->Dead

Ins->Dead

We can check if the four models fitted are the same:

> c(deviance(ma), deviance(Ma), deviance(Xa), deviance(xa))
[1] 25422.92 25422.92 20902.31 25422.92

Oops! the model Xa is apparently not the same as the other three? This is because the
explicit specification from = "DM", to = "Dead", omits modeling contributions from the
Ins — Dead transition — the output actually said so — see also figure 1.3 on p. 11. The
other three models all use both transitions — and assume that the two transition rates are
the same, i.e. that start of insulin has no effect on mortality. We shall relax this
assumption later.

The parameters from the model do not have any direct interpretation per se, but we can
compute the estimated mortality rates for a range of ages using ci.pred with a suitably
defined prediction data frame.

Note that if we use the poisson family of models, we must specify all covariates in the
model, including the variable in the offset, lex.dur (remember that this was a covariate
with coefficient fixed at 1). We set the latter to 1000, because we want the mortality rates
per 1000 person-years. Using the poisreg family, the prediction will ignore any value of
lex.dur specified in the prediction data frame, the returned rates will be per unit in which
lex.dur is recorded.

> nd <- data.frame(age = 40:85, lex.dur = 1000)

> pr.0 <- ci.pred(ma, newdata = nd) # mortality per 100 PY
> pr.a <- ci.pred(Ma, newdata = nd)*1000 # mortality per 100 PY
> summary (pr.0/pr.a)

Estimate 2.5% 97 .5%

Min. 01 Min. 01 Min. 01

1st Qu.:1 1st Qu.:1 1st Qu.:1

Median :1 Median :1 Median :1

Mean 01 Mean 01 Mean 01

3rd Qu.:1 3rd Qu.:1 3rd Qu.:1

Max. 01 Max. 1 Max. 01
> matshade(nd$age, pr.a, plot = TRUE,
+ type = "1", 1ty =1,
+ log = "y", xlab = "Age (years)",

+ ylab = "DM mortality per 1000 PY")
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Figure 2.1: Mortality among Danish diabetes patients by age with 95% CI as shaded area. We
see that the rates increase linearly on the log-scale, that is exponentially by age. ./flup-pr-a

2.3 Time dependent covariate

A Poisson model approach to mortality by insulin status, would be to assume that the
rate-ratio between patients on insulin and not on insulin is a fixed quantity, independent of
time since start of insulin, independent of age. This is commonly termed a proportional
hazards assumption, because the rates (hazards) in the two groups are proportional along
the age (baseline time) scale.

> pm <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn)
+ + lex.Cst + sex,

+ family = poisreg,

+ data = dmCs)

> round(ci.exp(pm), 3)
exp(Est.) 2.5% 97.5%

(Intercept) 0.022 0.021 0.024
Ns(age, knots = a.kn)1l 4.248 3.581 5.040
Ns(age, knots = a.kn)2 5.008 4.376 5.731
Ns(age, knots = a.kn)3 16.832 14.624 19.373
Ns(age, knots = a.kn)4 7.994 7.126 8.968
lex.CstlIns 1.985 1.791 2.200
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sexF 0.668 0.617 0.724

So we see that persons on insulin have about twice the mortality of persons not on insulin
and that women have 2/3 the mortality of men.

2.3.1 Time since insulin start

If we want to test whether the excess mortality depends on the time since start if insulin
treatment, we can add a spline terms in t£fI. But since tfI is a time scale defined as time
since entry into a new state (Ins), the variable t£I will be missing for those in the DM
state, so before modeling we must set the NAs to 0, which we do with tsNA20 (acronym for
timescale NAs to zero):

> pm <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn)
+ + Ns(tfI, knots = i.kn)
+ + lex.Cst + sex,

+ family = poisreg,

+ data = tsNA20(dmCs))

As noted before we could do this simpler with glm.Lexis, even without the from = and
to = arguments, because we are modeling all transitions into the absorbing state (Dead):

> Pm <- glm.Lexis(tsNA20(dmCs),

+ form = ~ Ns(age, knots = a.kn)
+ + Ns(tfI, knots = i.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> c(deviance(Pm), deviance(pm))

[1] 25096.33 25096.33

> identical (model.matrix(Pm), model.matrix(pm))
[1] TRUE

The coding of the effect of t£fI is so that the value is 0 at 0, so the meaning of the estimate
of the effect of 1lex.Cst is the RR between persons with and without insulin, immediately
after start of insulin:

