| Type: | Package | 
| Title: | Network Analysis for Omics Data | 
| Version: | 0.2.7 | 
| Description: | Comprehensive network analysis package. Calculate correlation network fastly, accelerate lots of analysis by parallel computing. Support for multi-omics data, search sub-nets fluently. Handle bigger data, more than 10,000 nodes in each omics. Offer various layout method for multi-omics network and some interfaces to other software ('Gephi', 'Cytoscape', 'ggplot2'), easy to visualize. Provide comprehensive topology indexes calculation, including ecological network stability. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| Depends: | R (≥ 4.1.0), igraph (≥ 1.3.5) | 
| LazyData: | true | 
| Imports: | graphics, dplyr, ggplot2 (≥ 3.2.0), ggnewscale, ggrepel, grDevices, magrittr, reshape2, stats, tibble, utils, pcutils (≥ 0.2.7), rlang | 
| Suggests: | pheatmap, vegan, stringr, foreach, doSNOW, snow, knitr, rmarkdown, prettydoc, Hmisc, gifski, ggraph, networkD3, ggpmisc, ggtree, treeio, circlize, jsonify, ggpubr, corrplot, philentropy, spatstat.random, spatstat.geom, sf | 
| VignetteBuilder: | knitr | 
| BugReports: | https://github.com/Asa12138/MetaNet/issues | 
| URL: | https://github.com/Asa12138/MetaNet | 
| ByteCompile: | true | 
| biocViews: | DataImport, Network analysis, Omics, Software, Visualization | 
| NeedsCompilation: | no | 
| Packaged: | 2025-06-26 08:47:51 UTC; asa | 
| Author: | Chen Peng  | 
| Maintainer: | Chen Peng <pengchen2001@zju.edu.cn> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-06-26 09:50:02 UTC | 
MetaNet: Network Analysis for Omics Data
Description
Comprehensive network analysis package. Calculate correlation network fastly, accelerate lots of analysis by parallel computing. Support for multi-omics data, search sub-nets fluently. Handle bigger data, more than 10,000 nodes in each omics. Offer various layout method for multi-omics network and some interfaces to other software ('Gephi', 'Cytoscape', 'ggplot2'), easy to visualize. Provide comprehensive topology indexes calculation, including ecological network stability.
Author(s)
Maintainer: Chen Peng pengchen2001@zju.edu.cn (ORCID)
See Also
Useful links:
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
lhs | 
 A value or the magrittr placeholder.  | 
rhs | 
 A function call using the magrittr semantics.  | 
Value
The result of calling rhs(lhs).
Assignment pipe
Description
See magrittr::%<>% for details.
Usage
lhs %<>% rhs
Arguments
lhs | 
 A value or the magrittr placeholder.  | 
rhs | 
 A function call using the magrittr semantics.  | 
Value
The result of calling rhs(lhs).
Cohesion calculation
Description
Cohesion calculation
Plot cohesion
Usage
Cohesion(otutab, reps = 200, threads = 1, mycor = NULL, verbose = TRUE)
## S3 method for class 'cohesion'
plot(x, group, metadata, mode = 1, ...)
Arguments
otutab | 
 otutab  | 
reps | 
 iteration time  | 
threads | 
 threads  | 
mycor | 
 a correlation matrix you want to use, skip the null model build when mycor is not NULL, default: NULL  | 
verbose | 
 verbose  | 
x | 
 
  | 
group | 
 group name in colnames(metadata)  | 
metadata | 
 metadata  | 
mode | 
 plot mode, 1~2  | 
... | 
 additional arguments for   | 
Value
Cohesion object: a list with two dataframe
a ggplot
References
Herren, C. M. & McMahon, K. (2017) Cohesion: a method for quantifying the connectivity of microbial communities. doi:10.1038/ismej.2017.91.
Examples
data("otutab", package = "pcutils")
# set reps at least 99 when you run.
Cohesion(otutab[1:50, ], reps = 19) -> cohesion_res
if (requireNamespace("ggpubr")) {
  plot(cohesion_res, group = "Group", metadata = metadata, mode = 1)
  plot(cohesion_res, group = "Group", metadata = metadata, mode = 2)
}
Get RMT threshold for a correlation matrix
Description
Get RMT threshold for a correlation matrix
Get RMT threshold for a correlation matrix roughly
Usage
RMT_threshold(
  occor.r,
  out_dir,
  min_threshold = 0.5,
  max_threshold = 0.8,
  step = 0.02,
  gif = FALSE,
  verbose = FALSE
)
rmt(occor.r, min_threshold = 0.5, max_threshold = 0.85, step = 0.01)
Arguments
occor.r | 
 a corr object or a correlation matrix  | 
out_dir | 
 output dir  | 
min_threshold | 
 min_threshold  | 
max_threshold | 
 max_threshold  | 
step | 
 step  | 
gif | 
 render a .gif file?  | 
verbose | 
 verbose  | 
Value
a r-threshold
recommend threshold
References
J. Zhou, Y. Deng, FALSE. Luo, Z. He, Q. Tu, X. Zhi, (2010) Functional Molecular Ecological Networks, doi:10.1128/mBio.00169-10. https://matstat.org/content_en/RMT/RMThreshold_Intro.pdf
Examples
data(otutab, package = "pcutils")
t(otutab) -> totu
c_net_calculate(totu) -> corr
rmt(corr)
# recommend: 0.69
c_net_build(corr, r_threshold = 0.69) -> co_net_rmt
Calculate Similarity Between Two Graphs via Adjacency Matrices
Description
Computes the similarity between two igraph objects using their adjacency matrices. Supports Frobenius norm-based similarity and cosine similarity.
Usage
adjacency_similarity(g1, g2, method = "frobenius")
Arguments
g1 | 
 An igraph object representing the first graph.  | 
g2 | 
 An igraph object representing the second graph.  | 
method | 
 A character string specifying the similarity method: "frobenius" (default) or "cosine".  | 
Value
A numeric value between 0 (no similarity) and 1 (identical graphs).
Examples
library(igraph)
g1 <- graph_from_edgelist(matrix(c(1, 2, 2, 3), ncol = 2, byrow = TRUE), directed = FALSE)
g2 <- graph_from_edgelist(matrix(c(1, 2, 2, 4), ncol = 2, byrow = TRUE), directed = FALSE)
adjacency_similarity(g1, g2, method = "frobenius") # Output: 0.5
adjacency_similarity(g1, g2, method = "cosine") # Output: 0.5
Use dataframe to annotate edges of an igraph
Description
Use dataframe to annotate edges of an igraph
Usage
anno_edge(go, anno_tab, verbose = TRUE)
Arguments
go | 
 metanet an igraph object  | 
anno_tab | 
 a dataframe using to annotate (with rowname or a name column)  | 
verbose | 
 logical  | 
Value
a annotated igraph object
See Also
Other manipulate: 
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Examples
data("c_net")
anno <- data.frame("from" = "s__Pelomonas_puraquae", "to" = "s__un_g__Rhizobium", new_atr = "new")
anno_edge(co_net, anno) -> anno_net
Use data.frame to annotate vertexes of metanet
Description
Use data.frame to annotate vertexes of metanet
Usage
anno_vertex(go, anno_tab, verbose = TRUE)
Arguments
go | 
 metanet object  | 
anno_tab | 
 a dataframe using to annotate (with rowname or a "name" column)  | 
verbose | 
 logical  | 
Value
a annotated metanet object
See Also
Other manipulate: 
anno_edge(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Examples
data("c_net")
data("otutab", package = "pcutils")
anno_vertex(co_net, taxonomy)
Edgelist
Description
Edgelist for c_net_from_edgelist()
Edgelist
Description
Edgelist for c_net_from_edgelist()
Transfer an igraph object to a ggig
Description
Transfer an igraph object to a ggig
Usage
as.ggig(go, coors = NULL)
Arguments
go | 
 igraph or meatnet  | 
coors | 
 coordinates for nodes,columns: name, X, Y  | 
Value
ggig object
See Also
Other plot: 
c_net_plot(),
input_cytoscape(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Examples
as.ggig(co_net, coors = c_net_layout(co_net)) -> ggig
plot(ggig)
as.ggig(multi1, coors = c_net_layout(multi1)) -> ggig
plot(ggig, labels_num = 0.3)
Layout as a arc
Description
Layout as a arc
Usage
as_arc(angle = 0, arc = pi)
Arguments
angle | 
 anticlockwise rotation angle  | 
arc | 
 the radian of arc  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_circle_tree(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
as_polygon(),
c_net_layout()
Examples
as_arc()(co_net)
c_net_plot(co_net, coors = as_arc(pi / 2))
Layout as a circle_tree
Description
Layout as a circle_tree
Usage
as_circle_tree()
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
as_polygon(),
c_net_layout()
Transfer to a coors object
Description
Transfer to a coors object
Usage
as_coors(coors, curved = NULL)
Arguments
coors | 
 data.frame  | 
curved | 
 line curved  | 
Value
coors object
Layout as a line
Description
Layout as a line
Usage
as_line(angle = 0)
Arguments
angle | 
 anticlockwise rotation angle  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
as_polygon(),
c_net_layout()
Examples
as_line()(co_net)
c_net_plot(co_net, coors = as_line(pi / 2))
Layout as a multi_layer
Description
Layout as a multi_layer
Usage
as_multi_layer(n = 3, layout = on_grid())
Arguments
n | 
 how many arcs of this multi_layer  | 
layout | 
 see method in   | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
as_polygon(),
c_net_layout()
Examples
as_multi_layer()(co_net)
Layout as a multi_layer
Description
Layout as a multi_layer
Usage
as_poly_sector(n = 3)
Arguments
n | 
 how many arcs of this multi_layer  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_multi_layer(),
as_polyarc(),
as_polycircle(),
as_polygon(),
c_net_layout()
Layout as a polyarc
Description
Layout as a polyarc
Usage
as_polyarc(n = 3, space = pi/3)
Arguments
n | 
 how many arcs of this poly_arc  | 
space | 
 the space between each arc, default: pi/3  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polycircle(),
as_polygon(),
c_net_layout()
Examples
as_polyarc()(co_net)
Layout as a polycircle
Description
Layout as a polycircle
Usage
as_polycircle(n = 5)
Arguments
n | 
 how many circles of this polycircle  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polygon(),
c_net_layout()
Examples
as_polycircle()(co_net)
Layout as a polygon
Description
Layout as a polygon
Usage
as_polygon(n = 3, line_curved = 0.5)
Arguments
n | 
 how many edges of this polygon  | 
line_curved | 
 line_curved 0~0.5  | 
Value
A two-column matrix, each row giving the coordinates of a vertex, according to the ids of the vertex ids.
