
Package ‘keyring’
June 15, 2025

Title Access the System Credential Store from R

Version 1.4.1

Description Platform independent 'API' to access the operating system's
credential store. Currently supports: 'Keychain' on 'macOS',
Credential Store on 'Windows', the Secret Service 'API' on 'Linux',
and simple, platform independent stores implemented with environment
variables or encrypted files. Additional storage back-ends can be
added easily.

License MIT + file LICENSE

URL https://keyring.r-lib.org/, https://github.com/r-lib/keyring

BugReports https://github.com/r-lib/keyring/issues

Depends R (>= 3.5)

Imports askpass, filelock, R6, tools, utils, yaml

Suggests callr, covr, openssl, testthat (>= 3.0.0), withr

Biarch true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-04-30

Encoding UTF-8

RoxygenNote 7.3.2.9000

SystemRequirements Optional: libsecret on Linux (libsecret-1-dev on
Debian/Ubuntu, libsecret-devel on Fedora/CentOS)

NeedsCompilation yes

Author Gábor Csárdi [aut, cre],
Alec Wong [ctb],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2025-06-15 21:10:02 UTC

1

https://keyring.r-lib.org/
https://github.com/r-lib/keyring
https://github.com/r-lib/keyring/issues
https://ror.org/03wc8by49

2 backend

Contents
backend . 2
backends . 3
backend_env . 4
backend_file . 5
backend_keyrings . 6
backend_macos . 7
backend_secret_service . 7
backend_wincred . 8
has_keyring_support . 9
key_get . 10

Index 14

backend Abstract class of a minimal keyring backend

Description

To implement a new keyring backend, you need to inherit from this class and then redefine the get,
set, set_with_value and delete methods. Implementing the list method is optional. Additional
methods can be defined as well.

Details

These are the semantics of the various methods:

get(service, username = NULL, keyring = NULL)
get_raw(service, username = NULL, keyring = NULL)
set(service, username = NULL, keyring = NULL, prompt = "Password: ")
set_with_value(service, username = NULL, password = NULL,

keyring = NULL)
set_with_raw_value(service, username = NULL, password = NULL,

keyring = NULL)
delete(service, username = NULL, keyring = NULL)
list(service = NULL, keyring = NULL)
list_raw(service = NULL, keyring = NULL)

What these functions do:

• get() queries the secret in a keyring item.

• get_raw() is similar to get(), but returns the result as a raw vector.

• set() sets the secret in a keyring item. The secret itself is read in interactively from the
keyboard.

• set_with_value() sets the secret in a keyring item to the specified value.

• set_with_raw_value() sets the secret in keyring item to the byte sequence of a raw vector.

backends 3

• delete() remotes a keyring item.

• list() lists keyring items.

• list_raw() lists keyring items, also as raw vectors.

The arguments:

• service String, the name of a service. This is used to find the secret later.

• username String, the username associated with a secret. It can be NULL, if no username be-
longs to the secret. It uses the value of the keyring_username, if set.

• keyring String, the name of the keyring to work with. This only makes sense if the platform
supports multiple keyrings. NULL selects the default (and maybe only) keyring.

• password The value of the secret, typically a password, or other credential.

• prompt String, the text to be displayed above the textbox.

See Also

Other keyring backend base classes: backend_keyrings

backends Select the default backend and default keyring

Description

The default backend is selected

1. based on the keyring_backend option. See base::options(). This can be set to a character
string, and then the backend_string class is used to create the default backend.

2. If this is not set, then the R_KEYRING_BACKEND environment variable is checked.

3. If this is not set, either, then the backend is selected automatically, based on the OS:

(a) On Windows, the Windows Credential Store ("wincred") is used.
(b) On macOS, Keychain services are selected ("macos").
(c) Linux uses the Secret Service API ("secret_service"), and it also checks that the ser-

vice is available. It is typically only available on systems with a GUI.
(d) If the file backend ("file") is available, it is selected.
(e) On other operating systems, secrets are stored in environment variables ("env").

Usage

default_backend(keyring = NULL)

Arguments

keyring Character string, the name of the keyring to use, or NULL for the default keyring.

4 backend_env

Details

Most backends support multiple keyrings. For these the keyring is selected from:

1. the supplied keyring argument (if not NULL), or

2. the keyring_keyring option.