> round(ci.exp(Pm, subset = "ex"), 3)
exp(Est.) 2.5% 97.5%

lex.CstlIns 5.632 4.430 7.16

sexF 0.674 0.622 0.73

We see that the effect of sex is pretty much the same as before, but the effect of lex.Cst is
much larger, it now refers to a different quantity, namely the RR at t£fI = 0. If we want to
see the effect of time since insulin, it is best viewed jointly with the effect of age:

c(NA, seq(0, 15, 0.1)),

> ndI <- data.frame(expand.grid(tfI

+ ail = Seq(40, 80, 10)):
+ SeX = IIMII,
+ lex.Cst = "Ins")

1]

> ndI <- transform(ndI, age = ai+tfI)

> head(ndI)



Modeling rates from Lexis objects 2.3 Time dependent covariate 21

tfl ai sex lex.Cst age

NA 40 M Ins NA
0.0 40 M Ins 40.0
0.1 40 M Ins 40.1
0.2 40 M Ins 40.2
0.3 40 M Ins 40.3
0.4 40 M Ins 40.4

<- data.frame(age = seq(40, 100, 0.1), tfI = 0, lex.Cst = "DM", sex = "M")
pri <- ci.pred(Pm, ndI) * 1000

pra <- ci.pred(Pm, nd4) * 1000

matshade (ndI$age, pri, plot = TRUE, las = 1,

xlab = "Age (years)", ylab = "DM mortality per 1000 PY",

log = "y", 1ty = 1, col = "blue")

matshade (ndA$age, pra)
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Figure 2.2: Mortality rates of persons on insulin, starting insulin at ages 40, 50, ..., 80

(blue), compared with persons not on insulin (black curve). Shaded areas are 95% CIL

./flup-ins-time

In figure 2.2, p. 21, we see that mortality is high just after insulin start, but falls by
almost a factor 3 during the first year. Also we see that there is a tendency that mortality
in a given age is smallest for those with the longest duration of insulin use.
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2.4 The Cox model

Note that in the Cox-model the age is used as response variable, slightly counter-intuitive.
Hence the age part of the linear predictors is not in that model:
> library(survival)

> cm <- coxph(Surv(age, age+lex.dur, lex.Xst == "Dead") ~
+ Ns(tfI, knots = i.kn) + lex.(Cst + sex,
+ data = tsNA20(dmCs))

There is also a multistate wrapper for Cox models, requiring a Lh.s. side for the formula =
argument:

> Cm <- coxph.Lexis (tsNA20(dmCs),

+ form = age ~ Ns(tfI, knots = i.kn) + lex.Cst + sex)
survival::coxph analysis of Lexis object tsNA20(dmCs):

Rates for transitions:

DM->Dead

Ins->Dead

Baseline timescale: age

> cbind(ci.exp(cm), ci.exp(Cm))

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
Ne(tfI, knots = i.kn)1 0.2984062 0.19417148 0.4585960 0.2984062 0.19417148 0.4585960
Ne(tfI, knots = i.kn)2 0.3871151 0.29011380 0.5165495 0.3871151 0.29011380 0.5165495
Ne(tfI, knots = 1.kn)3 0.1239128 0.06287008 0.2442238 0.1239128 0.06287008 0.2442238
Ne(tfI, knots = i.kn)4 0.4405121 0.34839015 0.5569932 0.4405121 0.34839015 0.5569932
lex.CstIns 5.6700284 4.45011220 7.2243623 5.6700284 4.45011220 7.2243623
lex.CstDead 1.0000000 1.00000000 1.0000000 1.0000000 1.00000000 1.0000000
sexF 0.6753202 0.62316569 0.7318397 0.6753202 0.62316569 0.7318397

We can compare the estimates from the Cox model with those from the Poisson model —
we must add NAs because the Cox-model does not give the parameters for the baseline time
scale (age), but also remove one of the parameters, because coxph parametrizes factors (in
this case lex.Cst) by all defined levels and not only by the levels present in the dataset at
hand (note the line of 1.0000000s in the print above):