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
c_net_layout()
Examples
as_polygon()(co_net)
Annotate a metanet
Description
Annotate a metanet
Usage
c_net_annotate(go, anno_tab, mode = "v", verbose = TRUE)
Arguments
go | 
 metanet object  | 
anno_tab | 
 a dataframe using to annotate (mode v, e), or a list (mode n)  | 
mode | 
 "v" for vertex, "e" for edge, "n" for network  | 
verbose | 
 logical  | 
Value
a annotated metanet object
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Examples
data("c_net")
anno <- data.frame("name" = "s__Pelomonas_puraquae", new_atr = "new")
co_net_new <- c_net_annotate(co_net, anno, mode = "v")
get_v(co_net_new, c("name", "new_atr"))
anno <- data.frame("from" = "s__Pelomonas_puraquae", "to" = "s__un_g__Rhizobium", new_atr = "new")
co_net_new <- c_net_annotate(co_net, anno, mode = "e")
get_e(co_net_new, c("from", "to", "new_atr"))
co_net_new <- c_net_annotate(co_net, list(new_atr = "new"), mode = "n")
get_n(co_net_new)
Construct a metanet from a corr object
Description
Construct a metanet from a corr object
Usage
c_net_build(
  corr,
  r_threshold = 0.6,
  p_threshold = 0.05,
  use_p_adj = TRUE,
  delete_single = TRUE
)
Arguments
corr | 
 corr object from   | 
r_threshold | 
 r_threshold (default: >0.6).  | 
p_threshold | 
 p_threshold (default: <0.05).  | 
use_p_adj | 
 use the p.adjust instead of p.value (default: TRUE), if p.adjust not in the corr object, use p.value.  | 
delete_single | 
 should delete single vertexes?  | 
Value
an metanet object
See Also
Other build: 
c_net_from_edgelist(),
c_net_set(),
c_net_update(),
multi_net_build()
Examples
data("otutab", package = "pcutils")
t(otutab) -> totu
metadata[, 3:10] -> env
c_net_calculate(totu) -> corr
c_net_build(corr, r_threshold = 0.65) -> co_net
c_net_calculate(totu, env) -> corr2
c_net_build(corr2) -> co_net2
Calculate correlation for one or two t(otutab), or distance for one t(otutab).
Description
Calculate correlation for one or two t(otutab), or distance for one t(otutab).
Usage
c_net_calculate(
  totu,
  totu2 = NULL,
  method = "spearman",
  filename = FALSE,
  p.adjust.method = NULL,
  p.adjust.mode = "all",
  threads = 1,
  verbose = TRUE
)
Arguments
totu | 
 t(otutab), row are samples, column are features.  | 
totu2 | 
 t(otutab2) or NULL, row are samples, column are features.  | 
method | 
 "spearman" (default), "pearson", "sparcc", or distance index from   | 
filename | 
 the prefix of saved .corr file or FALSE.  | 
p.adjust.method | 
 see   | 
p.adjust.mode | 
 see   | 
threads | 
 threads, default: 1.  | 
verbose | 
 verbose, default: TRUE.  | 
Value
a corr object with 3 elements:
r | 
 default: spearman correlation  | 
p.value | 
 default: p-value of spearman correlation  | 
p.adjust | 
 default p.adjust.method = NULL  | 
See Also
Other calculate: 
cal_sim(),
fast_cor(),
p.adjust.table(),
read_corr()
Examples
data("otutab", package = "pcutils")
t(otutab) -> totu
c_net_calculate(totu) -> corr
metadata[, 3:10] -> env
c_net_calculate(totu, env) -> corr2
Compare Two Networks
Description
Compare Two Networks
Usage
c_net_compare(g1, g2)
Arguments
g1 | 
 network1  | 
g2 | 
 network2  | 
Value
A list containing the following elements:
-  
g1: The first network. -  
g2: The second network. -  
g_union: The union of the two networks. -  
g_inter: The intersection of the two networks. -  
net_par_df: A data frame containing the network parameters. -  
net_similarity: A list containing the similarity metrics. 
Examples
data("c_net")
set.seed(12)
co_net_p1 <- c_net_filter(co_net, name %in% sample(V(co_net)$name, 300))
co_net_p2 <- c_net_filter(co_net, name %in% sample(V(co_net)$name, 300))
c_net_compare(co_net_p1, co_net_p2) -> c_net_comp
plot(c_net_comp)
Difference two networks
Description
Difference two networks
Usage
c_net_difference(go1, go2, ...)
Arguments
go1 | 
 metanet object  | 
go2 | 
 metanet object  | 
... | 
 add  | 
Value
metanet
Extract ego-centric subnetwork with preserved class attributes
Description
Wrapper around igraph::make_ego_graph() that ensures output retains
"metanet" and "igraph" class structure. Supports single or multiple center nodes.
Usage
c_net_ego(graph, nodes, order = 1, mode = "all")
Arguments
graph | 
 An igraph object with potential "metanet" class  | 
nodes | 
 Center node(s) for subnetwork extraction (vertex IDs or names)  | 
order | 
 Integer specifying the order of neighbors to include  | 
mode | 
 Character scalar, either "in", "out" or "all" for directed networks  | 
Value
metanet
Examples
library(igraph)
c_net_plot(co_net)
c_net_plot(c_net_ego(co_net, "s__Kribbella_catacumbae"))
nodes <- c("s__Kribbella_catacumbae", "s__Verrucosispora_andamanensis")
c_net_plot(c_net_ego(co_net, nodes))
Filter a network according to some attributes
Description
Filter a network according to some attributes
Usage
c_net_filter(go, ..., mode = "v")
Arguments
go | 
 metanet object  | 
... | 
 some attributes of vertex and edge  | 
mode | 
 "v" or "e"  | 
Value
metanet
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Examples
data("multi_net")
c_net_filter(multi1, v_group %in% c("omic1", "omic2"))
Construct a network from edge_list dataframe
Description
Construct a network from edge_list dataframe
Usage
c_net_from_edgelist(
  edgelist,
  vertex_df = NULL,
  direct = FALSE,
  e_type = NULL,
  e_class = NULL
)
Arguments
edgelist | 
 first is source, second is target, others are annotation  | 
vertex_df | 
 vertex metadata data.frame  | 
direct | 
 logical  | 
e_type | 
 set e_type  | 
e_class | 
 set e_class  | 
Value
metanet
See Also
Other build: 
c_net_build(),
c_net_set(),
c_net_update(),
multi_net_build()
Examples
data(edgelist)
edge_net <- c_net_from_edgelist(arc_count, vertex_df = arc_taxonomy)
edge_net <- c_net_set(edge_net, vertex_class = "Phylum", edge_width = "n")
c_net_plot(edge_net)
Highlight specific nodes in a network
Description
Adds highlight markers to specified nodes and grays out non-highlighted nodes. Preserves all existing vertex/edge attributes and class structure.