• You can change this by using options(keyring_keyring = "NEWVALUE")

3. If this is not set, the R_KEYRING_KEYRING environment variable.

• Change this value with Sys.setenv(R_KEYRING_KEYRING = "NEWVALUE"), either in your
script or in your .Renviron file. See base::Startup for information about using .Renviron

4. Finally, if neither of these are set, the OS default keyring is used.

• Usually the keyring is automatically unlocked when the user logs in.

Value

The backend object itself.

See Also

backend_env, backend_file, backend_macos, backend_secret_service, backend_wincred

backend_env Environment variable keyring backend

Description

This is a simple keyring backend, that stores/uses secrets in environment variables of the R session.

Details

It does not support multiple keyrings. It also does not support listing all keys, since there is no way
to distinguish keys from regular environment variables.

It does support service names and usernames: they will be separated with a : character in the name
of the environment variable. (Note that such an environment variable typically cannot be set or
queried from a shell, but it can be set and queried from R or other programming languages.)

See backend for the documentation of the class’s methods.

See Also

Other keyring backends: backend_file, backend_macos, backend_secret_service, backend_wincred

backend_file 5

Examples

Not run:
env <- backend_env$new()
env$set("r-keyring-test", username = "donaldduck")
env$get("r-keyring-test", username = "donaldduck")
Sys.getenv("r-keyring-test:donaldduck")

This is an error
env$list()

Clean up
env$delete("r-keyring-test", username = "donaldduck")

End(Not run)

backend_file Encrypted file keyring backend

Description

This is a simple keyring backend, that stores/uses secrets in encrypted files.

Details

It supports multiple keyrings.

See backend for the documentation of the individual methods.

See Also

Other keyring backends: backend_env, backend_macos, backend_secret_service, backend_wincred

Examples

Not run:
kb <- backend_file$new()

End(Not run)

6 backend_keyrings

backend_keyrings Abstract class of a backend that supports multiple keyrings

Description

To implement a new keyring that supports multiple keyrings, you need to inherit from this class and
redefine the get, set, set_with_value, delete, list methods, and also the keyring management
methods: keyring_create, keyring_list, keyring_delete, keyring_lock, keyring_unlock,
keyring_is_locked, keyring_default and keyring_set_default.

Details

See backend for the first set of methods. This is the semantics of the keyring management methods:

keyring_create(keyring)
keyring_list()
keyring_delete(keyring = NULL)
keyring_lock(keyring = NULL)
keyring_unlock(keyring = NULL, password = NULL)
keyring_is_locked(keyring = NULL)
keyring_default()
keyring_set_default(keyring = NULL)

• keyring_create() creates a new keyring.

• keyring_list() lists all keyrings.

• keyring_delete() deletes a keyring. It is a good idea to protect the default keyring, and/or a
non-empty keyring with a password or a confirmation dialog.

• keyring_lock() locks a keyring.

• keyring_unlock() unlocks a keyring.

• keyring_is_locked() checks whether a keyring is locked.

• keyring_default() returns the default keyring.

• keyring_set_default() sets the default keyring.

Arguments:

• keyring is the name of the keyring to use or create. For some methods in can be NULL to
select the default keyring.

• password is the password of the keyring.

See Also

Other keyring backend base classes: backend

backend_macos 7

backend_macos macOS Keychain keyring backend

Description

This backend is the default on macOS. It uses the macOS native Keychain Service API.

Details

It supports multiple keyrings.

See backend for the documentation of the individual methods.

See Also

Other keyring backends: backend_env, backend_file, backend_secret_service, backend_wincred

Examples

Not run:
This only works on macOS
kb <- backend_macos$new()
kb$keyring_create("foobar")
kb$set_default_keyring("foobar")
kb$set_with_value("service", password = "secret")
kb$get("service")
kb$delete("service")
kb$delete_keyring("foobar")

End(Not run)

backend_secret_service

Linux Secret Service keyring backend

Description

This backend is the default on Linux. It uses the libsecret library, and needs a secret service daemon
running (e.g. Gnome Keyring, or KWallet). It uses DBUS to communicate with the secret service
daemon.

8 backend_wincred

Details

This backend supports multiple keyrings.

See backend for the documentation of the individual methods. The is_available() method checks
is a Secret Service daemon is running on the system, by trying to connect to it. It returns a logical
scalar, or throws an error, depending on its argument:

is_available = function(report_error = FALSE)

Argument:

• report_error Whether to throw an error if the Secret Service is not available.

