| Type: | Package | 
| Title: | Sequential Change-Point Tests for Generalized Ornstein-Uhlenbeck Processes | 
| Version: | 0.2.1 | 
| Description: | Sequential change-point tests, parameters estimation, and goodness-of-fit tests for generalized Ornstein-Uhlenbeck processes. | 
| Depends: | R (≥ 3.5.0), doParallel, parallel, foreach, stats | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-08-23 01:27:06 UTC; Utilisateur | 
| Author: | Yunhong Lyu [aut, ctb, cph], Bouchra R. Nasri [aut, ctb, cph], Bruno N Remillard [aut, cre, cph] | 
| Maintainer: | Bruno N Remillard <bruno.remillard@hec.ca> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-08-28 08:40:02 UTC | 
Simulation of multidimensional Brownian motion
Description
This function is used to simulate multidimensional Brownian motion at points 0,1/n, ..., 1.
Usage
SimBM(n, d)
Arguments
n | 
 Number of simulated  | 
d | 
 Dimension of BM  | 
Value
W | 
 Brownian motion  | 
Examples
W =  SimBM(100,4)
Simulation of generalized Ornstein-Uhlenbeck (GOU) process
Description
Function to simulate exact N+K+1 values with change point after N+K_star, with K_star = floor(N*t_star), for a GOU process. Starting point is 0.
Usage
SimGOUexact(T1, N, t_star = 0, K, theta, theta_star, sigma)
Arguments
T1 | 
 Last time of observation  | 
N | 
 Number of observations on from on interval (0,T1]  | 
t_star | 
 Time of change-point after T1  | 
K | 
 Number of observation after change-point  | 
theta | 
 list of parameters before change-point: cos coefficients (>=1), sine and sigma  | 
theta_star | 
 list of parameters after change-point: cos coefficients (>=1), sine and sigma  | 
sigma | 
 volatility parameter of the GOU process  | 
Value
X | 
 Simulated path evaluated at points k x T1/N, 0 <= k <= N+K  | 
Examples
set.seed(3253)
T1=20
N=500
K=2*N
t_star=0
theta=list(cos=c(1,2),alpha=1) # d=3 parameters for the drift
theta_star=list(cos=c(2,5),alpha=1)
sigma=3
X=SimGOUexact(T1,N,t_star,K,theta,theta_star,sigma)
Function to estimate quantiles for residuals of generalized Ornstein-Uhlenbeck (GOU) process
Description
Computation of quantiles for Cramer-von Mises and Kolmogorov-Smirnov statistics for testing goodness-of-fit of GOU
Usage
SimQuantilesGoF(n, B = 50000, alpha = c(0.9, 0.95, 0.975, 0.99), n_cores = 2)
Arguments
n | 
 number of points  | 
B | 
 number of bootstrap samples (default 50000)  | 
alpha | 
 vector of probabilities (default is (.90,.95,.975,.99))  | 
n_cores | 
 number of cores for parallel computing (default is 2)  | 
Value
q | 
 Data frame of simulated quantiles of weighted BM  | 
Function to estimate quantiles for weigthed Brownian Motion functional
Description
Function to calculate the critical value for the Euclidean norm of d-dimensional BM divided by t^gamma
Usage
SimQuantilesWBM(
  n,
  d,
  gamma,
  B = 50000,
  alpha = c(0.9, 0.95, 0.975, 0.99),
  n_cores = 2
)
Arguments
n | 
 number of points  | 
d | 
 dimension of Brownian motion  | 
gamma | 
 parameter between 0 and 0.5 (not included)  | 
B | 
 number of bootstrap samples (default 50000)  | 
alpha | 
 vector of probabilities (default is (.90,.95,.975,.99))  | 
n_cores | 
 number of cores for parallel computing (default is 2)  | 
Value
qs | 
 Simulated quantiles of weighted BM  | 
Change-point tests for generalized Ornstein-Uhlenbec (GOU) process
Description
Function to simulate exact N+K+1 values with change point after N+K_star, with K_star = floor(N*t_star), for a GOU process. Starting point is 0.