> round(cbind(ci.exp(Pm),

+ rbind(matrix(NA, 5, 3),
+ ci.exp(cm)[-6, 1)), 3)

exp(Est.) 2.5} 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 0.022 0.021 0.024 NA NA NA
Ns(age, knots = a.kn)1l 4.208 3.546 4.993 NA NA NA
Ns(age, knots = a.kn)2 5.012 4.380 5.736 NA NA NA
Ns(age, knots = a.kn)3 16.560 14.386 19.063 NA NA NA
Ns(age, knots = a.kn)4 7.921 7.061 8.885 NA NA NA
Ns(tfI, knots = i.kn)1 0.298 0.194 0.458 0.298 0.194 0.459
Ns{(tfI, knots = i.kn)2 0.385 0.289 0.514 0.387 0.290 0.517
Ne(tfI, knots = i.kn)3 0.125 0.064 0.246 0.124 0.063 0.244
Ns(tfI, knots = i.kn)4 0.438 0.346 0.553 0.441 0.348 0.557
lex.CstlIns 5.632 4.430 7.160 5.670 4.450 7.224
sexF 0.674 0.622 0.730 0.675 0.623 0.732

Thus we see that the Poisson and Cox gives pretty much the same results. You may argue
that Cox requires a smaller dataset, because there is no need to subdivide data in small
intervals before insulin use. But certainly the time after insulin inception need to be if the
effect of this time should be modeled.

The drawback of the Cox-modeling is that it is not possible to show the absolute rates as
we did in figure 2.2 on 21.
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2.5 Marginal effect of time since insulin

When we plot the marginal effect of tfI from the two models we get pretty much the
same; here we plot the RR relative to tfI = 2 years. Note that we are deriving the RR as
the ratio of two sets of predictions, from the data frames nd and nr — for further details
consult the help page for ci.lin, specifically the use of a list as the ctr.mat argument:

nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")
nr <- data.frame(tfI = 2 , lex.Cst = "Ins", sex = "M")
ppr <- ci.exp(pm, list(nd, nr), xvars = "age')

cpr <- ci.exp(cm, list(nd, nr))

par(mar = c(3, 3, 1, 1), mgp = ¢c(3, 1, 0)/1.6, las = 1, bty = "n")

matshade (nd$tfI, cbind(ppr, cpr), plot =T,

1ty = c(1, 2), log = "y",

xlab = "Time since insulin (years)', ylab = "Rate ratio")
abline(h = 1, 1ty = 3)

vV + +VVVyVVyVv
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Figure 2.3: The naked duration effects relative to 2 years of duration, black from Poisson
model, red from Cox model. The two sets of estimates are identical, and so are the standard
errors, so the two shaded areas overlap almost perfectly. ./flup-Teff

In figure 2.3, p. 23, we see that the duration effect is exactly the same from the two
modeling approaches.
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We will also want the RR relative to the non-insulin users — recall these are coded 0 on
the t£I variable:

> nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")
> nr <- data.frame(tfI = 0 , lex.Cst = "DM" , sex = "M")
> ppr <- ci.exp(pm, list(nd, nr), xvars = "age'")

> cpr <- ci.exp(cm, list(nd, nr))

> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")

> matshade (nd$tfI, cbind(ppr, cpr),

+ xlab = "Time since insulin (years)",

+ ylab = "Rate ratio relative to non-Insulin"”,

+

1ty = c(1, 2), log = "y", plot = T)

Rate ratio relative to non—Insulin
N
I

[ I I |
0 5 10 15

Time since insulin (years)

Figure 2.4: Insulin duration effect (state Ins) relative to no insulin (state DM), black from
Poisson model, red from Cox model. The shape is the same as the previous figure, but the
RR is now relative to non-insulin, instead of relative to insulin users at 2 years duration.
The two sets of estimates are identical, and so are the standard errors, so the two shaded
areas overlap almost perfectly. ./flup-TeffR

In figure 2.4, p. 24, we see the effect of increasing duration of insulin use for a fized age
which is a bit artificial, so we would like to see the joint effects of age and insulin duration.
What we cannot see is how the duration affects mortality relative to current age (at the
age attained at the same time as the attained t£I).
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Another way of interpreting this curve is as the rate ratio relative to a person not on
insulin, so we see that the RR (or hazard ratio, HR as some call it) is over 5 at the start of
insulin (the lex.Cst estimate), and decreases to about 1.5 in the long term.

Both figure 2.3 and 2.4 indicate a declining RR by insulin duration, but only from figure
2.2 it is visible that mortality actually is increasing by age after some 2 years after insulin
start. This point would not be available if we had only fitted a Cox model where we did
not have access to the baseline hazard as a function of age.