See Also

Other keyring backends: backend_env, backend_file, backend_macos, backend_wincred

Examples

Not run:
This only works on Linux, typically desktop Linux
kb <- backend_secret_service$new()
kb$keyring_create("foobar")
kb$set_default_keyring("foobar")
kb$set_with_value("service", password = "secret")
kb$get("service")
kb$delete("service")
kb$delete_keyring("foobar")

End(Not run)

backend_wincred Windows Credential Store keyring backend

Description

This backend is the default on Windows. It uses the native Windows Credential API, and needs at
least Windows XP to run.

Details

This backend supports multiple keyrings. Note that multiple keyrings are implemented in the
keyring R package, using some dummy keyring keys that represent keyrings and their locked/unlocked
state.

See backend for the documentation of the individual methods.

See Also

Other keyring backends: backend_env, backend_file, backend_macos, backend_secret_service

has_keyring_support 9

Examples

Not run:
This only works on Windows
kb <- backend_wincred$new()
kb$keyring_create("foobar")
kb$set_default_keyring("foobar")
kb$set_with_value("service", password = "secret")
kb$get("service")
kb$delete("service")
kb$delete_keyring("foobar")

End(Not run)

has_keyring_support Operations on keyrings

Description

On most platforms keyring supports multiple keyrings. This includes Windows, macOS and Linux
(Secret Service) as well. A keyring is a collection of keys that can be treated as a unit. A keyring
typically has a name and a password to unlock it. Once a keyring is unlocked, it remains unlocked
until the end of the user session, or until it is explicitly locked again.

Usage

has_keyring_support()

keyring_create(keyring, password = NULL)

keyring_list()

keyring_delete(keyring = NULL)

keyring_lock(keyring = NULL)

keyring_unlock(keyring = NULL, password = NULL)

keyring_is_locked(keyring = NULL)

Arguments

keyring The name of the keyring to create or to operate on. For functions other than
keyring_create, it can also be NULL to select the default keyring.

password The initial password or the password to unlock the keyring. If not specified or
NULL, it will be read from the console.

10 key_get

Details

Platforms typically have a default keyring, which is unlocked automatically when the user logs in.
This keyring does not need to be unlocked explicitly.

You can configure the keyring to use via R options or environment variables (see default_backend()),
or you can also specify it directly in the default_backend() call, or in the individual keyring
calls.

has_keyring_support checks if a backend supports multiple keyrings.

keyring_create creates a new keyring. It asks for a password if no password is specified.

keyring_list lists all existing keyrings.

keyring_delete deletes a keyring. Deleting a non-empty keyring requires confirmation, and the
default keyring can only be deleted if specified explicitly. On some backends (e.g. Windows Cre-
dential Store), the default keyring cannot be deleted at all.

keyring_lock locks a keyring. On some backends (e.g. Windows Credential Store), the default
keyring cannot be locked.

keyring_unlock unlocks a keyring. If a password is not specified, it will be read in interactively.

keyring_is_locked queries whether a keyring is locked.

Examples

default_backend()
has_keyring_support()
backend_env$new()$has_keyring_support()

This might ask for a password, so we do not run it by default
It only works if the default backend supports multiple keyrings
Not run:
keyring_create("foobar")
key_set_with_value("R-test-service", "donaldduck", password = "secret",

keyring = "foobar")
key_get("R-test-service", "donaldduck", keyring = "foobar")
key_list(keyring = "foobar")
keyring_delete(keyring = "foobar")

End(Not run)

key_get Operations on keys

Description

These functions manipulate keys in a keyring. You can think of a keyring as a secure key-value
store.

key_get 11

Usage

key_get(service, username = NULL, keyring = NULL)

key_get_raw(service, username = NULL, keyring = NULL)

key_set(service, username = NULL, keyring = NULL, prompt = "Password: ")

key_set_with_value(service, username = NULL, password = NULL, keyring = NULL)

key_set_with_raw_value(
service,
username = NULL,
password = NULL,
keyring = NULL

)

key_delete(service, username = NULL, keyring = NULL)

key_list(service = NULL, keyring = NULL)

key_list_raw(service = NULL, keyring = NULL)

Arguments

service Service name, a character scalar.

username Username, a character scalar, or NULL if the key is not associated with a user-
name.

keyring For systems that support multiple keyrings, specify the name of the keyring to
use here. If NULL, then the default keyring is used. See also has_keyring_support().

prompt The character string displayed when requesting the secret

password The secret to store. For key_set, it is read from the console, interactively.
key_set_with_value can be also used in non-interactive mode.

