This implements the Brunton et al (2016; PNAS <doi:10.1073/pnas.1517384113>) sparse identification algorithm for finding ordinary differential equations for a measured system from raw data (SINDy). The package includes a set of additional tools for working with raw data, with an emphasis on cognitive science applications (Dale and Bhat, 2018 <doi:10.1016/j.cogsys.2018.06.020>). See <https://github.com/racdale/sindyr> for examples and updates.
| Version: | 0.2.4 | 
| Depends: | R (≥ 3.4), arrangements, matrixStats, igraph, graphics, grDevices | 
| Imports: | pracma | 
| Published: | 2024-05-01 | 
| DOI: | 10.32614/CRAN.package.sindyr | 
| Author: | Rick Dale and Harish S. Bhat | 
| Maintainer: | Rick Dale <racdale at gmail.com> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| CRAN checks: | sindyr results | 
| Reference manual: | sindyr.html , sindyr.pdf | 
| Package source: | sindyr_0.2.4.tar.gz | 
| Windows binaries: | r-devel: sindyr_0.2.4.zip, r-release: sindyr_0.2.4.zip, r-oldrel: sindyr_0.2.4.zip | 
| macOS binaries: | r-release (arm64): sindyr_0.2.4.tgz, r-oldrel (arm64): sindyr_0.2.4.tgz, r-release (x86_64): sindyr_0.2.4.tgz, r-oldrel (x86_64): sindyr_0.2.4.tgz | 
| Old sources: | sindyr archive | 
Please use the canonical form https://CRAN.R-project.org/package=sindyr to link to this page.