Deconvolution of spatial transcriptomics data based on neural networks and single-cell RNA-seq data. SpatialDDLS implements a workflow to create neural network models able to make accurate estimates of cell composition of spots from spatial transcriptomics data using deep learning and the meaningful information provided by single-cell RNA-seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> and Mañanes et al. (2024) <doi:10.1093/bioinformatics/btae072> to get an overview of the method and see some examples of its performance. 
| Version: | 
1.0.3 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
rlang, grr, Matrix, methods, SpatialExperiment, SingleCellExperiment, SummarizedExperiment, zinbwave, stats, pbapply, S4Vectors, dplyr, reshape2, gtools, reticulate, keras, tensorflow, FNN, ggplot2, ggpubr, scran, scuttle | 
| Suggests: | 
knitr, rmarkdown, BiocParallel, rhdf5, DelayedArray, DelayedMatrixStats, HDF5Array, testthat, ComplexHeatmap, grid, bluster, lsa, irlba | 
| Published: | 
2024-10-31 | 
| DOI: | 
10.32614/CRAN.package.SpatialDDLS | 
| Author: | 
Diego Mañanes  
    [aut, cre],
  Carlos Torroja  
    [aut],
  Fatima Sanchez-Cabo
      [aut] | 
| Maintainer: | 
Diego Mañanes  <dmananesc at cnic.es> | 
| BugReports: | 
https://github.com/diegommcc/SpatialDDLS/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://diegommcc.github.io/SpatialDDLS/,
https://github.com/diegommcc/SpatialDDLS | 
| NeedsCompilation: | 
no | 
| SystemRequirements: | 
Python (>= 2.7.0), TensorFlow
(https://www.tensorflow.org/) | 
| Citation: | 
SpatialDDLS citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
SpatialDDLS results |