2.6 Agexduration interaction

The model we fitted assumes that the RR is the same regardless of the age at start of
insulin — the hazards are multiplicative. Sometimes this is termed the proportional
hazards assumption: For any fixed age the HR is the same as a function of time since
insulin, and vice versa.

A more correct term would be “main effects model” — there is no interaction between
age (the baseline time scale) and other covariates. So there is really no need for the term
“proportional hazards”; well defined and precise statistical terms for it has existed for eons.

2.6.1 Age at insulin start

In order to check the consistency of the multiplicative assumption across the spectrum of
age at insulin inception, we can fit an interaction model. One approach to this would be
using a non-linear effect of age at insulin use (for convenience we use the same knots as for
age) — note that the prediction data frames are the same as we used above, because we do
not compute age at insulin use as a separate variable, but rather enter it as the difference
between current age (age) and insulin duration (t£I).

At first glance we might think of doing:

> imx <- glm.Lexis(tsNA20(duCs),

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + Ns(age - tfI, knots = a.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

But this will fit a model with a rate-ratio between persons with and without insulin that
depends only on age at insulin start for the time after insulin start, the RR at tfI — 0 will
be the same at any age, which really is not the type of interaction we wanted.

We want the age-tfI term to be specific for the insulin exposed so we may use one of
two other approaches, that are conceptually alike but mathematically different:

> Im <- glm.Lexis(tsNA20(dmCs),

+ formula = ~ Ns(age , knots = a.kn)

+ + Ns( tfI, knots = i.kn)

+ + Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)
+ + lex.Cst + sex)
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stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> im <- glm.Lexis(tsNA20(dmCs),

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + lex.Cst:Ns(age - tfI, knots = a.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

The first model (Im) has a common age-effect (Ns(age, ...) for persons with and without
diabetes and a RR depending on insulin duration tfI and age at insulin (age-tfI). Since
the linear effect of these two terms are in the model as well, a linear trend in the RR by
current age (age) is accommodated as well.

The second model allows age-effects that differ non-linearly between person with and
without insulin, because the interaction term lex.Cst:Ns(age-tfI... for persons not on
insulin is merely an age term (since t£I is coded 0 for all follow-up not on insulin).

We can compare the models fitted:

> anova(imx, Im, im, test = 'Chisq')
Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in) trnam, Lx$lex.dur) ~ Ns(age,
knots = a.kn) + Ns(tfI, knots = i.kn) + Ns(age - tfI, knots = a.kn) +
lex.Cst + sex

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in’ trnam, Lx$lex.dur) ~ Ns(age,
knots = a.kn) + Ns(tfI, knots = i.kn) + Ns((age - tfI) =
(lex.Cst == "Ins"), knots = a.kn) + lex.Cst + sex

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in’ trnam, Lx$lex.dur) ~ Ns(age,
knots = a.kn) + Ns(tfI, knots = i.kn) + lex.Cst:Ns(age -
tfI, knots = a.kn) + lex.Cst + sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 228734 25096

2 228733 25087 1 8.9631 0.002755 *x

3 228730 25082 3  4.6804 0.196749

Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.056 '.' 0.1 ' ' 1

so we see that the models indeed are different, and moreover that the last model does not
provide substantial further improvement, by allowing non-linear RR along the age-scale.
We can illustrate the different estimated rates from the three models in figure 2.5, p. 27:

pxi <- ci.pred(imx, ndI)
pxa <- ci.pred(imx, ndA)
pIi <- ci.pred(Im , ndI)
pIa <- ci.pred(Im , ndA)
pii <- ci.pred(im , ndI)
pia <- ci.pred(im , ndA)
par(mar = c(3, 3, 1, 1), mgp = ¢c(3, 1, 0)/1.6, las = 1, bty = "n")

V VVVVYVYV
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> matshade(ndI$age, cbind(pxi, pIi, pii)*1000, plot = T, log = "y",

+ xlab = "Age", ylab = "Mortality per 1000 PY",

+ 1ty = 1, 1wd = 2, col = c("blue", "forestgreen", "red"), alpha
> matshade(ndA$age, cbind(pxa, pIa, pia)*1000,

+ Ity = 1, 1Iwd = 2, col = c("blue", "forestgreen", "red"), alpha
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Figure 2.5: Age at insulin as interaction between age and duration. Blue curves are from the
naive interaction model imx with identical RR at t£I = 0 at any age; green curves are from
the interaction model with age at insulin, from the model Im with only linear differences by
age, and red lines from the full interaction model im. ./flup-dur-int