Usage
c_net_highlight(graph, nodes = NULL, edges = NULL, gray_color = "gray80")
Arguments
graph | 
 An igraph/metatnet object  | 
nodes | 
 Vector of node names to highlight  | 
edges | 
 a data.frame of edges to highlight, colnames must be "from" and "to"  | 
gray_color | 
 Color for non-highlighted nodes (default: "gray80")  | 
Value
metanet
Examples
par(mfrow = c(1, 3))
nodes <- c("s__Kribbella_catacumbae", "s__Verrucosispora_andamanensis")
nodes <- V(c_net_ego(co_net, nodes))$name
g_hl <- c_net_highlight(co_net, nodes = nodes)
plot(g_hl) # Highlighted nodes keep colors, others turn gray
get_e(co_net) %>% head(20) -> hl_edges
g_hl2 <- c_net_highlight(co_net, edges = hl_edges[, 2:3])
c_net_plot(g_hl2)
g_hl3 <- c_net_highlight(co_net, nodes = nodes, edges = hl_edges[, 2:3])
c_net_plot(g_hl3)
Intersect two networks
Description
Intersect two networks
Usage
c_net_intersect(go1, go2, ...)
Arguments
go1 | 
 metanet object  | 
go2 | 
 metanet object  | 
... | 
 add  | 
Value
metanet
Layout coordinates
Description
Layout coordinates
Usage
c_net_layout(
  go,
  method = igraph::nicely(),
  order_by = NULL,
  order_ls = NULL,
  seed = 1234,
  line_curved = 0.5,
  rescale = TRUE,
  ...
)
Arguments
go | 
 igraph or metanet  | 
method | 
 (1) as_line(), as_arc(), as_polygon(), as_polyarc(), as_polycircle(), as_circle_tree();
(2) as_star(), as_tree(), in_circle(), nicely(), on_grid(), on_sphere(),randomly(), with_dh(), with_fr(), with_gem(), with_graphopt(), with_kk(),with_lgl(), with_mds(),. see   | 
order_by | 
 order nodes according to a node attribute  | 
order_ls | 
 manual the discrete variable with a vector, or continuous variable with "desc" to decreasing  | 
seed | 
 random seed  | 
line_curved | 
 consider line curved, only for some layout methods like as_line(), as_polygon().default:0  | 
rescale | 
 logical, scale the X, Y to (-1,1)  | 
... | 
 add  | 
Value
coors object: coordinates for nodes, columns: name, X, Y; curved for edges, columns: from, to, curved;
See Also
Other layout: 
as_arc(),
as_circle_tree(),
as_line(),
as_multi_layer(),
as_poly_sector(),
as_polyarc(),
as_polycircle(),
as_polygon()
Examples
library(igraph)
c_net_layout(co_net) -> coors
c_net_plot(co_net, coors)
c_net_plot(co_net, c_net_layout(co_net, in_circle()), vertex.size = 2)
c_net_plot(co_net, c_net_layout(co_net, in_circle(), order_by = "v_class"), vertex.size = 2)
c_net_plot(co_net, c_net_layout(co_net, in_circle(), order_by = "size", order_ls = "desc"))
c_net_plot(co_net, c_net_layout(co_net, as_polygon(3)))
Load network file
Description
Load network file
Usage
c_net_load(filename, format = "data.frame")
Arguments
filename | 
 filename  | 
format | 
 "data.frame","graphml"  | 
Value
metanet
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Plot a metanet
Description
Plot a metanet
Usage
c_net_plot(
  go,
  coors = NULL,
  ...,
  labels_num = NULL,
  vertex_size_range = NULL,
  edge_width_range = NULL,
  plot_module = FALSE,
  mark_module = FALSE,
  mark_color = NULL,
  mark_alpha = 0.3,
  module_label = FALSE,
  module_label_cex = 2,
  module_label_color = "black",
  module_label_just = c(0.5, 0.5),
  pie_value = NULL,
  pie_color = NULL,
  legend = TRUE,
  legend_number = FALSE,
  legend_cex = 1,
  legend_position = c(left_leg_x = -2, left_leg_y = 1, right_leg_x = 1.2, right_leg_y =
    1),
  group_legend_title = NULL,
  group_legend_order = NULL,
  color_legend = TRUE,
  color_legend_order = NULL,
  size_legend = FALSE,
  size_legend_title = "Node Size",
  edge_legend = TRUE,
  edge_legend_title = "Edge type",
  edge_legend_order = NULL,
  width_legend = FALSE,
  width_legend_title = "Edge width",
  lty_legend = FALSE,
  lty_legend_title = "Edge class",
  lty_legend_order = NULL,
  module_legend = FALSE,
  module_legend_title = "Module",
  module_legend_order = NULL,
  pie_legend = FALSE,
  pie_legend_title = "Pie part",
  pie_legend_order = NULL,
  label_cex = 1,
  arrow_size_cex = 1,
  arrow_width_cex = 1,
  params_list = NULL,
  rescale = FALSE,
  seed = 1234
)
Arguments
go | 
 an igraph or metanet object  | 
coors | 
 the coordinates you saved  | 
... | 
 additional parameters for   | 
labels_num | 
 show how many labels, >1 indicates number, <1 indicates fraction, "all" indicates all.  | 
vertex_size_range | 
 the vertex size range, e.g. c(1,10)  | 
edge_width_range | 
 the edge width range, e.g. c(1,10)  | 
plot_module | 
 logical, plot module?  | 
mark_module | 
 logical, mark the modules?  | 
mark_color | 
 mark color  | 
mark_alpha | 
 mark fill alpha, default 0.3  | 
module_label | 
 show module label?  | 
module_label_cex | 
 module label cex  | 
module_label_color | 
 module label color  | 
module_label_just | 
 module label just, default c(0.5,0.5)  | 
pie_value | 
 a dataframe using to plot pie (with rowname or a "name" column)  | 
pie_color | 
 color vector  | 
legend | 
 all legends  | 
legend_number | 
 legend with numbers  | 
legend_cex | 
 character expansion factor relative to current par("cex"), default: 1  | 
legend_position | 
 legend_position, default: c(left_leg_x=-1.9,left_leg_y=1,right_leg_x=1.2,right_leg_y=1)  | 
group_legend_title | 
 group_legend_title, length must same to the numbers of v_group  | 
group_legend_order | 
 group_legend_order vector  | 
color_legend | 
 logical  | 
color_legend_order | 
 color_legend_order vector  | 
size_legend | 
 logical  | 
size_legend_title | 
 size_legend_title  | 
edge_legend | 
 logical  | 
edge_legend_title | 
 edge_legend_title  | 
edge_legend_order | 
 edge_legend_order vector, e.g. c("positive","negative")  | 
width_legend | 
 logical  | 
width_legend_title | 
 width_legend_title  | 
lty_legend | 
 logical  | 
lty_legend_title | 
 lty_legend_title  | 
lty_legend_order | 
 lty_legend_order  | 
module_legend | 
 logical  | 
module_legend_title | 
 module_legend_title  | 
module_legend_order | 
 module_legend_order  | 
pie_legend | 
 logical  | 
pie_legend_title | 
 pie_legend_title  | 
pie_legend_order | 
 pie_legend_order  | 
label_cex | 
 label cex, default 1, relative to the vertex size  | 
arrow_size_cex | 
 arrow size cex, default 1, relative to the vertex size  | 
arrow_width_cex | 
 arrow width cex, default 1, relative to the vertex size  | 
params_list | 
 a list of parameters, e.g. list(edge_legend = TRUE, lty_legend = FALSE), when the parameter is duplicated, the format argument will be used rather than the argument in params_list.  | 
rescale | 
 Logical constant, whether to rescale the coordinates to the (-1,1).  | 
seed | 
 random seed, default:1234, make sure each plot is the same.  | 
Value
a network plot
See Also
Other plot: 
as.ggig(),
input_cytoscape(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Examples
data("c_net")
c_net_plot(co_net)
c_net_plot(co_net2)
c_net_plot(multi1)
Save network file
Description
Save network file
Usage
c_net_save(go, filename = "net", format = "data.frame")
Arguments
go | 
 metanet network  | 
filename | 
 filename  | 
format | 
 "data.frame","graphml"  | 
Value
No value
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_union(),
get_e(),
get_n(),
get_v(),
is_metanet()
Set basic attributes from totu table
Description
Set basic attributes from totu table
Usage
c_net_set(
  go,
  ...,
  vertex_group = "v_group",
  vertex_class = "v_class",
  vertex_size = "size",
  edge_type = "e_type",
  edge_class = "e_class",
  edge_width = "width",
  node_break = 5,
  edge_break = 5,
  initialize = TRUE
)
Arguments
go | 
 metanet an igraph object  | 
... | 
 some data.frames to annotate go  | 
vertex_group | 
 choose which column to be vertex_group (map to vertex_shape)  | 
vertex_class | 
 choose which column to be vertex_class (map to vertex_color)  | 
vertex_size | 
 choose which column to be vertex_size (map to vertex_size)  | 
edge_type | 
 choose which column to be edge_type (map to edge_color)  | 
edge_class | 
 choose which column to be edge_class (map to edge_linetype)  | 
edge_width | 
 choose which column to be edge_width (map to edge_width)  | 
node_break | 
 node_break if v_class is numeric, default: 5  | 
edge_break | 
 edge_break if e_type is numeric, default: 5  | 
initialize | 
 initialize, default: TRUE  | 
Value
a metanet object
See Also
Other build: 
c_net_build(),
c_net_from_edgelist(),
c_net_update(),
multi_net_build()
Examples
data("otutab", package = "pcutils")
t(otutab) -> totu
metadata[, 3:10] -> env
data("c_net")
co_net <- c_net_set(co_net, taxonomy, data.frame("Abundance" = colSums(totu)),
  vertex_class = "Phylum", vertex_size = "Abundance"
)
co_net2 <- c_net_set(co_net2, taxonomy, data.frame(name = colnames(env), env = colnames(env)),
  vertex_class = c("Phylum", "env")
)
co_net2 <- c_net_set(co_net2, data.frame("Abundance" = colSums(totu)), vertex_size = "Abundance")
Evaluate the stability of a network
Description
Vi=\frac{E-Ei}{E}
E is the global efficiency and Ei is the global efficiency after the removal of the node i and its entire links.