Details

key_get queries a key from the keyring.

key_get_raw queries a key and returns it as a raw vector. Most credential stores allow storing a
byte sequence with embedded null bytes, and these cannot be represented as traditional null bytes
terminated strings. If you don’t know whether the key contains an embedded null, it is best to query
it with key_get_raw instead of key_get.

key_set sets a key in the keyring. The contents of the key is read interactively from the terminal.

key_set_with_value is the non-interactive pair of key_set, to set a key in the keyring.

key_set_raw_with_value sets a key to a byte sequence from a raw vector.

key_delete deletes a key.

key_list lists all keys of a keyring, or the keys for a certain service (if service is not NULL).

12 key_get

key_list_raw() is like key_list() but also returns the keys as raw values. This is useful if your
keys have bytes that cannot appear in R strings, e.g. a zero byte.

Encodings:
On Windows, if required, an encoding can be specified using either an R option (keyring.encoding_windows)
or environment variable (KEYRING_ENCODING_WINDOWS). This will be applied when both getting
and setting keys. The option takes precedence over the environment variable, if both are set.
This is reserved primarily for compatibility with keys set with other software, such as Python’s
implementation of keyring. For a list of encodings, use iconvlist(), although it should be noted
that not every encoding can be properly converted, even for trivial cases. For best results, use
UTF-8 if you can.

Value

key_get returns a character scalar, the password or other confidential information that was stored
in the key.

key_list returns a list of keys, i.e. service names and usernames, in a data frame with column
names service and username. If a service or user name contains a zero byte, which is not allowed
in an R string, that entry is shown as NA and a warning (of class keyring_warn_zero_byte_keys)
is thrown. You can use the key_list_raw() function to query these keys.

key_list_raw is similar to key_list but returns service and usernames as raw vectors. This is
useful if some service or user names) contain zero bytes. All column names: service, username,
service_raw, username_raw.

Examples

These examples use the default keyring, and they are interactive,
so, we don't run them by default
Not run:
key_set("R-keyring-test-service", "donaldduck")
key_get("R-keyring-test-service", "donaldduck")
if (has_keyring_support()) key_list(service = "R-keyring-test-service")
key_delete("R-keyring-test-service", "donaldduck")

This is non-interactive, assuming that that default keyring
is unlocked
key_set_with_value("R-keyring-test-service", "donaldduck",

password = "secret")
key_get("R-keyring-test-service", "donaldduck")
if (has_keyring_support()) key_list(service = "R-keyring-test-service")
key_delete("R-keyring-test-service", "donaldduck")

This is interactive using backend_file
Set variables to be used in keyring
kr_name <- "my_keyring"
kr_service <- "my_database"
kr_username <- "my_username"

Create a keyring and add an entry using the variables above
kb <- keyring::backend_file$new()

key_get 13

Prompt for the keyring password, used to unlock keyring
kb$keyring_create(kr_name)
Prompt for the secret/password to be stored in the keyring
kb$set(kr_service, username=kr_username, keyring=kr_name)
Lock the keyring
kb$keyring_lock(kr_name)

The keyring file is stored at ~/.config/r-keyring/ on Linux

Output the stored password
keyring::backend_file$new()$get(service = kr_service,

user = kr_username,
keyring = kr_name)

End(Not run)

Index

∗ keyring backend base classes
backend, 2
backend_keyrings, 6

∗ keyring backends
backend_env, 4
backend_file, 5
backend_macos, 7
backend_secret_service, 7
backend_wincred, 8

backend, 2, 4–8
backend_env, 4, 4, 5, 7, 8
backend_file, 4, 5, 7, 8
backend_keyrings, 3, 6
backend_macos, 4, 5, 7, 8
backend_secret_service, 4, 5, 7, 7, 8
backend_wincred, 4, 5, 7, 8, 8
backends, 3
base::options(), 3
base::Startup, 4

default_backend (backends), 3
default_backend(), 10

has_keyring_support, 9
has_keyring_support(), 11

iconvlist(), 12

key_delete (key_get), 10
key_get, 10
key_get_raw (key_get), 10
key_list (key_get), 10
key_list_raw (key_get), 10
key_set (key_get), 10
key_set_with_raw_value (key_get), 10
key_set_with_value (key_get), 10
keyring_create (has_keyring_support), 9
keyring_delete (has_keyring_support), 9
keyring_is_locked

(has_keyring_support), 9

keyring_list (has_keyring_support), 9
keyring_lock (has_keyring_support), 9
keyring_unlock (has_keyring_support), 9

14

	backend
	backends
	backend_env
	backend_file
	backend_keyrings
	backend_macos
	backend_secret_service
	backend_wincred
	has_keyring_support
	key_get
	Index