We can also plot the RRs only from these models (figure 2.6, p. 28); for this we need the
reference frames, and the machinery from ci.exp allowing a list of two data frames:

> ndR <- transform(ndI, tfI = 0, lex.Cst = "DM'")
cbind (head(ndI), head(ndR))

tfl ai sex lex.Cst age tfI ai sex lex.Cst age

v

1 NA 40 M Ins NA 040 M DM NA
20.040 M Ins 40.0 0 40 M DM 40.0
30.140 M Ins 40.1 0 40 M DM 40.1
4 0.2 40 M Ins 40.2 0 40 M DM 40.2
50.340 M Ins 40.3 0 40 M DM 40.3
6 0.440 M Ins 40.4 0 40 M DM 40.4
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Rxi <- ci

par (mar =
matshade (

abline(h
abline(h

VV+ +VVYVVYV

10.0

5.0

Rii <- ci.
RIi <- ci.

2.0

.exp(imx, list(ndI, ndR))

exp(im , list(ndI, ndR))

exp(Im , list(ndI, ndR))

c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")

ndI$age, cbind(Rxi, RIi, Rii), plot = T, log = "y",

xlab = "Age (years)", ylab = "Rate ratio vs, non-Insulin",

Ity = 1, 1wd = 2, col = c("blue", "forestgreen", '"red"), alpha = 0.1)
1)

ci.exp(imx, subset = "lex.Cst")[, 1], 1ty = "25", col = "blue'")

1.0

Rate ratio vs, non-Insulin

0.5

0.2-

Figure 2.6:

I I I I I I
40 50 60 70 80 90

Age (years)

RR from three different interaction models. The horizontal dotted line is at the

estimated effect of lex.Cst, to illustrate that the first model (blue) constrains this initial HR
to be constant across age. The green curves are the extended interaction model, and the red

the full one.

./flup-dur-int-RR
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2.6.2 General interaction

As a final illustration we may want to explore a different kind of interaction, not defined
from the duration — here we simplify the interaction by not using the second-last knot in
the interaction terms — figure 2.7, p. 30. Note again that the prediction code is the same:

> gm <- glm.Lexis(tsNA20(dmCs),

+ formula = ~ Ns(age, knots = a.kn)

+ + Ns(tfI, knots = i.kn)

+ + lex.Cst:Ns(age, knots = a.kn):Ns(tfI, knots = i.kn)
+ + lex.Cst + sex)

stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:

DM->Dead

Ins->Dead

> pgi <- ci.pred(gm, ndI)

> pga <- ci.pred(gm, ndA)

> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")

> matshade(ndI$age, cbind(pgi, pii)*1000, plot = T,

+ 1ty = c("solid", "21"), lend = "butt", lwd = 2, log = "y",
+ xlab = "Age (years)", ylab = "Mortality rates per 1000 PY",
+ alpha = ¢(0.2, 0.1), col = c("black", "red"))

> matshade(ndA$age, cbind(pga, pia)*1000,

+ 1ty = c("solid", "21"), lend = "butt', lwd = 2,

+ alpha = ¢(0.2, 0.1), col = c("black", '"red"))

This is in figure 2.7, p. 30.

2.6.3 Evaluating interactions

Here we see that the interaction effect is such that in the older ages the length of insulin
use has an increasing effect on mortality.
Even though there is no statistically significant interaction between age and time since
start of insulin, it would be illustrative to show the RR as a function of age at insulin and
age at follow-up:
ndR <- transform(ndI, lex.Cst = "DM", tfI = 0)
iRR <- ci.exp(im, ctr.mat = list(ndI, ndR))
gRR <- ci.exp(gm, ctr.mat = list(ndI, ndR))
par(mar = c¢(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
matshade (ndI$age, cbind(gRR, iRR), 1ty = 1, log = "y", plot = TRUE,
xlab = "Age (years)'", ylab = "Rate ratio: Ins vs. non-Ins",
col = c("black", '"red"))

abline(h = 1)

This is in figure 2.8, p. 31.

The advantage of the parametric modeling (be that with age at insulin or general spline
interaction) is that it is straight-forward to test whether we have an interaction.