Usage
c_net_stability(
  go_ls,
  mode = "robust_test",
  partial = 0.5,
  step = 10,
  reps = 9,
  threads = 1,
  verbose = TRUE,
  keystone = FALSE
)
robust_test(
  go_ls,
  partial = 0.5,
  step = 10,
  reps = 9,
  threads = 1,
  verbose = TRUE
)
vulnerability(go_ls, threads = 1, verbose = TRUE)
robustness(go_ls, keystone = FALSE, reps = 9, threads = 1, verbose = TRUE)
Arguments
go_ls | 
 an igraph object or igraph list.  | 
mode | 
 "robust_test", "vulnerability", "robustness"  | 
partial | 
 how much percent vertexes be removed in total (default: 0.5, only for robust_test)  | 
step | 
 how many nodes be removed each time? (default: 10, only for robust_test)  | 
reps | 
 simulation number (default: 9)  | 
threads | 
 threads  | 
verbose | 
 verbose  | 
keystone | 
 remove 70%% keystones instead of remove 50%% nodes (default: False, only for robustness)  | 
Value
a data.frame
data.frame (robustness class)
a vector
Examples
data("c_net")
if (requireNamespace("ggpmisc")) {
  c_net_stability(co_net, mode = "robust_test", step = 20, reps = 9) -> robust_res
  plot(robust_res, index = "Average_degree", mode = 2)
}
c_net_stability(co_net, mode = "vulnerability") -> vulnerability_res
plot(vulnerability_res)
robustness(co_net) -> robustness_res
plot(robustness_res)
module_detect(co_net) -> co_net_modu
zp_analyse(co_net_modu, mode = 2) -> co_net_modu
c_net_stability(co_net_modu, mode = "robustness", keystone = TRUE) -> robustness_res
plot(robustness_res)
Union two networks
Description
Union two networks
Usage
c_net_union(go1, go2, ...)
Arguments
go1 | 
 metanet object  | 
go2 | 
 metanet object  | 
... | 
 add  | 
Value
metanet
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
get_e(),
get_n(),
get_v(),
is_metanet()
Examples
g1 <- make_graph(edges = c("1", 2, 2, 3, 3, 4, 4, 5, 5, 1), directed = FALSE) %>% as.metanet()
g2 <- make_graph(edges = c("4", 5, 5, 6, 6, 7, 7, 8, 8, 4), directed = FALSE) %>% as.metanet()
par(mfrow = c(1, 3))
plot(c_net_union(g1, g2))
plot(c_net_intersect(g1, g2))
plot(c_net_difference(g1, g2))
Update a metanet object or transform igraph object to metanet object
Description
Update a metanet object or transform igraph object to metanet object
Usage
c_net_update(
  go,
  node_break = 5,
  edge_break = 5,
  initialize = FALSE,
  verbose = TRUE,
  uniq_v_class = FALSE
)
Arguments
go | 
 a metanet object or igraph object  | 
node_break | 
 node_break if v_class is numeric, default: 5  | 
edge_break | 
 edge_break if e_type is numeric, default: 5  | 
initialize | 
 initialize?  | 
verbose | 
 verbose?  | 
uniq_v_class | 
 if TRUE, add prefix to v_class if multiple v_class belong to same v_group.  | 
Value
metanet
See Also
Other build: 
c_net_build(),
c_net_from_edgelist(),
c_net_set(),
multi_net_build()
Calculate similarity for one t(otutab)
Description
Calculate similarity for one t(otutab)
Usage
cal_sim(totu, totu2 = NULL, method = "bray")
Arguments
totu | 
 t(otutab), row are samples, column are features.  | 
totu2 | 
 t(otutab) or NULL, row are samples, column are features.  | 
method | 
 Dissimilarity index, see   | 
Value
similarity = 1-distance
See Also
Other calculate: 
c_net_calculate(),
fast_cor(),
p.adjust.table(),
read_corr()
Examples
if (requireNamespace("vegan")) {
  data("otutab", package = "pcutils")
  t(otutab) -> totu
  cal_sim(totu) -> sim_corr
}
Check tables and extract common samples
Description
Check tables and extract common samples
Usage
check_tabs(...)
Arguments
... | 
 tables  | 
Value
formatted tables
Examples
data("otutab", package = "pcutils")
check_tabs(otutab)
Clean a igraph object
Description
Clean a igraph object
Usage
clean_igraph(go, direct = NULL)
Arguments
go | 
 igraph, metanet objects  | 
direct | 
 direct?  | 
Value
a igraph object
Clean multi edge metanet to plot
Description
Clean multi edge metanet to plot
Usage
clean_multi_edge_metanet(go)
Arguments
go | 
 metanet object  | 
Value
metanet object
Examples
g <- igraph::make_ring(2)
g <- igraph::add.edges(g, c(1, 1, 1, 1, 2, 1))
plot(g)
plot(clean_multi_edge_metanet(g))
MetaNet networks
Description
MetaNet co_nets
MetaNet networks
Description
MetaNet co_nets
MetaNet networks
Description
MetaNet co_nets
Transform a dataframe to a network edgelist.
Description
Transform a dataframe to a network edgelist.
Usage
df2net_tree(test, fun = sum)
Arguments
test | 
 df  | 
fun | 
 default: sum  | 
Value
metanet
Examples
data("otutab", package = "pcutils")
cbind(taxonomy, num = rowSums(otutab))[1:20, ] -> test
df2net_tree(test) -> ttt
plot(ttt)
if (requireNamespace("ggraph")) plot(ttt, coors = as_circle_tree())
Extract each sample network from the whole network
Description
Extract each sample network from the whole network
Usage
extract_sample_net(
  whole_net,
  otutab,
  threads = 1,
  save_net = FALSE,
  fast = TRUE,
  remove_negative = FALSE,
  verbose = TRUE
)
Arguments
whole_net | 
 the whole network  | 
otutab | 
 otutab, columns are samples, these columns will be extract  | 
threads | 
 threads, default: 1  | 
save_net | 
 should save these sub_nets? FALSE or a filename  | 
fast | 
 less indexes for faster calculate ?  | 
remove_negative | 
 remove negative edge or not? default: FALSE  | 
verbose | 
 verbose  | 
Value
a dataframe contains all sub_net parameters
See Also
Other topological: 
fit_power(),
get_group_skeleton(),
links_stat(),
nc(),
net_par(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
data(otutab, package = "pcutils")
extract_sample_net(co_net, otutab) -> sub_net_pars
Fast correlation calculation
Description
Fast correlation calculation
Usage
fast_cor(totu, totu2 = NULL, method = c("pearson", "spearman"))
Arguments
totu | 
 t(otutab), row are samples, column are features.  | 
totu2 | 
 t(otutab) or NULL, row are samples, column are features.  | 
method | 
 "spearman" or "pearson"  | 
Value
a list with 2 elements:
r | 
 default: spearman correlation  | 
p.value | 
 default: p-value of spearman correlation  | 
See Also
Other calculate: 
c_net_calculate(),
cal_sim(),
p.adjust.table(),
read_corr()
Examples
data("otutab", package = "pcutils")
t(otutab[1:100, ]) -> totu
fast_cor(totu, method = "spearman") -> corr
Filter some modules as others
Description
Filter some modules as others
Combine or cut modules to module_number
Plot module tree
Usage
filter_n_module(go_m, n_node_in_module = 0, keep_id = NULL, delete = FALSE)
combine_n_module(go_m, module_number = 5)
plot_module_tree(go_m, module = "module", community = NULL, label.size = 2)
Arguments
go_m | 
 module metanet  | 
n_node_in_module | 
 transfer the modules less than n_node_in_module to "others"  | 
keep_id | 
 keep modules ids, will not be "others"  | 
delete | 
 logical, delete others modules? default:FALSE, the others module will be "others".  | 
module_number | 
 number of modules  | 
module | 
 which column name is module. default: "module"  | 
community | 
 community object, default: NULL, use the community of go_m  | 
label.size | 
 label.size  | 
Value
metanet with modules
ggplot
See Also
Other module: 
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Examples
data("c_net")
module_detect(co_net) -> co_net_modu
filter_n_module(co_net_modu, n_node_in_module = 30) -> co_net_modu
if (requireNamespace("ggtree") && requireNamespace("treeio")) plot_module_tree(co_net_modu)
combine_n_module(co_net_modu, 20) -> co_net_modu1
if (requireNamespace("ggtree") && requireNamespace("treeio")) plot_module_tree(co_net_modu1)
Fit power-law distribution for an igraph
Description
Fit power-law distribution for an igraph
Usage
fit_power(go, p.value = FALSE)
Arguments
go | 
 igraph  | 
p.value | 
 calculate p.value  | 
Value
ggplot
See Also
Other topological: 
extract_sample_net(),
get_group_skeleton(),
links_stat(),
nc(),
net_par(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
fit_power(co_net)
Layout with group
Description
Layout with group
Usage
g_layout(
  go,
  group = "module",
  group_order = NULL,
  layout1 = in_circle(),
  zoom1 = 20,
  layout2 = in_circle(),
  zoom2 = 3,
  show_big_layout = FALSE,
  rescale = TRUE,
  ...
