Calculates a Mahalanobis distance for every row of a set of
    outcome variables (Mahalanobis, 1936
    <doi:10.1007/s13171-019-00164-5>). The conditional Mahalanobis
    distance is calculated using a conditional covariance matrix (i.e., a
    covariance matrix of the outcome variables after controlling for a set
    of predictors). Plotting the output of the cond_maha() function can
    help identify which elements of a profile are unusual after
    controlling for the predictors.
| Version: | 0.1.4 | 
| Depends: | R (≥ 3.1) | 
| Imports: | dplyr, ggnormalviolin, ggplot2, magrittr, purrr, rlang, stats, tibble, tidyr | 
| Suggests: | bookdown, covr, extrafont, forcats, glue, kableExtra, knitr, lavaan, lifecycle, mvtnorm, patchwork, ragg, rmarkdown, roxygen2, scales, simstandard (≥ 0.6.3), stringr, sysfonts, testthat | 
| Published: | 2024-02-14 | 
| DOI: | 10.32614/CRAN.package.unusualprofile | 
| Author: | W. Joel Schneider  [aut, cre],
  Feng Ji [aut] | 
| Maintainer: | W. Joel Schneider  <w.joel.schneider at gmail.com> | 
| BugReports: | https://github.com/wjschne/unusualprofile/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/wjschne/unusualprofile,
https://wjschne.github.io/unusualprofile/ | 
| NeedsCompilation: | no | 
| Language: | en-US | 
| Materials: | README, NEWS | 
| CRAN checks: | unusualprofile results |