Riemannian Metrics for Symmetric Positive Definite Matrices


[Up] [Top]

Documentation for package ‘riemtan’ version 0.2.5

Help Pages

airm Pre-configured Riemannian metrics for SPD matrices
airm_exp Compute the AIRM Exponential
airm_log Compute the AIRM Logarithm
airm_unvec Compute the Inverse Vectorization (AIRM)
airm_vec Compute the AIRM Vectorization of Tangent Space
bures_wasserstein Pre-configured Riemannian metrics for SPD matrices
bures_wasserstein_exp Compute the Bures-Wasserstein Exponential
bures_wasserstein_log Compute the Bures-Wasserstein Logarithm
bures_wasserstein_unvec Compute the Bures-Wasserstein Inverse Vectorization
bures_wasserstein_vec Compute the Bures-Wasserstein Vectorization
compute_frechet_mean Compute the Frechet Mean
configure_progress Configure Progress Handlers
create_parquet_backend Create ParquetBackend from Directory
CSample CSample Class
CSuperSample CSuperSample Class
default_ref_pt Default reference point
dexp Differential of Matrix Exponential Map
dlog Differential of Matrix Logarithm Map
euclidean Pre-configured Riemannian metrics for SPD matrices
euclidean_exp Compute the Euclidean Exponential
euclidean_log Compute the Euclidean Logarithm
euclidean_unvec Compute the Inverse Vectorization (Euclidean)
euclidean_vec Vectorize at Identity Matrix (Euclidean)
get_n_workers Get Current Number of Parallel Workers
half_underscore Half-underscore operation for use in the log-Cholesky metric
id_matr Create an Identity Matrix
is_parallel_enabled Check if Parallel Processing is Enabled
is_progress_available Check if Progress Reporting is Available
ListBackend ListBackend Class
log_cholesky Pre-configured Riemannian metrics for SPD matrices
log_cholesky_exp Compute the Log-Cholesky Exponential
log_cholesky_log Compute the Log-Cholesky Logarithm
log_cholesky_unvec Compute the Log-Cholesky Inverse Vectorization
log_cholesky_vec Compute the Log-Cholesky Vectorization
log_euclidean Pre-configured Riemannian metrics for SPD matrices
log_euclidean_exp Compute the Log-Euclidean Exponential
log_euclidean_log Compute the Log-Euclidean Logarithm
log_euclidean_unvec Compute the Inverse Vectorization (Euclidean)
log_euclidean_vec Vectorize at Identity Matrix (Euclidean)
metric Metric Object Constructor
metrics Pre-configured Riemannian metrics for SPD matrices
parallel_config Parallel Processing Configuration for riemtan
ParquetBackend ParquetBackend Class
progress_utils Progress Reporting Utilities for riemtan
relocate Relocate Tangent Representations to a New Reference Point
reset_parallel_plan Reset Parallel Plan to Sequential
rspdnorm Generate Random Samples from a Riemannian Normal Distribution
safe_logm Wrapper for the matrix logarithm
set_parallel_plan Set Parallel Processing Plan
should_parallelize Decide Whether to Use Parallel Processing
spd_isometry_from_identity Reverse isometry from tangent space at identity to tangent space at P
spd_isometry_to_identity Isometry from tangent space at P to tangent space at identity
TangentImageHandler TangentImageHandler Class
validate_backend Validate Backend Object
validate_conns Validate Connections
validate_exp_args Validate arguments for Riemannian logarithms
validate_log_args Validate arguments for Riemannian logarithms
validate_metric Validate Metric
validate_parquet_dir Validate Parquet Directory Structure
validate_parquet_directory Validate Parquet Directory
validate_tan_imgs Validate Tangent Images
validate_unvec_args Validate arguments for inverse vectorization
validate_vec_args Validate arguments for vectorization
validate_vec_imgs Validate Vector Images
vec_at_id Vectorize at Identity Matrix
write_connectomes_to_parquet Write Connectomes to Parquet Files