| bifun_clu | main function for bifunctional clustering | 
| bifun_clu_convert | convert result of bifunctional clustering result | 
| bifun_clu_parallel | parallel version for functional clustering | 
| bifun_clu_plot | bifunctional clustering plot | 
| biget_par_int | acquire initial parameters for functional clustering | 
| bipower_equation_plot | plot power equation fitting results for bi-variate model | 
| biqdODE_plot_all | plot all decompose plot for two data | 
| biqdODE_plot_base | plot single decompose plot for two data | 
| biQ_function | Q-function to replace log-likelihood function | 
| darken | make color more dark | 
| data_cleaning | remove observation with too many 0 values | 
| data_match | match power_equation fit result for bi-variate model | 
| fun_clu | main function for functional clustering | 
| fun_clu_BIC | plot BIC results for functional clustering | 
| fun_clu_convert | convert result of functional clustering result | 
| fun_clu_parallel | parallel version for functional clustering | 
| fun_clu_plot | functional clustering plot | 
| fun_clu_select | select result of functional clustering result | 
| get_biSAD1 | generate biSAD1 covariance matrix | 
| get_interaction | Lasso-based variable selection | 
| get_legendre_matrix | generate legendre matrix | 
| get_legendre_par | use legendre polynomials to fit a given data | 
| get_mu | curve fit with modified logistic function | 
| get_mu2 | generate mean vectors with ck and stress condition | 
| get_par_int | acquire initial parameters for functional clustering | 
| get_SAD1_covmatrix | generate standard SAD1 covariance matrix | 
| gut_microbe | gut microbe OTU data (species level) | 
| legendre_fit | generate curve based on legendre polynomials | 
| logsumexp | calculate log-sum-exp values | 
| mustard_microbe | mustard microbe OTU data | 
| network_conversion | convert ODE results(ODE_solving2) to basic network plot table | 
| network_maxeffect | convert ODE results(ODE_solving2) to basic network plot table | 
| network_plot | generate network plot | 
| normalization | min-max normalization | 
| power_equation | use power equation parameters to generate y values | 
| power_equation_all | use power equation to fit observed values | 
| power_equation_base | use power equation to fit observed values | 
| power_equation_fit | use power equation to fit given dataset | 
| power_equation_plot | plot power equation fitting results | 
| qdODEmod | quasi-dynamic lotka volterra model | 
| qdODEplot_convert | convert qdODE results to plot data | 
| qdODE_all | wrapper for qdODE model | 
| qdODE_fit | legendre polynomials fit to qdODE model | 
| qdODE_ls | least-square fit for qdODE model | 
| qdODE_parallel | wrapper for qdODE_all in parallel version | 
| qdODE_plot_all | plot all decompose plot | 
| qdODE_plot_base | plot single decompose plot | 
| Q_function | Q-function to replace log-likelihood function |