)
Arguments
go | 
 igraph or metanet object  | 
group | 
 group name (default: module)  | 
group_order | 
 group_order  | 
layout1 | 
 layout1 method, one of
(1) a dataframe or matrix: rowname is group, two columns are X and Y
(2) function: layout method for   | 
zoom1 | 
 big network layout size  | 
layout2 | 
 one of functions: layout method for   | 
zoom2 | 
 average sub_network layout size, or numeric vector, or "auto"  | 
show_big_layout | 
 show the big layout to help you adjust.  | 
rescale | 
 logical, scale the X, Y to (-1,1)  | 
... | 
 add  | 
Value
coors
See Also
Other g_layout: 
g_layout_nice(),
g_layout_poly_sector(),
g_layout_polygon()
Examples
data("c_net")
module_detect(co_net, method = "cluster_fast_greedy") -> co_net_modu
g_layout(co_net_modu, group = "module", zoom1 = 30, zoom2 = "auto", layout2 = as_line()) -> oridata
plot(co_net_modu, coors = oridata)
Layout with group nicely
Description
Layout with group nicely
Usage
g_layout_nice(go, group = "module", mode = "circlepack", group_zoom = 1, ...)
get_big_lay_nice(go, group = "module", mode = "circlepack", ...)
g_layout_circlepack(go, group = "module", ...)
g_layout_treemap(go, group = "module", ...)
g_layout_backbone(go, group = "module", ...)
g_layout_stress(go, group = "module", ...)
Arguments
go | 
 igraph or metanet  | 
group | 
 group name (default: module)  | 
mode | 
 circlepack, treemap, backbone, stress  | 
group_zoom | 
 zoom for each group  | 
... | 
 add  | 
Value
coors
See Also
Other g_layout: 
g_layout(),
g_layout_poly_sector(),
g_layout_polygon()
Examples
data("c_net")
module_detect(co_net, method = "cluster_fast_greedy") -> co_net_modu
if (requireNamespace("ggraph")) {
  plot(co_net_modu, coors = g_layout_nice(co_net_modu, group = "module"))
  plot(co_net_modu, coors = g_layout_nice(co_net_modu, group = "module", mode = "treemap"))
}
Layout with group
Description
Layout with group
Usage
g_layout_poly_sector(
  go,
  group = "v_group",
  group_order = NULL,
  group2 = NULL,
  group2_order = NULL,
  space = pi/4,
  jitter = 0,
  scale_node_num = TRUE,
  type = c("regular", "random"),
  mode = c("surface", "boundary"),
  curved = NULL
)
Arguments
go | 
 igraph  | 
group | 
 group name (default:v_group)  | 
group_order | 
 group_order  | 
group2 | 
 group2 name, will order nodes in each group according to group2_order  | 
group2_order | 
 group2_order  | 
space | 
 the space between each arc, default: pi/4  | 
jitter | 
 for surface-regular, defalut 0  | 
scale_node_num | 
 scale with the node number in each group  | 
type | 
 Type of distribution: "random", "regular"  | 
mode | 
 "surface", "boundary"  | 
curved | 
 Optional curved attribute for coors  | 
Value
coors
See Also
Other g_layout: 
g_layout(),
g_layout_nice(),
g_layout_polygon()
Layout with group as a polygon
Description
Layout with group as a polygon
Layout with group as a polyarc
Layout with group as a polycircle
Layout with group as a multi_layer
Usage
g_layout_polygon(
  go,
  group = "v_group",
  group_order = NULL,
  group2 = NULL,
  group2_order = NULL,
  line_curved = 0.5
)
g_layout_polyarc(
  go,
  group = "v_group",
  group_order = NULL,
  group2 = NULL,
  group2_order = NULL,
  space = pi/4,
  scale_node_num = TRUE
)
g_layout_polycircle(
  go,
  group = "v_group",
  group_order = NULL,
  group2 = NULL,
  group2_order = NULL
)
g_layout_multi_layer(
  go,
  layout = igraph::in_circle(),
  group = "v_group",
  group_order = NULL,
  group2 = NULL,
  group2_order = NULL,
  scale_node_num = TRUE
)
Arguments
go | 
 igraph  | 
group | 
 group name (default:v_group)  | 
group_order | 
 group_order  | 
group2 | 
 group2 name, will order nodes in each group according to group2_order  | 
group2_order | 
 group2_order  | 
line_curved | 
 line_curved 0~1  | 
space | 
 the space between each arc, default: pi/4  | 
scale_node_num | 
 scale with the node number in each group  | 
layout | 
 see method in   | 
Value
coors
See Also
Other g_layout: 
g_layout(),
g_layout_nice(),
g_layout_poly_sector()
Examples
g_layout_polygon(multi1) -> oridata
c_net_plot(multi1, oridata)
g_layout_polyarc(multi1, group2 = "v_class", group2_order = c(LETTERS[4:1])) -> oridata
c_net_plot(multi1, oridata)
g_layout_polycircle(co_net2, group2 = "v_class") -> oridata
c_net_plot(co_net2, oridata)
g_layout_multi_layer(co_net2, group2 = "v_class") -> oridata
c_net_plot(co_net2, oridata)
Get community
Description
Get community
Usage
get_community(go_m)
Arguments
go_m | 
 module metanet  | 
Value
community
See Also
Other module: 
filter_n_module(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Get edge information
Description
Get edge information
Usage
get_e(go, index = NULL)
Arguments
go | 
 metanet object  | 
index | 
 attribute name, default: NULL  | 
Value
data.frame
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_n(),
get_v(),
is_metanet()
Get skeleton network according to a group
Description
Get skeleton network according to a group
Skeleton plot
Usage
get_group_skeleton(go, Group = "v_class", count = NULL, top_N = 8)
skeleton_plot(ske_net, split_e_type = TRUE, ...)
Arguments
go | 
 network  | 
Group | 
 vertex column name  | 
count | 
 take which column count, default: NULL  | 
top_N | 
 top_N  | 
ske_net | 
 skeleton  | 
split_e_type | 
 split by e_type? default: TRUE  | 
... | 
 additional parameters for   | 
Value
skeleton network
See Also
Other topological: 
extract_sample_net(),
fit_power(),
links_stat(),
nc(),
net_par(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
get_group_skeleton(co_net) -> ske_net
skeleton_plot(ske_net)
Get module
Description
Get module
Usage
get_module(go_m)
Arguments
go_m | 
 module metanet  | 
Value
module
See Also
Other module: 
filter_n_module(),
get_community(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Get module_eigen
Description
Get module_eigen
Usage
get_module_eigen(go_m)
Arguments
go_m | 
 module metanet  | 
Value
module_eigen
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Get network information
Description
Get network information
Usage
get_n(go, index = NULL, simple = FALSE)
Arguments
go | 
 metanet object  | 
index | 
 attribute name, default: NULL  | 
simple | 
 logical, get simple index  | 
Value
data.frame
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_v(),
is_metanet()
Get vertex information
Description
Get vertex information
Usage
get_v(go, index = NULL)
Arguments
go | 
 metanet object  | 
index | 
 attribute name, default: NULL  | 
Value
data.frame
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
is_metanet()
Input a cyjs file exported by Cytoscape
Description
Input a cyjs file exported by Cytoscape
Usage
input_cytoscape(file)
Arguments
file | 
 cyjs file exported by Cytoscape  | 
Value
list contains the igraph object and coordinates
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Input a graphml file exported by Gephi
Description
Input a graphml file exported by Gephi
Usage
input_gephi(file)
Arguments
file | 
 graphml file exported by Gephi  | 
Value
list contains the igraph object and coordinates
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Is this object a metanet object?