Usage
StatGOU(X, T1, N, p, q, gamma, c1, cd)
Arguments
X | 
 observations  | 
T1 | 
 last time of observation  | 
N | 
 number of observations on from on interval (0,T1]  | 
p | 
 number of cosine coefficients >=1  | 
q | 
 number of sine coefficients >=0  | 
gamma | 
 weight parameter >=0 and < 0.5  | 
c1 | 
 critical value for Q stat (based on 1-dimensional weigthed BM)  | 
cd | 
 critical value for G stat (based on d-dimensional weigthed BM), where d = p+q+1 is the number of estimated parameters for the drift.  | 
Value
out | 
 List  | 
References
Lyu, Nasri and Remillard (2025): Sequential Change-point Detection with Generalized Ornstein–Uhlenbeck Processes
Examples
T1=20
N=500
gamma = 0.1
p=2
q=0
c1 = 2.2838 # corresponding to gamma=0.1
c3 = 3.0502 # corresponding to gamma=0.1 and d=3 estimated parameters for the drift
data(X)
out=StatGOU(X,T1,N,p,q,gamma,c1,c3)
Simulated GOU process
Description
Simulated GOU process with set.seed(3253), theta=list(cos=c(1,2),alpha=1) theta_star=list(cos=c(2,4),alpha=2), using X=SimGOUexact(20,500,0,1000,theta,theta_star,3)
Usage
data(X)
Format
Simulated GOU process (X)
Examples
data(X)
Function calculating basis cosine function
Description
This function computes the normalized cosine function.
Usage
fcos(s)
Arguments
s | 
 Parameter of function  | 
Value
f | 
 Normalized cosine function  | 
Function calculating basis sine function
Description
This function computes the normalized sine function.
Usage
fsin(s)
Arguments
s | 
 Parameter of function  | 
Value
f | 
 Normalized sine function  | 
Function used to perform parallel computing for weighted norm of multidimensional Brownian motion
Description
This function simulates weighted Euclidean norm for multidimensional BM.
Usage
funBM(n, d, gamma)
Arguments
n | 
 Number of simulated points;  | 
d | 
 Dimension of BM;  | 
gamma | 
 Weighted exponent (>= 0, < 0.5).  | 
Value
stat | 
 Weighted norm of multidimensional BM  | 
Function used to perform parallel computing for pseudo-observations of generalized Ornstein-Uhlenbeck
Description
This function simulates values of the Cramer-von Mises and Kolmogorov-Smirnov statistics for testing goodness-of-fit of GOU.
Usage
funGoF(n)
Arguments
n | 
 number of simulated points.  | 
Value
out | 
 List of gof statistics for GOU: ks (Kolmogorov-Smirnov) and cvm ( Cramer-von Mises)  | 
Function to estimate quantiles for a goodness-of-fit test for generalized Ornstein-Uhlenbeck process
Description
Function to calculate the quantiles of Cramer-von Mise and Kolmogorov-Smirnov statistics.
Usage
gof_stat(X, T1, N, p, q)
Arguments
X | 
 observations  | 
T1 | 
 last time of observation  | 
N | 
 number of observations on from on interval (0,T1]  | 
p | 
 number of cosine coefficients >=1  | 
q | 
 number of sine coefficients >=0  | 
Value
out | 
 List of statistics (cvm and ks), estimated parameters, and pseudo-observations  | 
Examples
T1=20
N=500
data(X)
out = gof_stat(X,T1,N,2,0)
Change-point statistics for GOU
Description
Function to compute Sigma covariance matrix and kappas of change-point statistics
Usage
kappa(theta, theta_star, sigma)
Arguments
theta | 
 list of parameters before change-point: cos coefficients (>=1), sine coefficients (>=0, and alpha  | 
theta_star | 
 list of parameters after change-point: cos coefficients (>=1), sine coefficients (>=0, and alpha  | 
sigma | 
 volatility parameter of the GOU process  | 
Value
out | 
 List containing Sigma and kappas for Q and G statistics  | 
Examples
theta=list(cos=c(1,2),alpha=1)
theta_star=list(cos=c(2,4),alpha=2)
sigma=3
out = kappa(theta,theta_star, sigma)