powerbrmsINLA: Bayesian Power Analysis Using 'brms' and 'INLA'
Provides tools for Bayesian power analysis and assurance calculations using the statistical frameworks of 'brms' and 'INLA'. Includes simulation-based approaches, support for multiple decision rules (direction, threshold, ROPE), sequential designs, and visualisation helpers. Methods are based on Kruschke (2014, ISBN:9780124058880) "Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan", O'Hagan & Stevens (2001) <doi:10.1177/0272989X0102100307> "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness", Kruschke (2018) <doi:10.1177/2515245918771304> "Rejecting or Accepting Parameter Values in Bayesian Estimation", Rue et al. (2009) <doi:10.1111/j.1467-9868.2008.00700.x> "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations", and Bürkner (2017) <doi:10.18637/jss.v080.i01> "brms: An R Package for Bayesian Multilevel Models using Stan".
| Version: | 1.0.0 | 
| Depends: | R (≥ 4.0.0) | 
| Imports: | brms (≥ 2.19.0), dplyr (≥ 1.1.0), ggplot2 (≥ 3.4.0), rlang (≥ 1.1.0), tibble (≥ 3.2.0), scales (≥ 1.2.0), viridisLite (≥ 0.4.0), stats, utils, magrittr (≥ 2.0.0) | 
| Suggests: | INLA (≥ 22.05.07), testthat (≥ 3.0.0), rmarkdown, MASS, circular, sn | 
| Published: | 2025-09-01 | 
| DOI: | 10.32614/CRAN.package.powerbrmsINLA | 
| Author: | Tony Myers  [aut,
    cre] | 
| Maintainer: | Tony Myers  <admyers at aol.com> | 
| BugReports: | https://github.com/Tony-Myers/powerbrmsINLA/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/Tony-Myers/powerbrmsINLA | 
| NeedsCompilation: | no | 
| Additional_repositories: | https://inla.r-inla-download.org/R/stable | 
| Materials: | README | 
| CRAN checks: | powerbrmsINLA results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=powerbrmsINLA
to link to this page.