Description
Is this object a metanet object?
Usage
is_metanet(go)
Arguments
go | 
 a test object  | 
Value
logical
See Also
Other manipulate: 
anno_edge(),
anno_vertex(),
c_net_annotate(),
c_net_filter(),
c_net_load(),
c_net_save(),
c_net_union(),
get_e(),
get_n(),
get_v()
Examples
data(c_net)
is_metanet(co_net)
Link summary of the network
Description
Link summary of the network
Usage
links_stat(
  go,
  group = "v_class",
  e_type = "all",
  topN = 10,
  colors = NULL,
  mode = 1,
  plot_param = list()
)
Arguments
go | 
 igraph or metanet  | 
group | 
 summary which group of vertex attribution in names(vertex_attr(go))  | 
e_type | 
 "positive", "negative", "all"  | 
topN | 
 topN of group, default: 10  | 
colors | 
 colors  | 
mode | 
 1~2  | 
plot_param | 
 plot parameters  | 
Value
plot
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
nc(),
net_par(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
if (requireNamespace("circlize")) {
  links_stat(co_net, topN = 10)
  module_detect(co_net) -> co_net_modu
  links_stat(co_net_modu, group = "module")
}
if (requireNamespace("corrplot")) {
  links_stat(co_net, topN = 10, mode = 2)
}
MetaNet networks abundance
Description
MetaNet co_nets
MetaNet networks metadata
Description
MetaNet co_nets
MetaNet networks abundance
Description
MetaNet co_nets
MetaNet networks metadata
Description
MetaNet co_nets
Detect the modules
Description
Detect the modules
Usage
module_detect(
  go,
  method = "cluster_fast_greedy",
  n_node_in_module = 0,
  delete = FALSE
)
Arguments
go | 
 an igraph object  | 
method | 
 cluster_method: "cluster_walktrap", "cluster_edge_betweenness", "cluster_fast_greedy", "cluster_spinglass"  | 
n_node_in_module | 
 transfer the modules less than n_node_in_module to "others"  | 
delete | 
 logical, delete others modules? default:FALSE, the others module will be "others".  | 
Value
an igraph object
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_eigen(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Examples
data("c_net")
module_detect(co_net) -> co_net_modu
Calculate the eigenvalue of each module and correlation of nodes and eigenvalue (node_eigen_cor).
Description
Calculate the eigenvalue of each module and correlation of nodes and eigenvalue (node_eigen_cor).
Plot the expression of each modules
Usage
module_eigen(go_m, totu, cor_method = "spearman")
module_expression(
  go_m,
  totu,
  group = NULL,
  r_threshold = 0.6,
  x_order = NULL,
  facet_param = NULL,
  plot_eigen = FALSE
)
Arguments
go_m | 
 module metanet  | 
totu | 
 original abundance table used for module_eigen().  | 
cor_method | 
 "pearson", "kendall", "spearman"  | 
group | 
 group variable for totu  | 
r_threshold | 
 the threshold for node_eigen_cor, default: 0.6.  | 
x_order | 
 order the x axis.  | 
facet_param | 
 parameters parse to   | 
plot_eigen | 
 plot the eigen value line.  | 
Value
module metanet with module_eigen
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_net(),
summary_module(),
to_module_net(),
zp_analyse()
Examples
data("otutab", package = "pcutils")
t(otutab) -> totu
data("c_net")
module_detect(co_net, n_node_in_module = 30) -> co_net_modu
module_eigen(co_net_modu, totu) -> co_net_modu
module_expression(co_net_modu, totu)
Generate a n-modules network
Description
this is just a random generation method, the module number of result is not exactly the module_number, you can change the inter_module_density and intra_module_density to get the proper result.
Usage
module_net(
  module_number = 3,
  n_node_in_module = 30,
  intra_module_density = 0.3,
  inter_module_density = 0.01
)
Arguments
module_number | 
 number of modules  | 
n_node_in_module | 
 number of nodes in each modules  | 
intra_module_density | 
 intra_module_density, recommend bigger than 20*inter_module_density, default:0.3  | 
inter_module_density | 
 inter_module_density, default:0.01  | 
Value
n-modules metanet
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
summary_module(),
to_module_net(),
zp_analyse()
Examples
g1 <- module_net()
get_n(g1)
plot(g1, mark_module = TRUE)
plot(g1, coors = g_layout(g1, zoom2 = 20))
plot(g1, coors = g_layout_polyarc(g1, group = "module"))
plot(g1, coors = g_layout_polygon(g1, group = "module"))
MetaNet networks
Description
MetaNet co_nets
Multi-omics network build
Description
Multi-omics network build
Usage
multi_net_build(
  ...,
  mode = "full",
  method = "spearman",
  filename = FALSE,
  p.adjust.method = NULL,
  r_threshold = 0.6,
  p_threshold = 0.05,
  use_p_adj = TRUE,
  delete_single = TRUE
)
Arguments
... | 
 some omics abundance tables  | 
mode | 
 "full"  | 
method | 
 "spearman" or "pearson"  | 
filename | 
 the prefix of saved .corr file or FALSE  | 
p.adjust.method | 
 see   | 
r_threshold | 
 r_threshold (default: >0.6)  | 
p_threshold | 
 p_threshold (default: <0.05)  | 
use_p_adj | 
 use the p.adjust instead of p-value (default: TRUE)  | 
delete_single | 
 should delete single vertexes?  | 
Value
metanet
See Also
Other build: 
c_net_build(),
c_net_from_edgelist(),
c_net_set(),
c_net_update()
Examples
data("multi_test")
multi1 <- multi_net_build(list(Microbiome = micro, Metabolome = metab, Transcriptome = transc))
multi1 <- c_net_set(multi1, micro_g, metab_g, transc_g,
  vertex_class = c("Phylum", "kingdom", "type")
)
multi1 <- c_net_set(multi1, data.frame("Abundance1" = colSums(micro)),
  data.frame("Abundance2" = colSums(metab)), data.frame("Abundance3" = colSums(transc)),
  vertex_size = paste0("Abundance", 1:3)
)
c_net_plot(multi1)
Calculate natural_connectivity
Description
Calculate natural_connectivity
Usage
nc(p)
Arguments
p | 
 an igraph or metanet object  | 
Value
natural_connectivity (numeric)
References
`nc` in `ggClusterNet`
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
links_stat(),
net_par(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
igraph::make_ring(10) %>% nc()
plot use networkD3
Description
plot use networkD3
Usage
netD3plot(go, v_class = "v_class", ...)