V + + VvV VvV VvV

2.7 Separate models

In the above we insisted on making a joint model for the DM—Dead and the Ins—Dead
transitions, but with the complications demonstrated it would actually have been more
sensible to model the two transitions separately:
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Figure 2.7: Spline-by-spline interaction between age and duration (model gm, black), and the
interaction using a non-linear effect of age at entry (model im, red), corresponding to the red
curves in figure 2.5. ./flup-splint

> dmd <- glm.Lexis(dmCs,

+ from = "DM", to = "Dead",
+ formula = ~ Ns(age, knots = a.kn)
+ + sex)

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:

DM->Dead

> ind <- glm.Lexis(dmCs,

+ from = "Ins'", to = "Dead",

+ formula = ~ Ns(age , knots = a.kn)
+ + Ns( tfI, knots = i.kn)
+ + Ns(age - tfI, knots = a.kn)
+ + sex)

stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
Ins->Dead

> ini <- ci.pred(ind, ndI)
> dmi <- ci.pred(dmd, ndI)
> dma <- ci.pred(dmd, ndA)



Modeling rates from Lexis objects 2.7 Separate models 31

NN

20.00

10.00

—Insy,
o
T

o
o
|

RateJatio: |ns vs.yon
& o ¢
? o

o

(N)

o
|

0.10

0.05-

[ I I I I |
40 50 60 70 80 90

Age (years)

Figure 2.8: The effect of duration of insulin use at different ages of follow-up (and age at
insulin start). Estimates are from the model with an interaction term using a non-linear
effect of age at insulin start (model im, red) and using a general spline interactions (model
gm, black). It appears that the general interaction over-models a bit. ./flup-RR-int

The estimated mortality rates are shown in figure ??, p. 77, using:

> par(mar = ¢(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, ini*1000, plot = TRUE, log = "y",

+ xlab = "Age (years)", ylab = "Mortality rates per 1000 PY",
+ lwd = 2, col = "red")

> matshade(ndA$age, dma*1000,

+ lwd = 2, col = "black")

The estimated RRs are computed using that the estimates from the two models are

uncorrelated, and hence qualify for ci.ratio (this and the previous graph appear in figure
2.9, p. 32)

> par(mar = ¢(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, ci.ratio(ini, dmi), plot = TRUE, log = "y",

+ xlab = "Age (years)", ylab = "RR insulin vs. no insulin",
+ lwd = 2, col = "red")

> abline(h = 1)
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Figure 2.9: Left panel: Mortality rates from separate models for the two mortality transitions;
the DM—Dead transition modeled by age alone; Ins—Dead transition modeled with spline
effects of current age, time since insulin and and age at insulin.

Right panel: Mortality HR of insulin vs. no insulin.



Chapter 3

More states

3.1 Subdividing states

It may be of interest to subdivide the states following the intermediate event according to
whether the event has occurred or not. This will enable us to address the question of the
fraction of the patients that ever go on insulin.

This is done by the argument split.states = TRUE.

> dmCs <- cutLexis(data = dmS2,

+ cut = dmS2$doins,

+ timescale = '"per",

+ new.state = "Ins",

+ new.scale = "tfI",

+ split.states = TRUE)

> summary (dmCs)

Transitions:

To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 35135 1694 2048 0 38877 3742  45885.49 9899
Ins 0 5762 0 451 6213 451 8387.77 1791
Sum 35135 7456 2048 451 45090 4193  54273.27 9996

We can illustrate the numbers and the transitions (figure 3.1, p. 34)
> boxes(dmCs, boxpos = list(x = c(15, 15, 85, 85),

+ y = c(85, 15, 85, 15)),
+ scale.R = 1000, show.BE = TRUE)

Note that it is only the mortality rates that we have been modeling, namely the
transitions DM—Dead and Ins—Dead(Ins). If we were to model the cumulative risk of
using insulin we would also need a model for the DM—1Ins transition. Subsequent to that
we would then compute the probability of being in each state conditional on suitable
starting conditions. With models where transition rates depend on several time scales this
is not a trivial task. This is treated in more detail in the vignette on simLexis.

3.2 Multiple intermediate events
We may be interested in starting either insulin or OAD (oral anti-diabetic drugs), thus

giving rise to more states and more time scales. This can be accomplished by the
mcutLexis function, that generalizes cutLexis:

33
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Figure 3.1: Transitions between 4 states: the numbers in the bozxes are person-years (middle),
and below the number of persons who start, respectively end their follow-up in each of the

states.

> dmM <- mcutLexis(dmL,
+ timescale
+ wh
+ new.states
+ new.scales
+ ties.resolve
NOTE: Precursor states
NOTE:

./f1lup-box4

= uperu,
= c¢("doins", "dooad"),
- C(HInsH’ HOADH),
C(”th”, ”th”),

= TRUE)

set to DM

15 records with tied events times resolved (adding 0.01 random uniform),
so results are only reproducible if the random number seed was set.

