bliss: Bayesian Functional Linear Regression with Sparse Step Functions
A method for the Bayesian functional linear regression model (scalar-on-function),
  including two estimators of the coefficient function and an estimator of its support.
  A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., 
  Baragatti M., Pudlo P. (2019) <doi:10.1214/18-BA1095>.
| Version: | 
1.1.1 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
Rcpp, MASS, ggplot2, RcppArmadillo | 
| LinkingTo: | 
Rcpp, RcppArmadillo, RcppProgress | 
| Suggests: | 
rmarkdown, knitr, RColorBrewer | 
| Published: | 
2024-07-17 | 
| DOI: | 
10.32614/CRAN.package.bliss | 
| Author: | 
Paul-Marie Grollemund [aut, cre],
  Isabelle Sanchez [ctr],
  Meili Baragatti [ctr] | 
| Maintainer: | 
Paul-Marie Grollemund  <paul_marie.grollemund at uca.fr> | 
| BugReports: | 
https://github.com/pmgrollemund/bliss/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/pmgrollemund/bliss | 
| NeedsCompilation: | 
yes | 
| Citation: | 
bliss citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
bliss results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bliss
to link to this page.