Arguments
go | 
 metanet  | 
v_class | 
 which attributes use to be v_class  | 
... | 
 see   | 
Value
D3 plot
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
input_gephi(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Examples
data("c_net")
plot(co_net2)
if (requireNamespace("networkD3")) {
  netD3plot(co_net2)
}
Calculate all topological indexes of a network
Description
Calculate all topological indexes of a network
Add topological indexes for a network
Usage
net_par(
  go,
  mode = c("v", "e", "n", "all"),
  fast = TRUE,
  remove_negative = FALSE
)
c_net_index(go, force = FALSE)
Arguments
go | 
 igraph or metanet  | 
mode | 
 calculate what? c("v", "e", "n", "all")  | 
fast | 
 less indexes for faster calculate ?  | 
remove_negative | 
 remove negative edge or not? default: FALSE  | 
force | 
 replace existed net_par  | 
Value
a 3-elements list
n_index | 
 indexs of the whole network  | 
v_index | 
 indexs of each vertex  | 
e_index | 
 indexs of each edge  | 
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
links_stat(),
nc(),
rand_net(),
rand_net_par(),
smallworldness()
Examples
igraph::make_graph("Walther") %>% net_par()
c_net_index(co_net) -> co_net_with_par
Plot olympic rings using network
Description
Plot olympic rings using network
Usage
olympic_rings_net()
Value
network plot
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
input_gephi(),
netD3plot(),
plot.ggig(),
twocol_edgelist(),
venn_net()
Examples
olympic_rings_net()
p.adjust apply on a correlation table (matrix or data.frame)
Description
p.adjust apply on a correlation table (matrix or data.frame)
Usage
p.adjust.table(pp, method = "BH", mode = "all")
Arguments
pp | 
 table of p-values  | 
method | 
 see   | 
mode | 
 "all" for all values; "rows" adjust each row one by one; "columns" adjust each column one by one. Default: "all".  | 
Value
a table of adjusted p-values
See Also
Other calculate: 
c_net_calculate(),
cal_sim(),
fast_cor(),
read_corr()
Examples
matrix(abs(rnorm(100, 0.01, 0.1)), 10, 10) -> pp
p.adjust.table(pp, method = "BH", mode = "all") -> pp_adj
Plot a ggig
Description
Plot a ggig
Usage
## S3 method for class 'ggig'
plot(
  x,
  coors = NULL,
  ...,
  labels_num = NULL,
  vertex_size_range = NULL,
  edge_width_range = NULL,
  plot_module = FALSE,
  mark_module = FALSE,
  mark_color = NULL,
  mark_alpha = 0.3,
  module_label = FALSE,
  module_label_cex = 2,
  module_label_color = "black",
  module_label_just = c(0.5, 0.5),
  legend_number = FALSE,
  legend = TRUE,
  legend_cex = 1,
  legend_position = c(left_leg_x = -2, left_leg_y = 1, right_leg_x = 1.2, right_leg_y =
    1),
  group_legend_title = NULL,
  group_legend_order = NULL,
  color_legend = TRUE,
  color_legend_order = NULL,
  size_legend = FALSE,
  size_legend_title = "Node Size",
  edge_legend = TRUE,
  edge_legend_title = "Edge type",
  edge_legend_order = NULL,
  width_legend = FALSE,
  width_legend_title = "Edge width",
  lty_legend = FALSE,
  lty_legend_title = "Edge class",
  lty_legend_order = NULL,
  params_list = NULL,
  seed = 1234
)
Arguments
x | 
 ggig object  | 
coors | 
 the coordinates you saved  | 
... | 
 additional parameters for   | 
labels_num | 
 show how many labels, >1 indicates number, <1 indicates fraction, "all" indicates all.  | 
vertex_size_range | 
 the vertex size range, e.g. c(1,10)  | 
edge_width_range | 
 the edge width range, e.g. c(1,10)  | 
plot_module | 
 logical, plot module?  | 
mark_module | 
 logical, mark the modules?  | 
mark_color | 
 mark color  | 
mark_alpha | 
 mark fill alpha, default 0.3  | 
module_label | 
 show module label?  | 
module_label_cex | 
 module label cex  | 
module_label_color | 
 module label color  | 
module_label_just | 
 module label just, default c(0.5,0.5)  | 
legend_number | 
 legend with numbers  | 
legend | 
 all legends  | 
legend_cex | 
 character expansion factor relative to current par("cex"), default: 1  | 
legend_position | 
 legend_position, default: c(left_leg_x=-1.9,left_leg_y=1,right_leg_x=1.2,right_leg_y=1)  | 
group_legend_title | 
 group_legend_title, length must same to the numbers of v_group  | 
group_legend_order | 
 group_legend_order vector  | 
color_legend | 
 logical  | 
color_legend_order | 
 color_legend_order vector  | 
size_legend | 
 logical  | 
size_legend_title | 
 size_legend_title  | 
edge_legend | 
 logical  | 
edge_legend_title | 
 edge_legend_title  | 
edge_legend_order | 
 edge_legend_order vector, e.g. c("positive","negative")  | 
width_legend | 
 logical  | 
width_legend_title | 
 width_legend_title  | 
lty_legend | 
 logical  | 
lty_legend_title | 
 lty_legend_title  | 
lty_legend_order | 
 lty_legend_order  | 
params_list | 
 a list of parameters, e.g. list(edge_legend = TRUE, lty_legend = FALSE), when the parameter is duplicated, the format argument will be used rather than the argument in params_list.  | 
seed | 
 random seed, default:1234, make sure each plot is the same.  | 
Value
ggplot
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
twocol_edgelist(),
venn_net()
Plot a metanet
Description
Plot a metanet
Usage
## S3 method for class 'metanet'
plot(x, ...)
Arguments
x | 
 metanet object  | 
... | 
 add  | 
Value
plot
Plot a metanet_compare
Description
Plot a metanet_compare
Usage
## S3 method for class 'metanet_compare'
plot(x, coors_com = NULL, mains = NULL, ...)
Arguments
x | 
 metanet_compare object  | 
coors_com | 
 coors object  | 
mains | 
 a vector of two strings for the main titles of the two networks  | 
... | 
 add  | 
Value
plot
Plot a rmt_res
Description
Plot a rmt_res
Usage
## S3 method for class 'rmt_res'
plot(x, ...)
Arguments
x | 
 rmt_res  | 
... | 
 Additional arguments  | 
Value
ggplot
Plot robust
Description
Plot robust
Usage
## S3 method for class 'robust'
plot(
  x,
  indexes = c("Natural_connectivity", "Average_degree"),
  use_ratio = FALSE,
  mode = 1,
  ...
)
Arguments
x | 
 
  | 
indexes | 
 indexes selected to show  | 
use_ratio | 
 use the delete nodes ratio rather than nodes number  | 
mode | 
 plot mode, 1~3  | 
... | 
 additional arguments for   | 
Value
a ggplot
Plot robustness
Description
Plot robustness
Usage
## S3 method for class 'robustness'
plot(x, indexes = "Node_number", ...)
Arguments
x | 
 
  | 
indexes | 
 indexes selected to show  | 
... | 
 additional arguments for   | 
Value
a ggplot
Plot vulnerability
Description
Plot vulnerability
Usage
## S3 method for class 'vulnerability'
plot(x, ...)
Arguments
x | 
 
  | 
... | 
 add  | 
Value
a ggplot
Plot e_type bar
Description
Plot e_type bar
Usage
plot_e_type_bar(go, mode = c("left", "right")[1], degree_threshold = 0)
Arguments
go | 
 metanet object  | 
mode | 
 "left" or "right"  | 
degree_threshold | 
 degree threshold  | 
Value
ggplot
Examples
data("c_net")
plot_e_type_bar(co_net, degree_threshold = 10)
Batch drawing multiple network diagrams
Description
Batch drawing multiple network diagrams
Usage
plot_multi_nets(graph_ls, nrow = NULL, ncol = NULL, multi_params_list = NULL)
Arguments
graph_ls | 
 a list containing igraph objects  | 
nrow | 
 nrow  | 
ncol | 
 ncol  | 
multi_params_list | 
 a list of parameters for each network  | 
Value
No value
Examples
plot_multi_nets(list(co_net, co_net2),
  multi_params_list = list(
    list(vertex.color = "skyblue"),
    list(vertex.color = "green3")
  )
)
Plot degree distribution of networks
Description
Plot degree distribution of networks
Usage
plot_net_degree(gols, net_names = NULL)
Arguments
gols | 
 list of metanet  | 
net_names | 
 names of networks  | 
Value
ggplot
Print method for 'cohesion' objects
Description
Print method for 'cohesion' objects
Usage
## S3 method for class 'cohesion'
print(x, ...)
Arguments
x | 
 'cohesion' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'coors' objects
Description
Print method for 'coors' objects
Usage
## S3 method for class 'coors'
print(x, ...)
Arguments
x | 
 'coors' object  | 
... | 
 additional arguments  | 
Value
No value
Print method for 'corr' objects
Description
Print method for 'corr' objects
Usage
## S3 method for class 'corr'
print(x, ...)
Arguments
x | 
 'corr' object  | 
... | 
 additional arguments  | 
Value
No value
Print method for 'ggig' objects
Description
Print method for 'ggig' objects
Usage
## S3 method for class 'ggig'
print(x, ...)
Arguments
x | 
 'ggig' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'metanet' objects
Description
Print method for 'metanet' objects
Usage
## S3 method for class 'metanet'
print(x, ...)
Arguments
x | 
 'metanet' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'metanet_compare' objects
Description
Print method for 'metanet_compare' objects
Usage
## S3 method for class 'metanet_compare'
print(x, ...)
Arguments
x | 
 'metanet_compare' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'robust' objects
Description
Print method for 'robust' objects
Usage
## S3 method for class 'robust'
print(x, ...)
Arguments
x | 
 'robust' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'robustness' objects
Description
Print method for 'robustness' objects
Usage
## S3 method for class 'robustness'
print(x, ...)
Arguments
x | 
 'robustness' object  | 
... | 
 Additional arguments  | 
Value
No value
Print method for 'vulnerability' objects
Description
Print method for 'vulnerability' objects
Usage
## S3 method for class 'vulnerability'
print(x, ...)