> summary(dmM, t = T)

Transitions:
To
From DM Dead O0AD 1Ins 0OAD-Ins Ins-0AD Records: Events: Risk time: Persons:
DM 2830 1056 2957 689 0 0 7532 4702 22920.33 7532
0AD 0 992 3327 0 1005 0 5324 1997 22965.26 5324
Ins 0 152 0 462 0 172 786 324 3883.08 786
0AD-Ins 0 266 0 0 739 0 1005 266 3770.52 1005
Ins-0AD 0 33 0 0 0 139 172 33 734.08 172
Sum 2830 2499 6284 1151 1744 311 14819 7322 54273.27 9996
Timescales:
per age tfD tfI  tf0
nn nn nn llInSll IIDADH

We see that we now have two time scales defined as entry since into states.

> wh <- c(subset(dmM, lex.Cst == "Ins-0AD")$lex.id[1:2],
subset (dmM, lex.Cst == "0OAD-Ins'")$lex.id[1:2])
> subset(dmM, lex.id J,inj, wh)

+

lex.

id per age

tfD tfI tf0 lex.dur lex.Cst lex.Xst sex dobth dodm

18 1996.75 61.72 0.00 NA NA 1.17 DM 0OAD M 1935.024 1996.746
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18 1997.92 62.89 1.17 NA 0.00 8.08 OAD OAD-Ins M 1935.024 1996.746
18 2005.99 70.97 9.25 0.00 8.08 4.00 0AD-Ins 0AD-Ins M 1935.024 1996.746
25 2003.69 60.34 0.00 NA NA 1.88 DM 0AD F 1943.347 2003.689
25 2005.57 62.22 1.88 NA 0.00 3.07 0AD OAD-Ins F 1943.347 2003.689
25 2008.64 65.29 4.95 0.00 3.07 1.36 OAD-Ins OAD-Ins F 1943.347 2003.689
20 2009.25 53.22 0.00 NA NA 0.04 DM Ins F 1956.029 2009.247
20 2009.29 53.26 0.04 0.00 NA 0.00 Ins Ins-0AD F 1956.029 2009.247
20 2009.29 53.26 0.04 0.00 0.00 0.71 Ins-0AD Ins-0AD F 1956.029 2009.247
38 2008.37 63.93 0.00 NA NA 0.09 DM Ins M 1944.434 2008.366
38 2008.46 64.02 0.09 0.00 NA 0.21 Ins Ins-0AD M 1944.434 2008.366
38 2008.67 64.24 0.31 0.21 0.00 1.33 Ins-0AD Dead M 1944.434 2008.366

dodth dooad doins dox
NA 1997.915 2005.995 2009.997

NA 1997.915 2005.995 2009.997

NA 1997.915 2005.995 2009.997

NA 2005.570 2008.639 2009.997

NA 2005.570 2008.639 2009.997

NA 2005.570 2008.639 2009.997

NA 2009.291 2009.287 2009.997

NA 2009.291 2009.287 2009.997

NA 2009.291 2009.287 2009.997
2009.997 2008.672 2008.459 2009.997
2009.997 2008.672 2008.459 2009.997
2009.997 2008.672 2008.459 2009.997

We can also illustrate the transitions to the different states, as in figure 3.2:

> boxes(dmM, boxpos = list(x = c(15, 80, 40, 40, 85, 85),
+ y = c(50, 50, 90, 10, 90, 10)),
+ scale.R = 1000, show.BE = TRUE)

We may not be interested in whether persons were prescribed insulin before OAD or vice
versa, in which case we would combine the levels with both insulin and OAD to one,
regardless of order (figure 3.3):

> summary (dmMr <- Relevel(dmM, list('OAD+Ins' = 5:6), first = FALSE))
Transitions:

To
From DM Dead O0AD Ins 0OAD+Ins Records: Events: Risk time: Persons:
DM 2830 1056 2957 689 0 7532 4702 22920.33 7532
0AD 0 992 3327 0 1005 5324 1997 22965.26 5324
Ins 0 152 0 462 172 786 324 3883.08 786
OAD+Ins 0 299 0 0 878 1177 299 4504.60 1177
Sum 2830 2499 6284 1151 2055 14819 7322 54273.27 9996

> boxes(dmMr, boxpos = list(x = c(15, 50, 15, 85, 85),
y = c(85, 50, 15, 85, 15)),
+ scale.R = 1000, show.BE = TRUE)

+

Diagrams as those in figures 3.2 and 3.3 gives an overview of the possible transitions,
which states it might be relevant to collapse, and which transitions to model and how.