Arguments
x | 
 'vulnerability' object  | 
... | 
 Additional arguments  | 
Value
No value
Degree distribution comparison with random network
Description
Degree distribution comparison with random network
Usage
rand_net(go = go, plot = TRUE)
Arguments
go | 
 igraph object  | 
plot | 
 plot or not  | 
Value
ggplot
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
links_stat(),
nc(),
net_par(),
rand_net_par(),
smallworldness()
Examples
rand_net(co_net)
Net_pars of many random network
Description
Net_pars of many random network
Compare some indexes between your net with random networks
Usage
rand_net_par(go, reps = 99, threads = 1, verbose = TRUE)
compare_rand(
  pars,
  randp,
  index = c("Average_path_length", "Clustering_coefficient")
)
Arguments
go | 
 igraph  | 
reps | 
 simulation time  | 
threads | 
 threads  | 
verbose | 
 verbose  | 
pars | 
 your net pars resulted by net_pars()  | 
randp | 
 random networks pars resulted by rand_net_par()  | 
index | 
 compared indexes: "Average_path_length","Clustering_coefficient" or else  | 
Value
ggplot
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
links_stat(),
nc(),
net_par(),
rand_net(),
smallworldness()
Examples
data("c_net")
rand_net_par(co_net_rmt, reps = 30) -> randp
net_par(co_net_rmt, fast = FALSE) -> pars
compare_rand(pars, randp)
Read a corr object
Description
Read a corr object
Usage
read_corr(filename)
Arguments
filename | 
 filename of .corr  | 
Value
a corr object
See Also
Other calculate: 
c_net_calculate(),
cal_sim(),
fast_cor(),
p.adjust.table()
Save a corr object
Description
Save a corr object
Usage
save_corr(corr, filename = "corr")
Arguments
corr | 
 a corr object  | 
filename | 
 filename without extension, default: "corr"  | 
Value
a .corr file
Show MetaNet logo
Description
Show MetaNet logo
Usage
show_MetaNet_logo()
Value
picture
Calculate small-world coefficient
Description
Calculate small-world coefficient
Usage
smallworldness(go, reps = 99, threads = 1, verbose = TRUE)
Arguments
go | 
 igraph or metanet  | 
reps | 
 simulation time  | 
threads | 
 threads  | 
verbose | 
 verbose  | 
Value
number
See Also
Other topological: 
extract_sample_net(),
fit_power(),
get_group_skeleton(),
links_stat(),
nc(),
net_par(),
rand_net(),
rand_net_par()
Examples
# set reps at least 99 when you run.
smallworldness(co_net, reps = 9)
Generate spatial layout using spatstat
Description
Generate spatial layout using spatstat
Usage
spatstat_layout(
  go,
  win,
  type = c("random", "regular"),
  mode = c("surface", "boundary"),
  jitter = 0,
  curved = NULL,
  order_by = NULL,
  order_ls = NULL,
  order_circle = FALSE,
  seed = 1234,
  rescale = TRUE
)
Arguments
go | 
 igraph or metanet object  | 
win | 
 A spatstat window object (owin), e.g. disc(), owin(poly=...); Or sf object.  | 
type | 
 Type of distribution: "random", "regular"  | 
mode | 
 "surface", "boundary"  | 
jitter | 
 for surface-regular, defalut 0  | 
curved | 
 Optional curved attribute for coors  | 
order_by | 
 order nodes according to a node attribute  | 
order_ls | 
 manual the discrete variable with a vector, or continuous variable with "desc" to decreasing  | 
order_circle | 
 order nodes from the center of a circle  | 
seed | 
 random seed  | 
rescale | 
 rescale the coordinates to (0,1)  | 
Value
A coors object (data.frame with class "coors" and attribute "curved")
Examples
if (requireNamespace("spatstat.geom") && requireNamespace("spatstat.random")) {
  poly_x <- c(0, 2, 2, 0)
  poly_y <- c(0, 0, 1, 1)
  win_poly <- spatstat.geom::owin(poly = list(x = poly_x, y = poly_y))
  plot(win_poly)
  coors1 <- spatstat_layout(co_net, win_poly, type = "regular", mode = "surface")
  plot(co_net, coors = coors1)
  coors2 <- spatstat_layout(co_net2, win_poly, type = "random", mode = "boundary")
  plot(co_net2, coors = coors2)
  if (requireNamespace("sf")) {
    nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
    poly <- nc[1, ]
    coors <- spatstat_layout(go = multi1, win = poly, type = "regular", mode = "surface")
    plot(multi1, coors = coors)
  }
}
Summaries two columns information
Description
Summaries two columns information
Usage
summ_2col(df, from = 1, to = 2, count = 3, direct = FALSE)
Arguments
df | 
 data.frame  | 
from | 
 first column name or index  | 
to | 
 second column name or index  | 
count | 
 (optional) weight column, if no, each equal to 1  | 
direct | 
 consider direct? default: FALSE  | 
Value
data.frame
Examples
test <- data.frame(
  a = sample(letters[1:4], 10, replace = TRUE),
  b = sample(letters[1:4], 10, replace = TRUE)
)
summ_2col(test, direct = TRUE)
summ_2col(test, direct = FALSE)
if (requireNamespace("circlize")) {
  summ_2col(test, direct = TRUE) %>% pcutils::my_circo()
}
Summary method for 'corr' objects
Description
Summary method for 'corr' objects
Usage
## S3 method for class 'corr'
summary(object, ...)
Arguments
object | 
 'corr' object  | 
... | 
 Additional arguments  | 
Value
No value
Summary module index
Description
Summary module index
Usage
summary_module(go_m, var = "v_class", module = "module", ...)
Arguments
go_m | 
 module metanet  | 
var | 
 variable name  | 
module | 
 which column name is module. default: "module"  | 
... | 
 add  | 
Value
ggplot
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
to_module_net(),
zp_analyse()
Examples
data("c_net")
module_detect(co_net, n_node_in_module = 30) -> co_net_modu
summary_module(co_net_modu, var = "v_class", module = "module")
summary_module(co_net_modu, var = "Abundance", module = "module")
Transformation a network to a module network
Description
Transformation a network to a module network
Usage
to_module_net(go, edge_type = c("module", "module_from", "module_to")[1])
Arguments
go | 
 metanet  | 
edge_type | 
 "module", "module_from", "module_to"  | 
Value
metanet with modules
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
zp_analyse()
MetaNet networks abundance
Description
MetaNet co_nets
MetaNet networks metadata
Description
MetaNet co_nets
Transform the layout of a 'coors' object
Description
This function applies various transformations to a 'coors' object, including scaling, aspect ratio adjustment, rotation, mirroring, and pseudo-3D perspective transformation.
Usage
transform_coors(
  coors,
  scale = 1,
  aspect_ratio = 1,
  rotation = 0,
  mirror_x = FALSE,
  mirror_y = FALSE,
  shear_x = 0,
  shear_y = 0
)
Arguments
coors | 
 An object of class 'coors', containing node coordinates.  | 
scale | 
 A numeric value to scale the layout (default = 1).  | 
aspect_ratio | 
 A numeric value to adjust the Y-axis scaling (default = 1).  | 
rotation | 
 A numeric value in degrees to rotate the layout (default = 0).  | 
mirror_x | 
 A logical value indicating whether to mirror along the X-axis (default = FALSE).  | 
mirror_y | 
 A logical value indicating whether to mirror along the Y-axis (default = FALSE).  | 
shear_x | 
 A numeric value to apply a shear transformation in the X direction (default = 0).  | 
shear_y | 
 A numeric value to apply a shear transformation in the Y direction (default = 0).  | 
Value
A transformed 'coors' object with updated coordinates.
Quick build a metanet from two columns table
Description
Quick build a metanet from two columns table
Usage
twocol_edgelist(edgelist)
Arguments
edgelist | 
 two columns table (no elements exist in two columns at same time)  | 
Value
metanet
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
venn_net()
Examples
twocol <- data.frame(
  "col1" = sample(letters, 30, replace = TRUE),
  "col2" = sample(c("A", "B"), 30, replace = TRUE)
)
twocol_net <- twocol_edgelist(twocol)
plot(twocol_net)
c_net_plot(twocol_net, g_layout_polygon(twocol_net))
Venn network
Description
Venn network
Usage
venn_net(tab)
Arguments
tab | 
 data.frame (row is elements, column is group), or a list (names is group, value is elements)  | 
Value
plot
See Also
Other plot: 
as.ggig(),
c_net_plot(),
input_cytoscape(),
input_gephi(),
netD3plot(),
olympic_rings_net(),
plot.ggig(),
twocol_edgelist()
Examples
data(otutab, package = "pcutils")
tab <- otutab[400:485, 1:3]
venn_net(tab) -> v_net
plot(v_net)
Zi-Pi calculate
Description
Zi-Pi calculate
Zi-Pi plot of vertexes
Usage
zp_analyse(go_m, mode = 2, use_origin = TRUE)
zp_plot(go, label = TRUE, mode = 1)
Arguments
go_m | 
 igraph object after   | 
mode | 
 plot style, 1~3  | 
use_origin | 
 use original_module, default:TRUE, if FALSE, use module  | 
go | 
 igraph object after zp_analyse()  | 
label | 
 show label or not  | 
Value
igraph
a ggplot object
References
GuimerĂ , R. & Amaral, L. Functional cartography of complex metabolic networks. (2005) doi:10.1038/nature03288.
See Also
Other module: 
filter_n_module(),
get_community(),
get_module(),
get_module_eigen(),
module_detect(),
module_eigen(),
module_net(),
summary_module(),
to_module_net()
Examples
data("c_net")
module_detect(co_net) -> co_net_modu
zp_analyse(co_net_modu) -> co_net_modu
zp_plot(co_net_modu)
zp_plot(co_net_modu, mode = 3)