The actual modeling of the transition rates is straightforward; split the data along some
timescale and then use glm.Lexis or gam.Lexis, where it is possible to select the
transitions modeled. This is also possible with the coxph.Lexis function, but it requires
that a single time scale be selected as the baseline time scale, and the effect of this will not
be accessible.
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Figure 3.2: Boxes for the dmM object. The numbers in the boxes are person-years (middle),
and below the number of persons who start, respectively end their follow-up in each of the

states. ./f1lup-mbox
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Figure 3.3: Bozes for the dmMr object with collapsed states. The numbers in the bozes are
person-years (middle), and below the number of persons who start, respectively end their
follow-up in each of the states. ./flup-mboxr



Chapter 4

Lexis functions

The Lexis machinery has evolved over time since it was first introduced in a workable
version in Epi_1.0.5 in August 2008.

Over the years there have been additions of tools for handling multistate data. Here is a
list of the current functions relating to Lexis objects with a very brief description; it does
not replace the documentation. Unless otherwise stated, functions named

something.Lexis (with a “.”) are S3 methods for Lexis objects, so you can skip the
“.Lexis” in daily use.

Define
Lexis defines a Lexis object
Cut and split

cutLexis cut follow-up at intermediate event

mcutLexis cut follow-up at multiple intermediate events, keeping track of history

rcutLexis cut follow-up at intermediate, possibly recurring, events, only recording
the current state

countLexis cut follow-up at intermediate event time and count the no. events so far

splitLexis split follow up along a time scale

splitMulti split follow up along a time scale — from the popEpi package, faster
and has simpler syntax than splitLexis

addCov.Lexis add clinical measurements at a given date to a Lexis object

addDrug.Lexis add drug exposures to a Lexis object

Boxes and plots

boxes.Lexis draw a diagram of states and transitions
plot.Lexis draw a standard Lexis diagram
points.Lexis add points to a Lexis diagram
lines.Lexis add lines to a Lexis diagram
PY.ann.Lexis annotate life lines in a Lexis diagram

Summarize and query

summary.Lexis overview of transitions, risk time etc.
levels.Lexis what are the states in the Lexis object

38
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nid.Lexis number of persons in the Lexis object — how many unique values of
lex.id are present

entry entry time

exit exit time

status status at entry or exit

timeBand factor of time bands

timeScales what time scales are in the Lexis object

timeSince what time scales are defined as time since a given state

breaks what breaks are currently defined

absorbing what are the absorbing states

transient what are the transient states

preceding, before which states precede this

succeeding, after which states can follow this

tmat.Lexis transition matrix for the Lexis object

Manipulate

subset.Lexis, [ subset of a Lexis object

merge.Lexis merges a Lexis objects with a data.frame

cbind.Lexis bind a data.frame to a Lexis object

rbind.Lexis put two Lexis objects head-to-foot

transform.Lexis transform and add variables

tsNA20 turn NAs to Os for time scales

factorize.Lexis turn lex.Cst and lex.Xst into factors with levels equal to the
actually occurring values in both

Relevel.Lexis reorder and/or combine states

rm.tr remove transitions from a Lexis object

bootLexis bootstrap sample of persons (lex.id) in the Lexis object

unLexis remove Lexis attributes from a Lexis object

Simulate

simLexis simulate a Lexis object from specified transition rate models
nState, pState count state occupancy from a simulated Lexis object
plot.pState, lines.pState plot state occupancy from a pState object

Stack

stack.Lexis make a stacked object for simultaneous analysis of transitions —
returns a stacked.Lexis object

subset.stacked.Lexis subsets of a stacked.Lexis object

transform.stacked.Lexis transform a stacked.Lexis object

Interface to other packages

msdata.Lexis interface to mstate package
etm.Lexis interface to etm package
crr.Lexis interface to cmprsk package

Statistical models — these are not S3 methods

glm.Lexis fit a glm model using the poisreg family to (hopefully) time split data
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gam.Lexis fit a gam model (from the mgcv package) using the poisreg family to
(hopefully) time split data
coxph.Lexis fit a Cox model to follow-up in a Lexis object
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